1
|
Mishra SR, Gadore V, Singh KR, Pandey SS, Ahmaruzzaman M. Developing In 2S 3 upon modified MgTiO 3 anchored on nitrogen-doped CNT for sustainable sensing and removal of toxic insecticide clothianidin. ENVIRONMENTAL RESEARCH 2024; 259:119435. [PMID: 38914255 DOI: 10.1016/j.envres.2024.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Herein, the study introduces a novel bifunctional In2S3/MgTiO3/TiO2@N-CNT (IMTNC) nanocomposite, which is poised to revolutionize the detection and removal of clothianidin (CLD) from aquatic environments by synergistic adsorption and photodegradation. Confirmation of the material's synthesis was done using structural, optical, morphological, and chemical characterizations. An outstanding sensitivity of 2.168 μA/nM.cm2 with a linear range of 4-100 nM and a LOD of 0.04 nM, along with an exceptional elimination efficiency of 98.06 ± 0.84% for about 10 ppm CLD within 18 min was demonstrated by the IMTNC nanocomposite. Extensive studies were carried out to appraise the material's effectiveness in the presence of various interfering species, such as cations, anions, organic compounds, and different water matrices, and a comprehensive assessment of its stability throughout several cycles was made. Response Surface Methodology (RSM) study was used to determine the ideal removal conditions for improved performance. In addition, the catalytic performance in removing various other pollutants was also analyzed. Adding In2S3 and developing N-doped Carbon Nanotubes (N-CNT) increased conductivity and higher electrochemical sensing skills, improving charge transfer and increasing photocatalytic activity. This research underscores the potential of the IMTNC nanocomposite as a promising candidate for advanced environmental sensing and remediation applications.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India.
| |
Collapse
|
2
|
Morales-Figueroa C, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Garduño-Pineda L. Electro-galvanic alkalization and treatment of rainwater to obtain drinking water. ENVIRONMENTAL TECHNOLOGY 2024; 45:4116-4130. [PMID: 37490626 DOI: 10.1080/09593330.2023.2241618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Rainwater Electro-Galvanic Alkalization (EGA) was performed using copper and magnesium (1:1) electrode. Efficiently removal of pollutants without external energy consumption was carried out, in addition essential ions were dosed for alkalization of rainwater. The optimal system conditions were obtained using response surface methodology (RSM) by considering the following operating variables: flow rate and concentration of the supporting electrolyte (NaCl and CaCl2). Furthermore, the maximum efficiency of nitrate, ammoniacal nitrogen, colour, and turbidity removal was evaluated. The results showed that the response variables were mainly sensitive to the type of supporting electrolyte used and the flow rate. Under experimental conditions of 0.009 M (NaCl) and 20 mL min-1, the removal rate was 74.19%, 72.49%, and 81.43% for nitrates, colour, and turbidity, respectively, and the lowest concentration of ammoniacal nitrogen (0.99 mg L - 1 ) was obtained. The kinetic models for nitrate and colour were fitted to zero-order models with k = 0.33 mg L - 1 mi n - 1 and k = 0.933 Pt - Co , respectively. In addition, turbidity was fitted to a first-order model ( k = 0.1661 mi n - 1 ) , and ammoniacal nitrogen was fitted to a second-order model ( k = 0.0217 L m g - 1 mi n - 1 ) . The concentration increases of minerals such as Ca and Mg, which rises the rainwater alkalinity after treatment (pH shift from 6.1 to 8.91), was determined by inductively coupled plasma (ICP) analysis.
Collapse
Affiliation(s)
- Cristina Morales-Figueroa
- Facultad de Química, Unidad Colón, Toluca de Lerdo, México
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
| | | | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Unidad San Cayetano, Universidad Autónoma del Estado de México, Toluca, México
- Advanced Oxidation Processes Department, Cátedras COMECYT, Toluca, México
| | - Laura Garduño-Pineda
- Analytics Chemistry Department, Tecnológico de Estudios Superiores de Jocotitlán (TESJo), Jocotitlán, México
| |
Collapse
|
3
|
Sun Y, Wang Z, Zhang S, Liu C, Xu Y. Preparation of composites with MgAl-LDH-modified commercial activated carbon for the quick removal of Cr(VI) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41032-41045. [PMID: 38842781 DOI: 10.1007/s11356-024-33820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
The problem of soil and water contamination caused by Cr(VI) discharged from the dyeing, electroplating, and metallurgical industries is becoming increasingly serious, posing a potentially great threat to the environment and public health. Therefore, it is crucial to develop a fast, efficient, and cost-effective adsorbent for remediating Cr-contaminated wastewater. In this work, MgAl-LDH/commercial-activated carbon nanocomposites (LDH-CACs) are prepared with hydrothermal. The effects of preparation and reaction conditions on the composite properties are first investigated, and then its adsorption behavior is thoroughly explored. Finally, a potential adsorption mechanism is proposed by several characterizations like SEM-EDS, XRD, FTIR, and XPS. The removal of Cr(VI) reaches 72.47% at optimal conditions, and the adsorption study demonstrates that LDH-CAC@1 has an extremely rapid adsorption rate and a maximum adsorption capacity of 116.7 mg/g. The primary removal mechanisms include adsorption-coupled reduction, ion exchange, surface precipitation, and electrostatic attraction. The reusability experiment illustrates that LDH-CAC@1 exhibits promising reusability. This study provides an effective adsorbent with a remarkably fast reaction, which has positive environmental significance for the treatment of Cr(VI) wastewater.
Collapse
Affiliation(s)
- Ying Sun
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Zexu Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Shijie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Chuyin Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
4
|
Parimelazhagan V, Chinta A, Shetty GG, Maddasani S, Tseng WL, Ethiraj J, Ayyakannu Sundaram G, Kumar ASK. Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent. Molecules 2024; 29:418. [PMID: 38257330 PMCID: PMC11154345 DOI: 10.3390/molecules29020418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
In the present investigation of copper ferrite, a CuFe2O4 nanocomposite adsorbent was synthesized using the sol-gel method, and its relevance in the adsorptive elimination of the toxic Congo red (CR) aqueous phase was examined. A variety of structural methods were used to analyze the CuFe2O4 nanocomposite; the as-synthesized nanocomposite had agglomerated clusters with a porous, irregular, rough surface that could be seen using FE-SEM, and it also contained carbon (23.47%), oxygen (44.31%), copper (10.21%), and iron (22.01%) in its elemental composition by weight. Experiments were designed to achieve the most optimized system through the utilization of a central composite design (CCD). The highest uptake of CR dye at equilibrium occurred when the initial pH value was 5.5, the adsorbate concentration was 125 mg/L, and the adsorbent dosage was 3.5 g/L. Kinetic studies were conducted, and they showed that the adsorption process followed a pseudo-second-order (PSO) model (regression coefficient, R2 = 0.9998), suggesting a chemisorption mechanism, and the overall reaction rate was governed by both the film and pore diffusion of adsorbate molecules. The process through which dye molecules were taken up onto the particle surface revealed interactions involving electrostatic forces, hydrogen bonding, and pore filling. According to isotherm studies, the equilibrium data exhibited strong agreement with the Langmuir model (R2 = 0.9989), demonstrating a maximum monolayer adsorption capacity (qmax) of 64.72 mg/g at pH 6 and 302 K. Considering the obtained negative ΔG and positive ΔHads and ΔSads values across all tested temperatures in the thermodynamic investigations, it was confirmed that the adsorption process was characterized as endothermic, spontaneous, and feasible, with an increased level of randomness. The CuFe2O4 adsorbent developed in this study is anticipated to find extensive application in effluent treatment, owing to its excellent reusability and remarkable capability to effectively remove CR in comparison to other adsorbents.
Collapse
Affiliation(s)
- Vairavel Parimelazhagan
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India; (V.P.); (A.C.); (G.G.S.)
| | - Akhil Chinta
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India; (V.P.); (A.C.); (G.G.S.)
| | - Gaurav Ganesh Shetty
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India; (V.P.); (A.C.); (G.G.S.)
| | - Srinivasulu Maddasani
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lienhai Road, Gushan District, Kaohsiung City 80424, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Jayashree Ethiraj
- Department of Physics, School of Arts and Science, AVIT Campus, Vinayaka Mission’s Research Foundation, Chennai 603104, Tamil Nadu State, India;
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu State, India
| | - Ganeshraja Ayyakannu Sundaram
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600077, Tamil Nadu State, India
| | - Alagarsamy Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lienhai Road, Gushan District, Kaohsiung City 80424, Taiwan;
- Faculty of Geology, Geophysics and Environmental Protection, Akademia Gorniczo-Hutnicza (AGH) University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
5
|
Gao J, Lin Q, Yang T, Bao YC, Liu J. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue. CHEMOSPHERE 2023; 341:139741. [PMID: 37567260 DOI: 10.1016/j.chemosphere.2023.139741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Coal gangue is a kind of solid waste produced in the process of coal mining and washing. Its silicon aluminum silicon aluminum oxide content is high, respectively, which are suitable for resource utilization as raw materials for Si-Al molecular sieving. In this paper, a novel, simple, low-cost, and environmentally friendly process was carried out to prepare ZSM-5 zeolite by solvent free method after calcination, acid leaching, and alkali melting. The obtained samples were characterized by Energy Dispersive Spectrometer (EDS), Inductively Coupled Plasma (ICP), Thermo-gravimetry Analysis (TG), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectrometer (FTIR) X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and N2 adsorption isotherm. The characteristics of the raw materials and the adsorption mechanism of the prepared samples were characterized. Through a series of pretreatment such as calcined acid leaching and alkali melting of the raw materials, the silicon-aluminum ratio of the sample reaches 1.749, and the maximum specific surface area of the sample can reach 252.59 m2/g. The obtained samples were used to adsorb heavy metal ions and methylene blue solution, and the removal rate of lead ions and methylene blue solution was more than 95%. The theoretical maximum adsorption capacity of Pb ion, methylene blue solution and copper ion can reach 232.56 mg/g and 118.34 mg/g. The adsorption process is mainly chemical adsorption. The product could be suitable for removing both heavy metal ions and cationic dyes from the wastewater and had broad application prospects.
Collapse
Affiliation(s)
- Jida Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianji Lin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tingzhi Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yong Chao Bao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Javan Mahjoub Doust F, Sharafi K, Jaafari J. Novel fabrication of the recyclable Bi 7O 9I 3/chitosan and BiOI/chitosan heterostructure with improved photocatalytic activity for degradation of dimethyl phthalate under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27935-w. [PMID: 37280488 DOI: 10.1007/s11356-023-27935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
Among the bismuth oxyhalides, bismuth oxide has the shortest band gap and high absorption power in the visible light region. Dimethyl phthalate (DMP) has been identified as endocrine-disrupting plasticizer and emerging pollutant, which was selected as the target pollutant to evaluate the efficacy of the studied catalytic process. In this work, Bi7O9I3/chitosan and BiOI/chitosan were efficaciously synthesized by the hydrothermal process method. Characterizing prepared photocatalysts was done by employing transmission electron microscopy, X-ray diffraction, scanning electron microscopy energy-dispersive spectroscopy, and diffuse reflectance spectroscopy. For this study, the test design was performed using the Box-Behnken Design (BBD) method in which the variables of pH, Bi7O9I3/chitosan dose, and dimethyl phthalate concentration were examined for the catalytic removal of dimethyl phthalate in the presence of visible light. Our detected results disclosed that the order of efficiency in DMP removal was as follows: Bi7O9I3/chitosan > BiOI/chitosan > Bi7O9I3 > BiOI. Also, the maximum pseudo-first-order kinetic coefficient for Bi7O9I3/chitosan was 0.021 (min)-1. When the synthesized catalysts were exposed to visible light irradiation, the predominant active species were O2- and h+ for degradation of DMP. The study on the reuse of Bi7O9I3/chitosan showed that this catalyst could be reused 5 times without significant reduction in efficiency, which indicates the cost-effectiveness and environmental friendliness of using this catalyst.
Collapse
Affiliation(s)
- Fatemeh Javan Mahjoub Doust
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jalil Jaafari
- Department of Environmental Health Engineering, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Gürses A, Güneş K, Şahin E, Açıkyıldız M. Investigation of the removal kinetics, thermodynamics and adsorption mechanism of anionic textile dye, Remazol Red RB, with powder pumice, a sustainable adsorbent from waste water. Front Chem 2023; 11:1156577. [PMID: 37332895 PMCID: PMC10272435 DOI: 10.3389/fchem.2023.1156577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Excessive growth and abnormal use of dyes and water in the textile industry cause serious environmental problems, especially with excessive pollution of water bodies. Adsorption is an attractive, feasible, low-cost, highly efficient and sustainable technique in terms of green chemistry for the removal of pollutants from water. This study aims to investigate the removal kinetics, thermodynamics and adsorption mechanism of Remazol Red RB, which was chosen as a representative anionic reactive dye, from synthetic wastewater using powdered pumice, taking into account various experimental parameters such as initial dye concentration, adsorption time, temperature and pH. Moreover, to support the proposed adsorption mechanism, before and after adsorption of the samples, the Fourier transform infrared spectrophotometer (FTIR) spectra, X-ray powder diffraction (XRD) diffractograms and High resolution transmission electron microscopy (HRTEM) images were also taken and used. The results show that powder pumice can be an efficient adsorbent for anionic dye removal with a relatively high adsorption capacity of 38.90 mg/g, and it is very effective in 30-60 min in mild conditions. The experimental data showed a high agreement with the pseudo-second-order kinetic model and the Freundlich adsorption isotherm equation. In addition, thermodynamically, the process exhibited exothermic nature and standard isosteric enthalpy and entropy changes of -4.93 kJ/mol and 16.11 J/mol. K were calculated. It was determined that the adsorption mechanism was predominantly based on T-shaped pi-pi interactions and had physical characteristics.
Collapse
Affiliation(s)
- Ahmet Gürses
- Department of Chemistry, K.K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Kübra Güneş
- Department of Chemistry, K.K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Elif Şahin
- Department of Chemistry, K.K. Education Faculty, Atatürk University, Erzurum, Türkiye
| | - Metin Açıkyıldız
- Department of Science Education, K.M.R. Education Faculty, Kilis 7 Aralık University, Kilis, Türkiye
| |
Collapse
|
8
|
Tazik M, Dehghani MH, Yaghmaeian K, Nazmara S, Salari M, Mahvi AH, Nasseri S, Soleimani H, Karri RR. 4-Chlorophenol adsorption from water solutions by activated carbon functionalized with amine groups: response surface method and artificial neural networks. Sci Rep 2023; 13:7831. [PMID: 37188708 DOI: 10.1038/s41598-023-35117-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
4-Chlorophenol pollution is a significant environmental concern. In this study, powdered activated carbon modified with amine groups is synthesized and investigated its efficiency in removing 4-chlorophenols from aqueous environments. Response surface methodology (RSM) and central composite design (CCD) were used to investigate the effect of different parameters, including pH, contact time, adsorbent dosage, and initial 4-chlorophenol concentration, on 4-chlorophenol removal efficiency. The RSM-CCD approach was implemented in R software to design and analyze the experiments. The statistical analysis of variance (ANOVA) was used to describe the roles of effecting parameters on response. Isotherm and kinetic studies were done with three Langmuir, Freundlich, and Temkin isotherm models and four pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models in both linear and non-linear forms. The synthesized adsorbent was characterized using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses. The results showed that the synthesized modified activated carbon had a maximum adsorption capacity of 316.1 mg/g and exhibited high efficiency in removing 4-chlorophenols. The optimal conditions for the highest removal efficiency were an adsorbent dosage of 0.55 g/L, contact time of 35 min, initial concentration of 4-chlorophenol of 110 mg/L, and pH of 3. The thermodynamic study indicated that the adsorption process was exothermic and spontaneous. The synthesized adsorbent also showed excellent reusability even after five successive cycles. These findings demonstrate the potential of modified activated carbon as an effective method for removing 4-chlorophenols from aqueous environments and contributing to developing sustainable and efficient water treatment technologies.
Collapse
Affiliation(s)
- Moslem Tazik
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|