1
|
Kedari A, Iheozor-Ejiofor R, Salminen P, Uğurlu H, Mäkelä AR, Levanov L, Vapalahti O, Hytönen VP, Saksela K, Rissanen I. Structural insight into rabies virus neutralization revealed by an engineered antibody scaffold. Structure 2024; 32:2220-2230.e4. [PMID: 39471803 DOI: 10.1016/j.str.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Host-cell entry of the highly pathogenic rabies virus (RABV) is mediated by glycoprotein (G) spikes, which also comprise the primary target for the humoral immune response. RABV glycoprotein (RABV-G) displays several antigenic sites that are targeted by neutralizing monoclonal antibodies (mAbs). In this study, we determined the epitope of a potently neutralizing human mAb, CR57, which we engineered into a diabody format to facilitate crystallization. We report the crystal structure of the CR57 diabody alone at 2.38 Å resolution, and in complex with RABV-G domain III at 2.70 Å resolution. The CR57-RABV-G structure reveals critical interactions at the antigen interface, which target the conserved "KLCGVL" peptide and residues proximal to it on RABV-G. Structural analysis combined with a cell-cell fusion assay demonstrates that CR57 effectively inhibits RABV-G-mediated fusion by obstructing the fusogenic transitions of the spike protein. Altogether, this investigation provides a structural perspective on RABV inhibition by a potently neutralizing human antibody.
Collapse
MESH Headings
- Rabies virus/immunology
- Rabies virus/chemistry
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Humans
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Models, Molecular
- Crystallography, X-Ray
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Protein Engineering/methods
- Epitopes/chemistry
- Epitopes/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Protein Binding
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
Collapse
Affiliation(s)
- Ashwini Kedari
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Petja Salminen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Anna R Mäkelä
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Kumar A, Tushir S, Devasurmutt Y, Nath SS, Tatu U. Identification of clade-defining single nucleotide polymorphisms for improved rabies virus surveillance. New Microbes New Infect 2024; 62:101511. [PMID: 39512853 PMCID: PMC11542045 DOI: 10.1016/j.nmni.2024.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Background Rabies is an ancient disease that remains endemic in many countries. It causes many human deaths annually, predominantly in resource-poor countries. Over evolutionary timelines, several rabies virus (RABV) genotypes have stabilised, forming distinct clades. Extensive studies have been conducted on the origin, occurrence and spread of RABV clades. Single nucleotide polymorphisms (SNPs) distribution across the RABV genome and its clades remains largely unknown, highlighting the need for comprehensive whole-genome analyses. Methods We accessed whole genome sequences for RABV from public databases and identified SNPs across the whole genome sequences. Then, we annotated these SNPs using an R script, and these SNPs were categorised into different categories; universal, clade-specific, and clade-defining, based on the frequency of occurrence. Results In this study, we present the SNPs occurring in the RABV based on whole genome sequences belonging to 8 clades isolated from 7 different host species likely to harbour dog-related rabies. We classified mutations into several classes based on their location within the genome and assessed the effect of SNP mutations on the viral glycoprotein. Conclusions The clade-defining mutations have implications for targeted surveillance and classification of clades. Additionally, we investigated the effects of these mutations on the Glycoprotein of the virus. Our findings contribute to expanding knowledge about RABV clade diversity and evolution, which has significant implications for effectively tracking and combatting RABV transmission.
Collapse
Affiliation(s)
- Ankeet Kumar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheetal Tushir
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sujith S. Nath
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Utpal Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Griswold KA, Vasylieva I, Smith MC, Fiske KL, Welsh OL, Roth AN, Watson AM, Watkins SC, Sutherland DM, Dermody TS. Sialic acid and PirB are not required for targeting of neural circuits by neurotropic mammalian orthoreovirus. mSphere 2024; 9:e0062924. [PMID: 39320067 PMCID: PMC11540169 DOI: 10.1128/msphere.00629-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Serotype 3 (T3) strains of mammalian orthoreovirus (reovirus) spread to the central nervous system to infect the brain and cause lethal encephalitis in newborn mice. Although reovirus targets several regions in the brain, susceptibility to infection is not uniformly distributed. The neuronal subtypes and anatomic sites targeted throughout the brain are not precisely known. Reovirus binds several attachment factors and entry receptors, including sialic acid (SA)-containing glycans and paired immunoglobulin-like receptor B (PirB). While these receptors are not required for infection of some types of neurons, reovirus engagement of these receptors can influence neuronal infection in certain contexts. To identify patterns of T3 neurotropism, we used microbial identification after passive tissue clearance and hybridization chain reaction to stain reovirus-infected cells throughout intact, optically transparent brains of newborn mice. Three-dimensional reconstructions revealed in detail the sites targeted by reovirus throughout the brain volume, including dense infection of the midbrain and hindbrain. Using reovirus mutants incapable of binding SA and mice lacking PirB expression, we found that neither SA nor PirB is required for the infection of various brain regions. However, SA may confer minor differences in infection that vary by region. Collectively, these studies indicate that many regions in the brain of newborn mice are susceptible to reovirus and that patterns of reovirus infection are not dependent on reovirus receptors SA and PirB.IMPORTANCENeurotropic viruses invade the central nervous system (CNS) and target various cell types to cause disease manifestations, such as meningitis, myelitis, or encephalitis. Infections of the CNS are often difficult to treat and can lead to lasting sequelae or death. Mammalian orthoreovirus (reovirus) causes age-dependent lethal encephalitis in many young mammals. Reovirus infects neurons in several different regions of the brain. However, the complete pattern of CNS infection is not understood. We found that reovirus targets almost all regions of the brain and that patterns of tropism are not dependent on receptors sialic acid and paired immunoglobulin-like receptor B. These studies confirm that two known reovirus receptors do not completely explain the cell types infected in brain tissue and establish strategies that can be used to understand complete patterns of viral tropism in an intact brain.
Collapse
Affiliation(s)
- Kira A. Griswold
- Department of
Microbiology and Molecular Genetics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
| | - Iaroslavna Vasylieva
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Megan C. Smith
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Kay L. Fiske
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Olivia L. Welsh
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Alexa N. Roth
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Alan M. Watson
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Simon C. Watkins
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Danica M. Sutherland
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Terence S. Dermody
- Department of
Microbiology and Molecular Genetics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| |
Collapse
|
4
|
Qiu Z, Liu X, Cao W, Li R, Yang J, Wang C, Li Z, Yao X, Chen Y, Ye C, Chen S, Jin N. Role of Neurotropic Viruses in Brain Metastasis of Breast Cancer: Mechanisms and Therapeutic Implications. Rev Med Virol 2024; 34:e2584. [PMID: 39304923 DOI: 10.1002/rmv.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Neurotropic viruses have been implicated in altering the central nervous system microenvironment and promoting brain metastasis of breast cancer through complex interactions involving viral entry mechanisms, modulation of the blood-brain barrier, immune evasion, and alteration of the tumour microenvironment. This narrative review explores the molecular mechanisms by which neurotropic viruses such as Herpes Simplex Virus, Human Immunodeficiency Virus, Japanese Encephalitis Virus, and Rabies Virus facilitate brain metastasis, focusing on their ability to disrupt blood-brain barrier integrity, modulate immune responses, and create a permissive environment for metastatic cell survival and growth within the central nervous system. Current therapeutic implications and challenges in targeting neurotropic viruses to prevent or treat brain metastasis are discussed, highlighting the need for innovative strategies and multidisciplinary approaches in virology, oncology, and immunology.
Collapse
Affiliation(s)
- Ziran Qiu
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Xinyu Liu
- Department of Otolaryngology Head and Neck Surgery, Loudi Central Hospital, Loudi, China
| | - Wenqing Cao
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Rui Li
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Jun Yang
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Chengyu Wang
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Zhong Li
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Xiaoqin Yao
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Yuan Chen
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Chunhua Ye
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Shanzheng Chen
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| | - Na Jin
- Department of Breast and Thyroid Surgery, Loudi Central Hospital, Loudi, China
| |
Collapse
|
5
|
AMICIZIA DANIELA, LAI PIEROLUIGI, MASSARO ELVIRA, PANATTO DONATELLA. Burden of human rabies disease: its potential prevention by means of Rabipur ® vaccine. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2024; 65:E356-E370. [PMID: 39758769 PMCID: PMC11698110 DOI: 10.15167/2421-4248/jpmh2024.65.3.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Rabies is a zoonotic viral disease transmitted mainly by bites of infected animals, especially dogs, which are responsible for 99% of human cases. Despite being preventable, it remains a neglected disease in low-income countries, with approximately 60,000 deaths per year, mostly concentrated in Africa and Asia. The real worldwide burden of rabies is probably underestimated, as death-reporting systems are inadequate and active surveillance is limited. Rabies prevention implies two main, non-exclusive strategies: (i) dog vaccination, in order to interrupt virus transmission to humans, and (ii) human vaccination i.e. pre-exposure prophylaxis (PrEP) and Post-Esposure Prophylaxis (PEP) through the use of purified cell-culture and embryonated egg-based vaccines (CCEEVs). Rabipur® is one of the available anti-rabies vaccines and is indicated for active immunization in individuals of all ages. Its efficacy and safety have been amply demonstrated. In rabies-free countries, PrEP is indicated for individuals who face occupational and/or travel-related exposure to the rabies virus in specific settings or over an extended period. Wider use of human rabies vaccination for PrEP and PEP in conjunction with programs to eradicate rabies from animal populations is the challenging goal in order to reduce the burden of disease and achieve zero rabies.
Collapse
Affiliation(s)
- DANIELA AMICIZIA
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - PIERO LUIGI LAI
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - ELVIRA MASSARO
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - DONATELLA PANATTO
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| |
Collapse
|
6
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
7
|
O’Brien BCV, Thao S, Weber L, Danielson HL, Boldt AD, Hueffer K, Weltzin MM. The human alpha7 nicotinic acetylcholine receptor is a host target for the rabies virus glycoprotein. Front Cell Infect Microbiol 2024; 14:1394713. [PMID: 38836054 PMCID: PMC11148329 DOI: 10.3389/fcimb.2024.1394713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4β2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.
Collapse
Affiliation(s)
- Brittany C. V. O’Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Shelly Thao
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Helen L. Danielson
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Agatha D. Boldt
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Maegan M. Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
8
|
Rizkita AD, Dewi SA, Fakih TM, Lee CC. Effectiveness of sesquiterpene derivatives from Cinnamomum genus in nicotine replacement therapy through blocking acetylcholine nicotinate: a computational analysis. J Biomol Struct Dyn 2024:1-14. [PMID: 38268238 DOI: 10.1080/07391102.2024.2305315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Cigarette smoking poses various health risks, such as increasing the susceptibility to respiratory infections, contributing to osteoporosis, causing reproductive issues, delaying postoperative recovery, promoting ulcer formation and heightening the risk of diabetes. While many harmful effects of smoking are attributed to other cigarette components, it is nicotine's pharmacological effects that underlie tobacco addiction. Nicotine replacement therapy (NRT) aims to alleviate the urge to smoke and mitigate physiological and psychomotor withdrawal symptoms by delivering nicotine. This study explores the potential of sesquiterpene derivative compounds derived from the Cinnamomum genus using computational techniques. The research incorporates molecular docking analyses, Lipinski's rule of five filtration for drug-likeness, pharmacokinetic and toxicity predictions to assess safety profiles and molecular dynamics (MD) simulations to gauge interaction stability. The findings reveal that all sesquiterpene derivative compounds from the Cinnamomum genus can potentially inhibit nicotinic acetylcholine receptors (nAChRs), particularly nAChRÿ7. However, only abscisic acid exhibit active inhibition, along with suitable drug properties, pharmacokinetics and toxicity profiles. MD studies confirm the stability of interactions between abscisic acid with nAChRÿ7. Consequently, abscisic acid, as sesquiterpene derivatives from the Cinnamomum genus, holds substantial promise for further investigation as nAChRÿ7 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aden Dhana Rizkita
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan (STIKES) Bogor Husada, Bogor, West Java, Indonesia
| | - Sintia Ayu Dewi
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, West Java, Indonesia
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Chen YL, Bao CJ, Duan JL, Xie Y, Lu WL. Overcoming biological barriers by virus-like drug particles for drug delivery. Adv Drug Deliv Rev 2023; 203:115134. [PMID: 37926218 DOI: 10.1016/j.addr.2023.115134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.
Collapse
Affiliation(s)
- Yu-Ling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun-Jie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Lun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
10
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Gowda V, Dinesh S, Sharma S. Manipulative neuroparasites: uncovering the intricacies of neurological host control. Arch Microbiol 2023; 205:314. [PMID: 37603130 DOI: 10.1007/s00203-023-03637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Manipulative neuroparasites are a fascinating group of organisms that possess the ability to hijack the nervous systems of their hosts, manipulating their behavior in order to enhance their own survival and reproductive success. This review provides an overview of the different strategies employed by manipulative neuroparasites, ranging from viruses to parasitic worms and fungi. By examining specific examples, such as Toxoplasma gondii, Leucochloridium paradoxum, and Ophiocordyceps unilateralis, we highlight the complex mechanisms employed by these parasites to manipulate their hosts' behavior. We explore the mechanisms through which these parasites alter the neural processes and behavior of their hosts, including the modulation of neurotransmitters, hormonal pathways, and neural circuits. This review focuses less on the diseases that neuroparasites induce and more on the process of their neurological manipulation. We also investigate the fundamental mechanisms of host manipulation in the developing field of neuroparasitology, which blends neuroscience and parasitology. Finally, understanding the complex interaction between manipulative neuroparasites and their hosts may help us to better understand the fundamentals of behavior, neurology, and host-parasite relationships.
Collapse
Affiliation(s)
- Vishvas Gowda
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| |
Collapse
|
12
|
Rupprecht CE, Mshelbwala PP, Reeves RG, Kuzmin IV. Rabies in a postpandemic world: resilient reservoirs, redoubtable riposte, recurrent roadblocks, and resolute recidivism. ANIMAL DISEASES 2023; 3:15. [PMID: 37252063 PMCID: PMC10195671 DOI: 10.1186/s44149-023-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023] Open
Abstract
Rabies is an ancient disease. Two centuries since Pasteur, fundamental progress occurred in virology, vaccinology, and diagnostics-and an understanding of pathobiology and epizootiology of rabies in testament to One Health-before common terminological coinage. Prevention, control, selective elimination, and even the unthinkable-occasional treatment-of this zoonosis dawned by the twenty-first century. However, in contrast to smallpox and rinderpest, eradication is a wishful misnomer applied to rabies, particularly post-COVID-19 pandemic. Reasons are minion. Polyhostality encompasses bats and mesocarnivores, but other mammals represent a diverse spectrum of potential hosts. While rabies virus is the classical member of the genus, other species of lyssaviruses also cause the disease. Some reservoirs remain cryptic. Although global, this viral encephalitis is untreatable and often ignored. As with other neglected diseases, laboratory-based surveillance falls short of the notifiable ideal, especially in lower- and middle-income countries. Calculation of actual burden defaults to a flux within broad health economic models. Competing priorities, lack of defined, long-term international donors, and shrinking local champions challenge human prophylaxis and mass dog vaccination toward targets of 2030 for even canine rabies impacts. For prevention, all licensed vaccines are delivered to the individual, whether parenteral or oral-essentially 'one and done'. Exploiting mammalian social behaviors, future 'spreadable vaccines' might increase the proportion of immunized hosts per unit effort. However, the release of replication-competent, genetically modified organisms selectively engineered to spread intentionally throughout a population raises significant biological, ethical, and regulatory issues in need of broader, transdisciplinary discourse. How this rather curious idea will evolve toward actual unconventional prevention, control, or elimination in the near term remains debatable. In the interim, more precise terminology and realistic expectations serve as the norm for diverse, collective constituents to maintain progress in the field.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- College of Forestry, Wildlife & Environment, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton, Australia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - R. Guy Reeves
- Max Planck Institut Für Evolutionsbiologie, 24306 Plön, Germany
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
13
|
Nadwa EH, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Albogami SM, Alorabi M, Batiha GES, De Waard M. Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:453-468. [PMID: 36460816 PMCID: PMC9735034 DOI: 10.1007/s00210-022-02346-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
A novel coronavirus known as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a potential cause of acute respiratory infection called coronavirus disease 2019 (COVID-19). The binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) induces a series of inflammatory cellular events with cytopathic effects leading to cell injury and hyperinflammation. Severe SARS-CoV-2 infection may lead to dysautonomia and sympathetic storm due to dysfunction of the autonomic nervous system (ANS). Therefore, this review aimed to elucidate the critical role of the cholinergic system (CS) in SARS-CoV-2 infection. The CS forms a multi-faceted network performing diverse functions in the body due to its distribution in the neuronal and non-neuronal cells. Acetylcholine (ACh) acts on two main types of receptors which are nicotinic receptors (NRs) and muscarinic receptors (MRs). NRs induce T cell anergy with impairment of antigen-mediated signal transduction. Nicotine through activation of T cell NRs inhibits the expression and release of the pro-inflammatory cytokines. NRs play important anti-inflammatory effects while MRs promote inflammation by inducing the release of pro-inflammatory cytokines. SARS-CoV-2 infection can affect the morphological and functional stability of CS through the disruption of cholinergic receptors. SARS-CoV-2 spike protein is similar to neurotoxins, which can bind to nicotinic acetylcholine receptors (nAChR) in the ANS and brain. Therefore, cholinergic receptors mainly nAChR and related cholinergic agonists may affect the pathogenesis of SARS-CoV-2 infection. Cholinergic dysfunction in COVID-19 is due to dysregulation of nAChR by SARS-CoV-2 promoting the central sympathetic drive with the development of the sympathetic storm. As well, nAChR activators through interaction with diverse signaling pathways can reduce the risk of inflammatory disorders in COVID-19. In addition, nAChR activators may mitigate endothelial dysfunction (ED), oxidative stress (OS), and associated coagulopathy in COVID-19. Similarly, nAChR activators may improve OS, inflammatory changes, and cytokine storm in COVID-19. Therefore, nAChR activators like varenicline in virtue of its anti-inflammatory and anti-oxidant effects with direct anti-SARS-CoV-2 effect could be effective in the management of COVID-19.
Collapse
Affiliation(s)
- Eman Hassan Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakakah, 72345 Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, 12613 Egypt
| | - Hayder M. Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Michel De Waard
- Smartox Biotechnology, 6 Rue Des Platanes, 38120 Saint-Egrève, France
- L’Institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx “Ion Channels, Science & Therapeutics”, Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|