1
|
Al-Naqeb G, Kalmpourtzidou A, Giampieri F, De Giuseppe R, Cena H. Genotoxic and antigenotoxic medicinal plant extracts and their main phytochemicals: "A review". Front Pharmacol 2024; 15:1448731. [PMID: 39679368 PMCID: PMC11637852 DOI: 10.3389/fphar.2024.1448731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Many medicinal plant extracts have been proven to have significant health benefits. In contrast, research has shown that some medicinal plant extracts can be toxic, genotoxic, mutagenic, or carcinogenic. Therefore, evaluation of the genotoxicity effects of plant extracts that are used as traditional medicine is essential to ensure they are safe for use and in the search for new medication. This review summarizes 52 published studies on the genotoxicity of 28 plant extracts used in traditional medicine. A brief overview of the selected plant extracts, including, for example, their medicinal uses, pharmacological effects, and primary identified compounds, as well as plant parts used, the extraction method, genotoxic assay, and phytochemicals responsible for genotoxicity effect were provided. The genotoxicity effect of selected plant extracts in most of the reviewed articles was based on the experimental conditions. Among different reviewed studies, A total of 6 plant extracts showed no genotoxic effect, other 14 plant extracts showed either genotoxic or mutagenic effect and 14 plant extracts showed anti-genotoxic effect against different genotoxic induced agents. In addition, 4 plant extracts showed both genotoxic and non-genotoxic effects and 6 plant extracts showed both genotoxic and antigenotoxic effects. While some suggestions on the responsible compounds of the genotoxicity effects were proposed, the proposed responsible phytochemicals were not individually tested for the genotoxicity potential to confirm the findings. In addition, the mechanisms by which most plant extracts exert their genotoxicity effect remain unidentified. Therefore, more research on the genotoxicity of medicinal plant extracts and their genotoxicity mechanisms is required.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Department of Food Sciences and Nutrition, Faculty of Agriculture Food and Environment, University of Sana’a, Sana’a, Yemen
| | - Aliki Kalmpourtzidou
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
2
|
Abi Sleiman M, Younes M, Hajj R, Salameh T, Abi Rached S, Abi Younes R, Daoud L, Doumiati JL, Frem F, Ishak R, Medawar C, Naim HY, Rizk S. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int J Mol Sci 2024; 25:7501. [PMID: 39000608 PMCID: PMC11242153 DOI: 10.3390/ijms25137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.
Collapse
Affiliation(s)
- Marc Abi Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Roy Hajj
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tommy Salameh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Samir Abi Rached
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rimane Abi Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Lynn Daoud
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Louis Doumiati
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Francesca Frem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ramza Ishak
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Medawar
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
3
|
Safwat AM, Sarmiento-Franco L, Abd El-khalek E, Abou-Shehema BM, Hassan OA, Elnaggar AS. Effects of dietary inclusion of Moringa oleifera leaf meal on growth performance of Muscovy ducklings (Cairina moschata). Anim Biosci 2024; 37:668-677. [PMID: 37946429 PMCID: PMC10915223 DOI: 10.5713/ab.23.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The current experiment was performed to investigate the influence of different dietary levels of Moringa oleifera leaf meal (MOLM) on productive performance, nutrient digestibility, blood parameters, immune response, caecal microbiota, and carcass characteristics of Muscovy ducks (Cairina moschata) during 7 to 63 d of age. METHODS A total of 240 unsexed 7-d-old ducklings were distributed into five (treatment) groups; each one contained six replicates with eight ducklings each. Birds of the first group were fed basal diet without MOLM and served as control, while the other four groups were fed basal diet with 0.25%, 0.50%, 1.0%, and 2.0% MOLM inclusion level, respectively. RESULTS The obtained results revealed that including MOLM in the diets significantly improved body weight, body weight gain, feed conversion ratio and economic efficiency compared with the control group. Among the different MOLM inclusion treatments, increasing MOLM inclusion level decreased (p<0.05) such previous parameters. Decreasing MOLM inclusion levels in duckling diets increased (p>0.05) the digestibility of organic matter, crude protein, ether extract, and nitrogen free extract, however all MOLM treatments were significantly higher than the control group. Results also revealed that feeding ducks lower MOLM inclusion levels (0.25% or 0.50%) improved blood parameters (p<0.05) compared with the higher inclusion levels (1.0% or 2.0% MOLM) and the control group. Ducks fed different MOLM levels had significantly higher phagocyte index and activity, immunoglobulin G (IgG), IgM, total antioxidant capacity, glutathione peroxidase activity, and superoxide dismutase activity compared with control group. CONCLUSION Despite the beneficial effects of all MOLM treatments on growth performance, nutrient digestibility, physiological status, and immune response of duckling, the increasing MOLM inclusion level in the diet had deleterious effects on such studied traits, consequently 0.25% was the best MOLM inclusion level in duckling diets.
Collapse
Affiliation(s)
- Assem M. Safwat
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545,
Egypt
| | - Luis Sarmiento-Franco
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan (UADY), Mérida, Yucatán 97100,
Mexico
| | - Enass Abd El-khalek
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545,
Egypt
| | - Bahaa M. Abou-Shehema
- Department of Poultry Nutrition, Animal Production Research Institute, Agriculture Research Center, 21918,
Egypt
| | - Osama A. Hassan
- Poultry Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545,
Egypt
| | - Asmaa Sh. Elnaggar
- Department of Animal Production, Faculty of Agriculture, Damanhour University, Damanhour 22512,
Egypt
| |
Collapse
|
4
|
Peng Y, Zhu X, Yang G, Zhang J, Wang R, Shen Y, Li H, Gatasheh MK, Abbasi AM, Yang X. Ultrasonic extraction of Moringa oleifera seeds polysaccharides: Optimization, purification, and anti-inflammatory activities. Int J Biol Macromol 2024; 258:128833. [PMID: 38128806 DOI: 10.1016/j.ijbiomac.2023.128833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Natural polysaccharides exhibit numerous beneficial properties, such as antioxidant, antitumor, hypoglycemic, and hypolipidemic activities. Moringa oleifera seeds are of high dietary and therapeutic value which drew a lot of attention. However, the regulation effect on anti-inflammatory activity of polysaccharides remains to be studied. Herein, novel bioactive polysaccharides (MOSP-1) were extracted from Moringa oleifera seeds, and the anti-inflammatory properties of MOSP-1 were uncovered. Ultrasound-assisted extraction (UAE) was used to prepare the polysaccharides with optimized conditions (70 °C, 43 min, and liquid-solid-ratio 15 mL/g). Then, DEAE-Sepharose Fast Flow columns were applied to isolate and purify MOSP-1. Rhamnose, arabinose, galactose, and glucose were identified as the monosaccharide constituents of MOSP-1, with a molecular weight of 5.697 kDa. Their proportion in molarity was 1:0.183:0.108:0.860 and 8 types of glycosidic linkages were discovered. Bioactive assays showed that MOSP-1 possessed scavenging activities against DPPH and ABTS radicals, confirming its potential antioxidation efficacy. In vitro experiments revealed that MOSP-1 could reduce the expression of inflammation-related cytokines, inhibit the activation of ERK, JNK, and p38 (the MAPK signaling pathway), and enhance phagocytic functions. This study indicates that polysaccharides (MOSP-1) from Moringa oleifera seeds with anti-inflammatory properties may be used for functional food and pharmaceutical product development.
Collapse
Affiliation(s)
- Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Rui Wang
- International Education College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yingbin Shen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Balit T, Thonabulsombat C, Dharmasaroja P. Moringa oleifera leaf extract suppresses TIMM23 and NDUFS3 expression and alleviates oxidative stress induced by Aβ1-42 in neuronal cells via activation of Akt. Res Pharm Sci 2024; 19:105-120. [PMID: 39006971 PMCID: PMC11244708 DOI: 10.4103/1735-5362.394825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Oxidative stress plays an important role in Alzheimer's disease (AD) pathogenesis. Moringa oleifera leaf (MOL) extract has been shown to have antioxidant activities. Here, we studied the antioxidative and anti-apoptotic effects of water-soluble MOL extract in an amyloid beta (Aβ)-induced oxidative stress model of AD. Experimental approach The effect of amyloid beta (Aβ)1-42 and MOL extract on differentiated SH-SY5Y cell viability was assessed by MTT assay. Cells were treated with Aβ1-42, MOL extract, or MOL extract followed by Aβ1-42. The mitochondrial membrane potential (ΔΨm) and the reactive oxygen species (ROS) were evaluated by flow cytometry and dihydroethidium (DHE) assay, respectively. Western blotting was used to assess the expression of mitochondrial proteins TIMM23 and NDUFS3, apoptosis-related proteins Bax, Bcl-2, and cleaved caspase-3 along with fluorescence analysis of caspase-3/7, and Akt phosphorylation. Findings/Results MOL extract pretreatment at 25, 50, and 100 μg/mL prevented ΔΨm reduction. At 100-μg/mL, MOL extract decreased TIMM23 and NDUFS3 proteins and DHE signals in Aβ1-42-treated cells. MOL extract pretreatment (25, 50, and 100 μg/mL) also alleviated the apoptosis indicators, including Bax, caspase-3/7 intensity, and cleaved caspase-3, and increased Bcl-2 levels in Aβ1-42-treated cells, consistent with a reduction in the number of apoptotic cells. The protective effects of MOL extract were possibly mediated through Akt activation, evidenced by increased Akt phosphorylation. Conclusion and implications The neuroprotective effect of MOL extract could be mediated via the activation of Akt, leading to the suppression of oxidative stress and apoptosis in an Aβ1-42 model of AD.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Permphan Dharmasaroja
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| |
Collapse
|
6
|
Shafiq NE, Mahdee AF. Moringa oleifera Use in Maintaining Oral Health and Its Potential Use in Regenerative Dentistry. ScientificWorldJournal 2023; 2023:8876189. [PMID: 37881795 PMCID: PMC10597730 DOI: 10.1155/2023/8876189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Phytomedicine refers to the use of naturally derived products to cure and mitigate human conditions. Natural products have the advantages of causing minimum side effects, being biocompatible, available, and economical, with a wide array of biological activities. Reports have described the use of natural products with antimicrobial and anti-inflammatory properties to treat oral conditions and promote wound healing. Moringa oleifera, known as the "drumstick" or "horseradish" tree, is believed to have medicinal properties regarding a range of medical conditions, though there is limited information on its use in oral medicine. This narrative review focuses on the use of Moringa extracts in the management of oral conditions, including oral infections, inflammatory conditions, the remineralization of hard tissues, oral wound healing, and tissue regeneration, drawing from both in vitro and in vivo studies which indicate that the potential of Moringa extracts in supporting dentin-pulp regeneration after caries or trauma is worthy of more careful consideration.
Collapse
Affiliation(s)
- Nada E. Shafiq
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Anas F. Mahdee
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Brito JDS, Marinho ADO, Coelho LCBB, Oliveira AMD, Paiva PMG, Patriota LLDS, Napoleão TH. Toxicity and antitumor activity of the water-soluble lectin from Moringa oleifera Lam. Seeds (WSMoL) in sarcoma 180-bearing mice. Toxicon 2023; 234:107306. [PMID: 37778740 DOI: 10.1016/j.toxicon.2023.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
WSMoL, a water-soluble lectin from the seeds of Moringa oleifera, present several biological activities. This work aimed to evaluated the toxicity and antitumor activity of WSMoL. To analyze toxicity, it was determined hematological, biochemical and histological parameters; consumption of water and feed as well as the weight of the animals. Antitumor analysis included evaluation of tumor weight, histology and cytokine levels. Acute toxicity assay revealed 60% mortality of animals treated with lectin at 200 mg/kg i. p. At 100 mg/kg i. p., the animals showed a decreased food and water consumption as well weight gain in comparison with control. However, no animal died and there were no alterations in blood parameters or histological analysis. Antitumor activity evaluated at safe doses (2.5, 5 and 10 mg/kg) showed a significant reduction in tumor weight. Tumor photomicrographs evidenced that WSMoL treatment reduced dissemination of tumor cells. WSMoL (5 and 10 mg/kg) significantly enhance the immune function in the tumor environment as showed by increased the levels of pro-inflammatory (TNF-α, IFN-γ, IL-2, IL-6, and IL-17) and anti-inflammatory (IL-4 and IL-10) cytokines. In conclusion, WSMoL showed in vivo antitumor activity in mice bearing sarcoma 180 tumor, probably by increase the immune response against the tumor.
Collapse
Affiliation(s)
- Jéssica de Santana Brito
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Amanda de Oliveira Marinho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Mohamed MA, El-Mleeh AA, Hamad RT, Abu-Alya IS, El-Hewaity MH, Elbestawy AR, Elbagory AM, Sayed-Ahmed AS, Abd Eldaim MA, Elshabrawy OI. Immunostimulant potential of Moringa Oleifera leaves alcoholic extract versus Oregano Essential Oil (OEO) against cyclophosphamide-induced immunosuppression in broilers chicks. Trop Anim Health Prod 2023; 55:209. [PMID: 37202581 DOI: 10.1007/s11250-023-03620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The current study was conducted to evaluate the immunoenhancement effect of Moringa oleifera leaves alcoholic extract (MOLE) versus Oregano essential oil (OEO) against cyclophosphamide induced immunosuppression in broilers chicks. A total of a three hundred one-day-old chicks were assigned randomly into three main dietary groups, control, MOLE, and OEO for 14 days. After 14 days the three main experimental groups were subdivided into six groups, control, cyclophosphamide, MOLE, MOLE and Cyclophosphamide, OEO, and OEO and cyclophosphamide. Each group of these six groups was subdivided into three subgroups. Supplementation of broiler chicks with MOLE and OEO for 14 days significantly increased body weight compared to the control group. However, injection of broiler chicks with cyclophosphamide significantly induced body weight loss, impaired immunological response represented by decreasing total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs depletion, and increased the mortality rate. In contrast, supplementation of cyclophosphamide treated chicks with MOLE and OEO significantly reduced cyclophosphamide induced body weight loss and impaired immunological responses, as it showed significant increase in body weight, total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs proliferation, and reduced the mortality rate. This study indicated that MOLE and OEO supplementation ameliorated cyclophosphamide induced body weight loss and impaired immunological responses.
Collapse
Affiliation(s)
- Mostafa Abdelgaber Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Amany Abdelbaky El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Rania Talat Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Ibrahim Said Abu-Alya
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 23897, Egypt
| | - Mohamed Hamdy El-Hewaity
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Ahmed Ragab Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, El Beheira, 22511, Egypt
| | | | - Ahmed Saber Sayed-Ahmed
- Department of Anatomy and Embryology Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt.
| | - Omnia Ibrahim Elshabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, 32511, Egypt
| |
Collapse
|
9
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Sprouts of Moringa oleifera Lam.: Germination, Polyphenol Content and Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248774. [PMID: 36557909 PMCID: PMC9785483 DOI: 10.3390/molecules27248774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
(1) Background: In recent years, the consumption of sprouts, thanks to their high nutritional value, and the presence of bioactive compounds with antioxidant, antiviral and antibacterial properties, is becoming an increasingly widespread habit. Moringa oleifera Lam. (Moringa) seems to be an inexhaustible resource considering that many parts may be used as food or in traditional medicine; on the other hand, Moringa sprouts still lack a proper characterization needing further insights to envisage novel uses and applications. (2) Methods: In this study, a rapid and easy protocol to induce the in vivo and in vitro germination of Moringa seeds has been set up to obtain sprouts and cotyledons to be evaluated for their chemical composition. Moreover, the effects of sprouts developmental stage, type of sowing substrate, and gibberellic acid use on the chemical characteristics of extracts have been evaluated. (3) Results: Moringa seeds have a high germinability, both in in vivo and in vitro conditions. In addition, the extracts obtained have different total phenolic content and antioxidant activity. (4) Conclusions: This research provides a first-line evidence to evaluate Moringa sprouts as future novel functional food or as a valuable source of bioactive compounds.
Collapse
|
11
|
Ramamurthy S, Varghese S, Gopalakrishnan U, Kumar M, Natasha M, Palinivel J. Assessing the cytotoxic effect and antimicrobial activity of Moringa oleifera aqueous and ethanolic extract against oral pathogens extracted from periodontal and orthodontic patients. INTERNATIONAL JOURNAL OF ORTHODONTIC REHABILITATION 2022. [DOI: 10.56501/intjorthodrehabil.v13i4.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Periodontitis is the result of inflammation caused due to the activity of microorganisms. The prevalence of anaerobic organisms is more when it comes to periodontal pockets and orthodontic patients. Plants with phytochemicals that could exert antimicrobial effects could aid in host modulation for management of periodontitis caused by these bacteria in periodontal and orthodontic patients
Aim: To assess the antimicrobial effect of aqueous extract of Moringa oleifera Lam (MOL) and cytotoxic effect of aqueous and ethanol extracts of MOL.
Materials and methods: Moringa oleifera Lam. extracts were prepared by maceration. Subgingival plaque samples were collected and microorganisms were cultured in anaerobic environment. The microorganisms were treated with the extracts and minimum inhibitory concentration and minimum bactericidal concentration was assessed. The cytotoxic effects were assessed by brine shrimp assay.
Results: Aqueous extract showed antimicrobial effect in dose and time dependent manner and both extracts exhibited cytotoxic effects in a dose and time dependent manner
Summary and Conclusion: The antimicrobial effect of MOL could be utilized to develop a nature derived local drug delivery system for treating plaque induced periodontitis in different clinical situations.
Collapse
|
12
|
Alavilli H, Poli Y, Verma KS, Kumar V, Gupta S, Chaudhary V, Jyoti A, Sahi SV, Kothari SL, Jain A. Miracle Tree Moringa oleifera: Status of the Genetic Diversity, Breeding, In Vitro Propagation, and a Cogent Source of Commercial Functional Food and Non-Food Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:3132. [PMID: 36432862 PMCID: PMC9694164 DOI: 10.3390/plants11223132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India
| | - Kumar Sambhav Verma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Swati Gupta
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India
| | - Vigi Chaudhary
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Anupam Jyoti
- Biotechnology Department, Chandigarh University, National Highway-95, Ludhiana-Chandigarh State Highway, Chandigarh 160055, India
| | - Shivendra V. Sahi
- Department of Biology, Saint Joseph’s University (University City Campus), 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
13
|
Bazzo FP, Sia NBP, Março PH, Valderrama P, Peron AP, Medeiros FVDS. Multivariate optimization approach applied to natural polymers from Ceratonia siliqua L. and Moringa oleifera Lam as coagulating/flocculating agents. ENVIRONMENTAL TECHNOLOGY 2022; 43:4115-4124. [PMID: 34125659 DOI: 10.1080/09593330.2021.1943000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, a multivariate 23 experimental design was applied to optimize the operational conditions (seed mass, salt concentration, and pH) to employ Ceratonia siliqua L. (carob) and Moringa oleifera Lam (moringa) as coagulating/flocculating agents for water treatment. Currently, the coagulation stage in water treatment uses aluminium compounds, due to the characteristic reaction to natural alkalinity in raw water, and for its low market value. Considering that aluminium effects on human health are not sufficiently studied to acknowledge its toxicity, and its significant environmental impacts, it is suitable for the studies to search for alternatives to be employed in the water treatment that will be distributed to human consumption. This study was carried out with raw water of high turbidity level, 83.7 NTU. The raw water collected was also characterized according to pH, colour, Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), and Dissolved Organic Matter (DOM), with values of 6.7, 178 NTU, 6.80, 2.45 and 138.58 mg/L, respectively. The optimized results showed that with 2 g of seed, 0.5 mol L-1 of NaCl, and pH 11.0 In these conditions, moringa coagulant reached 90%, 86%, 6%, 67%, and 81% for turbidity, colour, DOC, TOC, and DOM removal, respectively, whereas the carob coagulant achieved 85%, 76%, 5%, 55.6%, 66.7%, respectively for the same parameters' removal. Both coagulants presented lower sludge formation, 1.1 mL L-1 for moringa coagulant, and 1.1 mL L-1 for carob coagulant. The results could be considered promises, and natural polymers carob and moringa can be suggested as alternatives agents in coagulation/flocculation stages for water treatment.
Collapse
Affiliation(s)
- Fernando Previato Bazzo
- Academical Department of Environmental, Federal University of Technology, Campo Mourão, Brazil
| | | | - Paulo Henrique Março
- Food Engineering and Technology, Federal University of Technology, Campo Mourão, Brazil
| | - Patrícia Valderrama
- Academical Department of Chemistry, Federal University of Technology, Campo Mourão, Brazil
| | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation, Federal University of Technology, Campo Mourão, Brazil
| | | |
Collapse
|
14
|
de Barros MC, Silva AGB, Souza TGDS, Chagas CA, Machado JCB, Ferreira MRA, Soares LAL, Xavier VL, de Araújo LCC, Borba EFDO, da Silva TG, Alves RRDV, Coelho LCBB, de Oliveira AM, Napoleão TH, Paiva PMG. Evaluation of acute toxicity, 28-day repeated dose toxicity, and genotoxicity of Moringa oleifera leaves infusion and powder. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115504. [PMID: 35760258 DOI: 10.1016/j.jep.2022.115504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. leaves infusion and powder are widely used by population due the nutritional and medicinal potentials, however data regarding safety of use are still inconclusive, leading to prohibition of this plant in some countries. AIM OF THE STUDY The present work investigated the nutritional and phytochemical composition, acute and 28-day repeated dose toxicity, and genotoxicity of M. oleifera leaves infusion and powder. MATERIALS AND METHODS For nutritional characterization of leaf powder, it was determined: humidity; mineral residue (ash); total lipid, protein, carbohydrate, and crude fiber contents; and total caloric value. Phytochemical composition was determined by high performance liquid chromatography (HPLC). The acute toxicity assay used Swiss female albino mice and oral administration in a single dose at 2000 and 5000 mg/kg of infusion or powder. The 28-day repeated dose toxicity assay employed female and male mice, with oral administration of infusion or powder at the doses 250, 500 and 1000 mg/kg. The animals were evaluated for body weight, water and feed consumption, biochemical and hematological parameters, and histology of the liver, spleen, and kidneys. In vivo genotoxicity and mutagenicity (2000 mg/kg) were evaluated by the comet assay and the micronucleus test, respectively. RESULTS Nutritional characterization confirmed that M. oleifera leaves are rich in proteins, carbohydrates, lipids, minerals, and fiber. HPLC indicated the presence of flavonoids and cinnamic derivatives as major polyphenols. Acute toxicity did not reveal alterations in weight gain and water and feed consumptions and no change in biochemical, hematological, and histological parameters. Behavior alterations was observed in the first 2 h after administration at 5000 mg/kg in both treatments. Infusion did not present toxicity when administered for 28 days. Conversely, the powder at 500 and 1000 mg/kg promoted liver and kidney damages observed through biochemical parameters and histopathology. Genotoxicity and mutagenicity were not detected at 2000 mg/kg. CONCLUSIONS The present study reveals that M. oleifera leaves are an important source of polyphenols and nutrients. Indiscriminate use of both infusion and crude leaf powder above 2000 mg/kg and powder at 500 and 1000 mg/kg are not recommended. Chronic toxicological studies and establishment of preparation protocols are suggested aiming to guarantee the safety in the use of M. oleifera leaves as nutraceutical by population.
Collapse
Affiliation(s)
| | | | | | - Cristiano Aparecido Chagas
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| | - Janaína Carla Barbosa Machado
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Luiz Alberto Lira Soares
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Viviane Lansky Xavier
- Departamento de Nutrição, Centro Ciências da Saúde, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Larissa Cardoso Corrêa de Araújo
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| | | | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Gautier A, Duarte CM, Sousa I. Moringa oleifera Seeds Characterization and Potential Uses as Food. Foods 2022; 11:1629. [PMID: 35681378 PMCID: PMC9180090 DOI: 10.3390/foods11111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the fact Moringa oleifera (MO)-based foods present a very good and nutritionally well-balanced composition, they face some issues related to seed bitterness, which is the most challenging barrier to consumer acceptance. Different processing methods were tested to produce MO toasted seeds, MO-based beverage, and yoghurt-like products which were chemically and rheologically analyzed. The protein content ranged from 3.68% in the beverage, to 14.73% in the yoghurt and 40.21% in MO toasted seeds. A totally debittered beverage could not be accomplished, but the MO yoghurt-like showed a very nice flavor. Nutrition claims for minerals in toasted seeds could be considered for magnesium, phosphorus, iron, copper, zinc, and manganese, which confirms the M. oleifera seed richness in several minerals. The MO beverage presented less extended shear-thinning behavior (17.4 Pa·s) than commercial vegetable beverages and two pulse-based beverages developed in a previous study. The MO yoghurt-like product showed a gel structure similar to the dairy yoghurt, making it a promising new plant-based alternative. Further work must be performed in the future to debitter more efficiently the raw seeds to achieve a more pleasant MO-based beverage. The developed MO seed-based products may settle another font of high protein plant-based food.
Collapse
Affiliation(s)
| | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Higher Institute of Agronomy, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.M.D.)
| |
Collapse
|
16
|
Sharma K, Kumar M, Waghmare R, Suhag R, Gupta OP, Lorenzo JM, Prakash S, Radha, Rais N, Sampathrajan V, Thappa C, Anitha T, Sayed AAS, Abdel-Wahab BA, Senapathy M, Pandiselvam R, Dey A, Dhumal S, Amarowicz R, Kennedy JF. Moringa (Moringa oleifera Lam.) polysaccharides: Extraction, characterization, bioactivities, and industrial application. Int J Biol Macromol 2022; 209:763-778. [PMID: 35421412 DOI: 10.1016/j.ijbiomac.2022.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Owing to numerous biological activities of different parts of Moringa oleifera Lam., various studies have been carried out to isolate and explore the activities of its various bioactive compounds including polysaccharides. Polysaccharides of M. oleifera have been reported to possess a variety of biofunctionalities including antihyperlipidemic, anti-diabetic, immunomodulatory, antihypertensive and gastrointestinal protection. In addition to bioactive polysaccharides, the gum exudated by stem of this plant is of commercial importance with wide range of applications in pharmaceutical industries. Various extraction and purification methods as well as combination of methods have been used to isolate and purify moringa polysaccharides. Studies suggest that extraction methods influence the structure of polysaccharides and thus their biological activity. This review summarizes all the available literature to provide updated information related to extraction, purification, modification, structural characterization, bioactivities and potential applications of moringa polysaccharides. This review will provide novel insights for future research and applications of moringa polysaccharides.
Collapse
Affiliation(s)
- Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Roji Waghmare
- College of Food Technology, Dr. Punjabrao Deshmukh Krishi Vidyapeeth, Yavatmal 445001, Maharashtra, India
| | - Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Om Prakash Gupta
- ICAR - Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Vellaikumar Sampathrajan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India
| | - Chandan Thappa
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt; Division of Plant Physiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Basel A Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt; Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs, WR15 8FF, UK
| |
Collapse
|
17
|
Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RPF, Correia PMR, Mehra R, Kumar H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants (Basel) 2022; 11:antiox11020402. [PMID: 35204283 PMCID: PMC8869219 DOI: 10.3390/antiox11020402] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 01/05/2023] Open
Abstract
Based on the availability of many nutrients, Moringa oleifera tree leaves have been widely employed as nutrients and nutraceuticals in recent years. The leaves contain a small amount of anti-nutritional factors and are abundant in innumerable bioactive compounds. Recently, in several in vivo and in vitro investigations, moringa leaves’ bioactive components and functionality are highlighted. Moringa leaves provide several health advantages, including anti-diabetic, antibacterial, anti-cancer, and anti-inflammatory properties. The high content of phytochemicals, carotenoids, and glucosinolates is responsible for the majority of these activities as reported in the literature. Furthermore, there is growing interest in using moringa as a value-added ingredient in the development of functional foods. Despite substantial study into identifying and measuring these beneficial components from moringa leaves, bioaccessibility and bioavailability studies are lacking. This review emphasizes recent scientific evidence on the dietary and bioactive profiles of moringa leaves, bioavailability, health benefits, and applications in various food products. This study highlights new scientific data on the moringa leaves containing nutrient and bioactive profiles, bioavailability, health benefits, and uses in various food items. Moringa has been extensively used as a health-promoting food additive because of its potent protection against various diseases and the widespread presence of environmental toxins. More research is needed for utilization as well as to study medicinal effects and bioaccesibility of these leaves for development of various drugs and functional foods.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144401, India
| | - Shiv Kumar
- Food Science & Technology (Hotel Management), Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Charanjit Singh Riar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | - Navdeep Jindal
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | | | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Paula M. R. Correia
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| |
Collapse
|
18
|
Wen Z, Tian H, Liang Y, Guo Y, Deng M, Liu G, Li Y, Liu D, Sun B. Moringa oleifera polysaccharide regulates colonic microbiota and immune repertoire in C57BL/6 mice. Int J Biol Macromol 2022; 198:135-146. [PMID: 34973268 DOI: 10.1016/j.ijbiomac.2021.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharide (MOP) on serum immune indices, immune organ indices, colonic microflora and immune repertoire of mice. Forty male SPF C57BL/6 mice were randomly divided into four groups and subjected to gavage of 0, 20, 40 and 60 mg/kg MOP for 28 days. Mice were sacrificed on the last day of the experiment and their thymus, spleen, blood and colon contents were collected for further detection. Our findings suggested that MOP could significantly increase the thymus index (P < 0.01) and spleen index (P < 0.05), and significantly decrease the levels of interleukin-6 and tumour necrosis factor-α in mice (P < 0.05). And MOP could regulate the proportion of colonic microflora of mice, significantly increase the abundance of Muribaculaceae and significantly decrease the abundance values of Proteobacteria, Helicobacter, Stenotrophomonas, etc (P < 0.05). In addition, MOP could regulate the usage frequencies of TRBV15 (P = 0.06) and TRBV9 (P = 0.10) on the TCRα chain and 9 V-J pairs were found to have remarkable usage frequency changes. These results implied that MOP exerted positive effects on the immune performance and intestinal health of mice.
Collapse
Affiliation(s)
- Zhiying Wen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yao Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Taufek NM, Zainol Ariffin SNN, Mohd Arshad N, Mazlishah MSH. Current status of dietary Moringa oleifera and its application in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2016037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Norhidayah Mohd Taufek
- AquaNutri Biotech Research Laboratory, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Norhafiza Mohd Arshad
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
20
|
Santos ADS, Pimentel AL, Oliveira JVLD, Silva MTD, Silva FGC, Borges ALTF, Moura MAFBD, Silva SASD, Nascimento TGD. Phytochemical and pharmacological reports of the hypoglycemic activity of the Moringa oleifera extracts. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Moringa oleifera is an arboreal plant belonging to the family Moringaceae distributed in tropical areas and has gained enormous attention in the last decades. This research is a review on the association between aqueous extracts of M. oleifera leaves and diabetes mellitus and understanding its pharmacological functions and underlying mechanisms. The research refinement demonstrated the pharmaceutical potential of M. oleifera and its phytochemicals, given its antidiabetic effect. The prospective analysis showed the amount of application within IPC A61K in health area. The secondary metabolites present in M. oleifera, glucosinolates, flavonoids, and phenolic compounds may be responsible, in part, for the disease control hypoglycemic actions. Glucosinolates, when metabolized by salivary enzymes, give rise to sulforaphanes that act in preventing type 2 diabetes and in reducing insulin resistance. Flavonoids interact with intestinal enzymes by modifying carbohydrate metabolism by regulating glycemic levels, in addition to increasing insulin sensitivity. Phenolic compounds increase the expression of glucose transporters (GLUT4) and reduce the synthesis of fatty acids and cholesterol, contributing to the reduction of glucose resistance and blood sugar control. Moringa oleifera can be used as complementary therapy of the type-2 diabetes.
Collapse
|
21
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Immobilization of a peroxidase from Moringa oleifera Lam. roots (MoPOX) on chitosan beads enhanced the decolorization of textile dyes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
25
|
Dybka-Stępień K, Otlewska A, Góźdź P, Piotrowska M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021; 13:nu13103354. [PMID: 34684354 PMCID: PMC8539170 DOI: 10.3390/nu13103354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Plant mucilage is a renewable and cost-effective source of plant-based compounds that are biologically active, biodegradable, biocompatible, nontoxic, and environmentally friendly. Until recently, plant mucilage has been of interest mostly for technological purposes. This review examined both its traditional uses and potential modern applications in a new generation of health-promoting foods, as well as in cosmetics and biomaterials. We explored the nutritional, phytochemical, and pharmacological richness of plant mucilage, with a particular focus on its biological activity. We also highlighted areas where more research is needed in order to understand the full commercial potential of plant mucilage.
Collapse
|
26
|
Iqbal R, Liaqat A, Saeed F, Khaliq A, Jahangir Chughtai MF, Afzaal M, Tehseen S, Aziz M, Hussain M, Anjum FM. Zogale (Moringaolifera) as a functional ingredient: A review on its nutraceutical properties and food applications. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1955921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Mahwash Aziz
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
27
|
Kayanan BUR, Sagum RS. Microwave and Ultrasound Pretreatment of Moringa oleifera Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. J Oleo Sci 2021; 70:875-884. [PMID: 34121028 DOI: 10.5650/jos.ess20357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigates the application of green technologies (microwave and ultrasound pretreatment) in the extraction of Moringa oleifera Lam. seed oil and its effects on oil expression, oil quality, and bioactive component. Moringa seeds were pretreated with microwave (90 W, 60 s) or ultrasound (50 W, 1 h) before mechanical expression. A separate group received no pretreatment before oil extraction. Oils from these groups were then compared. Results show that oil yield increased with ultrasound pretreatment (1.24%) and significantly increased with microwave pretreatment (3.11%). For oil flow rate, the microwave and ultrasound pretreatment resulted in faster extraction (7.67 and 6.93 kg/h respectively) as compared with the control (6.51 kg/h). For physicochemical parameters, the microwave and ultrasound group had significantly less free fatty acids and significantly greater unsaponifiable matter as compared with the control. For fatty acid composition, results show that moringa seeds procured from Davao Oriental had greater oleic acid content (~77%) as compared with those reported by other literature. For phytosterol content, the predominant phytosterols found were β-sitosterol, stigmasterol, and campesterol. Microwave and ultrasound pretreatment significantly increased total phytosterol (680.58 and 369.32 mg/kg respectively) as compared with the control (72.69 mg/kg) due to the mass transfer of the phytosterols. Microwave and ultrasound pretreatment also led to stigmastanol formation. For antioxidant activity, a comparison of both DPPH and FRAP assays depicts that the microwave group exhibited the best overall antioxidant activity. Lastly, for oil stability, a lower peroxide value was found in the microwave and ultrasound groups across time intervals, which may be attributed to their antioxidant activity. In summary, ultrasound and microwave pretreatment can improve oil expression, oil quality, and bioactive content of the mechanically expressed moringa oils.
Collapse
|
28
|
Zheplinska M, Mushtruk M, Vasyliv V, Kuts A, Slobodyanyuk N, Bal-Prylypko L, Nikolaenko M, Kokhan O, Reznichenko Y, Salavor O. The micronutrient profile of medicinal plant extracts. POTRAVINARSTVO 2021. [DOI: 10.5219/1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants contain biologically active substances that have a physiological effect on the human body. In the territory of Ukraine, 15 of the most important medicinal plants grow from a medical point of view, among which are Melissa officinalis L and Сalendula officinalis. Micronutrients are necessary for the body in small quantities, not being a source of energy, they take part in their assimilation, as well as in the regulation of various functions and the implementation of the processes of growth and development of the human body. The study aims to establish the micronutrient profile of extracts and infusions from medicinal raw materials – Сalendula officinalis and Melissa officinalis. The established micronutrient profile includes data on the content of such macro- and microelements as calcium, potassium, sodium, iron, zinc, and copper in extracts and infusions from Melissa officinalis L officinalis L and Сalendula officinalis. Sodium predominates from certain macronutrients, the superiority of which is manifested in Сalendula officinalis when infused. A large amount of calcium also passes into the aqueous-alcoholic infusion from Сalendula officinalis. Copper and zinc prevail among the determined microelements in water extracts of Сalendula officinalis. Comparing the results obtained, we can say in the affirmative about the micro- and macro elements that have passed into extracts that Сalendula officinalis is richer in these substances. Because infusions and extracts are recommended to be added as an additional ingredient to vegetable and fruit juices, their positive infusion on the human body will increase the recommended daily requirement of potassium and sodium. Based on the results of this study, extracts and infusions of Melissa officinalis L and Сalendula officinalis can be considered as an essential source of micronutrients for enriching fruit and vegetable juices in canned food for health purposes
Collapse
|
29
|
Ercan K, Gecesefa OF, Taysi ME, Ali Ali OA, Taysi S. Moringa Oleifera: A Review of Its Occurrence, Pharmacological Importance and Oxidative Stress. Mini Rev Med Chem 2021; 21:380-396. [PMID: 32723270 DOI: 10.2174/1389557520999200728162453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Oxidative/nitrosative stress can be caused by excessive production of ROS and RNS with metabolic reactions that change the balance in favor of oxidants in cases where oxidants increase and antioxidants decrease in organisms using oxygen. ROS and RNS react with several biological macromolecules in cells, such as carbohydrates, nucleic acids, lipids, and proteins, and alter their functions. Some natural antioxidants are constantly being researched for their benefits in terms of human health, which can strengthen the body's antioxidant defense system and have the potential to scavenger free radicals. It is a well-known and practical strategy to prevent and / or treat diseases due to the consumption of more suitable fruits, herbs, spices and vegetables, and the presence of bioactive antioxidant compounds. Moringa oleifera, a new and important one of these plants, has a wide range of bioactive compounds that can be obtained in different herbal structures such as leaves, seeds, stems and shells. It consists of bioactive molecules, such as phenolic compounds, fats, fatty acids, carbohydrates, proteins, functional peptides, vitamins, minerals and essential amino acids as well as a number of glycosides and has great potential for use in various formulations in various health and food products. This review highlights the formation of MO, its importance in natural medicine, its pharmacological value, and its role as a possible anti-proliferative agent against cancer and its use in some diseases.
Collapse
Affiliation(s)
- Kenan Ercan
- Nurdagi Vocational School, Gaziantep University, Gaziantep, Turkey
| | | | | | - Omeed Akbar Ali Ali
- Department of Biochemistry and Technology, Gaziantep University, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Medical Biochemistry Medical School, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
30
|
Encapsulation of Moringa oleifera Extract in Ca-Alginate Chocolate Beads: Physical and Antioxidant Properties. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5549873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to evaluate the physical and antioxidant properties of chocolate alginate beads containing Moringa oleifera leaf extract (MLE) produced with ecofriendly solvent extraction technology (Deep Eutectic Solvents). The concentration of MLE incorporated was 0, 2, 4, and 6%
, and hardening time for ionotropic gelation with CaCl2 solution was 2, 8, or 20 min. Freshly prepared beads were evaluated for their geometric (area, perimeter, ferret diameter, circularity, roundness), color (CIE L
, a
, and b
and chroma), and antioxidant properties (total phenolic content and percentage inhibition of DPPH• radical). Increasing the MLE concentration resulted in beads smaller in size and more spherical, whereas hardening time only affected their circularity. MLE concentration had also a profound effect on color and antioxidant properties of the beads. As the concentration of MLE increased, the beads appeared lighter and their chroma increased. The radical scavenging activity was ameliorated by the MLE concentration increase for samples hardened for 8 and 20 min, whereas it was unaffected for those at 2 min. The hardening time on the contrary did not affect the inhibition of DPPH• values, regardless of the amount of extract added.
Collapse
|
31
|
Pereira JMG, Viell FLG, Lima PC, Silva E, Pilau EJ, Corrêa RCG, Bona E, Vieira AMS. Optimization of the extraction of antioxidants from Moringa leaves: A comparative study between ultrasound‐ and ultra‐homogenizer‐assisted extractions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juliana M. G. Pereira
- Postgraduate Program in Food Science Department of Food Science State University of Maringa (UEM) Maringa Brazil
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Franciele Leila G. Viell
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Patricia C. Lima
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Evandro Silva
- Department of Chemistry State University of Maringa (UEM) Maringa Brazil
| | - Eduardo J. Pilau
- Department of Chemistry State University of Maringa (UEM) Maringa Brazil
| | - Rúbia C. G. Corrêa
- Program of Master in Science, Technology and Food Safety Cesumar Institute of Science Technology and Innovation (ICETI) University Center of Maringa (UniCesumar) Maringa Brazil
| | - Evandro Bona
- Postgraduate Program of Food Technology (PPGTA) Federal University of Technology ‐ Paraná (UTFPR) Curitiba Brazil
| | - Angélica M. S. Vieira
- Postgraduate Program in Food Science Department of Food Science State University of Maringa (UEM) Maringa Brazil
| |
Collapse
|
32
|
Katmawanti S, Supriyadi S, Mariroh F. Is instant porridge with a high calcium content based on <em>Moringa oleifera</em> as an alternative baby food to prevent stunting in Indonesia? J Public Health Res 2021; 10. [PMID: 33855417 PMCID: PMC8129761 DOI: 10.4081/jphr.2021.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background: According to WHO, stunting is a state of heightfor- age index below minus two standard deviation. However, the condition could be prevented by giving suitable complementary food to babies and toddlers. Moringa leaves are rich in vitamins A, C, B6, as well as calcium, potassium, iron, as well as protein, and are therefore used as complementary foods for breast milk, in baby feeding. Design and Methods: Instant porridge was developed using three formulas. Each formula comprised Moringa leaf flour (5, 6 and 7 grams each) combined with 30 grams of oatmeal powder, 40 grams of powdered formula, 10 grams of refined sugar, and 5 grams of banana flour. Results: Based on the organoleptic test, Formula 3 (created with 5 grams of Moringa leaf flour) was discovered to be the best. The organoleptic evaluation panel consisted of 3 trained and 30 untrained participants, while the statistical results showed the parameters of colour, texture, and taste, have no significant effect on panellists’ acceptance. Conclusions: The flavour parameter has a significant effect on panellists’ acceptance, with a p-value <0.05. Significance for public health The problem of stunting in toddlers not only interferes with physical growth and development, but also with brain growth, thus, weakening the cognitive abilities of toddlers. Therefore, the condition must be resolved immediately. Furthermore, stunting affects productivity during adult stage, and is often prevented in public health by providing nutritious food intake for toddlers, through proper complementary feeding. Currently, the choice of complementary foods is solely commercial. Hence, there is a need for research and development with regard to the manufacture of complementary foods with practical, highly nutritious natural ingredients.
Collapse
Affiliation(s)
- Septa Katmawanti
- Departement of Public Health, Faculty of Sport Science, Universitas Negeri Malang, Malang.
| | - Supriyadi Supriyadi
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang .
| | - Fariha Mariroh
- Departement of Public Health, Public Health Faculty, Universitas Negeri Jember, Jember.
| |
Collapse
|
33
|
Chandrashekar S, Vijayakumar R, Chelliah R, Daliri EBM, Madar IH, Sultan G, Rubab M, Elahi F, Yeon SJ, Oh DH. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules 2021; 26:2080. [DOI: https:/doi.10.3390/molecules26072080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.
Collapse
Affiliation(s)
- Sangeeta Chandrashekar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Raman Vijayakumar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
34
|
Chandrashekar S, Vijayakumar R, Chelliah R, Daliri EBM, Madar IH, Sultan G, Rubab M, Elahi F, Yeon SJ, Oh DH. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules 2021; 26:2080. [PMID: 33916405 PMCID: PMC8038560 DOI: 10.3390/molecules26072080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.
Collapse
Affiliation(s)
- Sangeeta Chandrashekar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Raman Vijayakumar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| |
Collapse
|
35
|
Mumtaz MZ, Kausar F, Hassan M, Javaid S, Malik A. Anticancer activities of phenolic compounds from Moringa oleifera leaves: in vitro and in silico mechanistic study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00101-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Moringa oleifera is a common vegetable in many countries since ancient times, possesses numerous phenolic compounds having a wide array of biological activities. It possesses anticancer activity that can be used to develop new drugs for treatment of various types of cancers. The current study was conducted to evaluate the composition of phenolic compounds and in vitro and in silico anticancer activities of M. oleifera leaves extracts. The leaves of M. oleifera were subjected to extraction for solvent fraction using n-hexane, chloroform, ethyl acetate, butanol, and aqueous solvents. The solvent fractions were tested for anticancer activity in vitro against Hela cancer cell line and screened for phenolic compounds through reversed-phase high-performance liquid chromatography. The molecular docking approach was employed to check binding conformations of phytochemicals against the target protein.
Result
The result revealed that all the solvent fractions possess in vitro anticancer activity against Hela cancer cell line. The n-hexane fraction showed a 50% reduction in Hela cancer cell viability at 416 μg mL−1 as compared to control. The extracts of solvent-fraction contained 10 phenolic compounds viz. quercetin, gallic acid, sinapic acid, vanillic acid, 4-hydroxy-3-methoxy benzoic acid, p-coumaric acid, m-coumaric acid, 4-hydroxy-3-methoxy cinnamic acid, caffeic acid, and syringic acid. Molecular docking studies revealed that the ligands bind within the active site of target protein have good binding energy values.
Conclusion
This study shows that M. oleifera leaves may have the potential to inhibit cancer cell growth and improving human health in addition to food ingredient innovations. Based on in vitro and in silico results, the phytochemicals from M. oleifera leaves can be used as leading drugs to treat cancer.
Graphical abstract
Collapse
|
36
|
Selim S, Seleiman MF, Hassan MM, Saleh AA, Mousa MA. Impact of Dietary Supplementation with Moringa oleifera Leaves on Performance, Meat Characteristics, Oxidative Stability, and Fatty Acid Profile in Growing Rabbits. Animals (Basel) 2021; 11:ani11020248. [PMID: 33498443 PMCID: PMC7909436 DOI: 10.3390/ani11020248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Rabbit meat is mostly preferred by consumers owing to its high nutritive value and potential health benefits. However, rabbit meat is commonly more prone to lipid peroxidation during storage, with negative effects on quality traits of meat, due to its elevated level of unsaturation of fatty acids. Moringa oleifera leaves have gained great interest owing to their high nutritional value and low anti-nutritional factors. Moringa oleifera leaves could possibly avoid oxidation damage and exhibit antioxidant activities that can conquer free radicals and reactive oxygen species synthesis. Therefore, the objective of the current study was to evaluate the effects of feeding Moringa oleifera leaves on performance, carcass characteristics, antioxidant capacity, blood biochemical constituents, meat quality, and fatty acids profile of growing rabbits. Moringa oleifera leaves supplementation improved weight gain, feed conversion ratio, antioxidant status, and meat quality characteristics. Dietary Moringa oleifera leaves supplementation enhanced PUFA contents, n-3 fatty acid, crude protein, and color of meat, but lowered the relative content of ether extract of the meat. Our findings suggested that Moringa oleifera could be used at a level of 1.5 g/kg of the growing rabbits’ diets with beneficial impacts on performance and the nutritional value of the meat. Abstract Moringa oleifera leaves (MOL) have gained great interest as a non-traditional feed ingredient due to their unique nutritional value. Therefore, the objective of the current study was to evaluate the effects of graded dietary supplementation levels with MOL on performance, carcass characteristics, antioxidant capacity, blood biochemical constituents, meat quality, and fatty acids profile of growing rabbits. A total of 120 weaned New Zealand white rabbits (6 weeks old) were randomly allotted into 4 dietary groups with 5 replicates each (n = 6), which were fed for 42 days with a basal diet as control or 3 experimental diets supplemented with 5, 10, or 15 g/kg MOL. The results showed that, compared to the control group, the dietary inclusion of MOL at a level of 10 and 15 g/kg DM linearly increased (p < 0.01) final live weight (2403.3 and 2498.2 vs. 2166.6) and average daily weight gain (36.5 and 35.51 g/d vs. 28.72 g/d), and enhanced feed conversion ratio (2.49 and 2.50 vs. 3.14). The dietary supplementation with MOL linearly increased dressing out percentage, spleen index, intestinal length, and decreased abdominal fat index (p < 0.01). Greater serum levels of total protein and globulin, but lower alanine aminotransferase and aspartate aminotransferase were observed in the MOL-fed rabbits (p < 0.01). Serum levels of total triglycerides, cholesterol, and low-density lipoprotein (p < 0.05) were decreased linearly and quadratically in the MOL groups compared with the control. Glutathione peroxidase activity increased (p < 0.01), whereas malondialdehyde decreased (p < 0.01) linearly and quadratically in both serum and meat, in response to dietary MOL supplementation. Dietary MOL supplementation increased the meat crude protein content but lowered the relative content of ether extract in the meat (p < 0.05). The relative content of the meat n-3 PUFA was increased by about 33.71%, 29.46%, and 24.36% for the MOL0.5%, MOL1%, and MOL1.5% groups compared to control. In conclusion, MOL could be used at a level of 1.5g/kg of the growing rabbits’ diets with beneficial impacts on performance, antioxidant capacity, and the nutritional value of the meat.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-kom 32514, Egypt
- Correspondence:
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom 32514, Egypt
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed A. Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. Mousa
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Sohag University, Sohag 82425, Egypt;
| |
Collapse
|
37
|
Xiao X, Wang J, Meng C, Liang W, Wang T, Zhou B, Wang Y, Luo X, Gao L, Zhang L. Moringa oleifera Lam and its Therapeutic Effects in Immune Disorders. Front Pharmacol 2020; 11:566783. [PMID: 33390944 PMCID: PMC7773658 DOI: 10.3389/fphar.2020.566783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Moringa oleifera Lam., a plant native to tropical forests of India, is characterized by its versatile application as a food additive and supplement therapy. Accumulating evidence shows that Moringa plays a critical role in immune-related diseases. In this review, we cover the history, constituents, edibility, and general medicinal value of Moringa. The effects of Moringa in treating immune disorders are discussed in detail. Moringa can not only eliminate pathogens, including bacteria, fungi, viruses, and parasites, but also inhibit chronic inflammation, such as asthma, ulcerative colitis, and metabolic diseases. Additionally, Moringa can attenuate physical and chemical irritation-induced immune disorders, such as metal intoxication, drug side effects, or even the adverse effect of food additives. Autoimmune diseases, like rheumatoid arthritis, atopic dermatitis, and multiple sclerosis, can also be inhibited by Moringa. Collectively, Moringa, with its multiple immune regulatory bioactivities and few side effects, has a marked potential to treat immune disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jue Wang
- Department of Geriatrics, Chengdu Second People's Hospital, Chengdu, China
| | - Chen Meng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Gupta S, Kachhwaha S, Kothari SL, Bohra MK, Jain R. Surface Morphology and Physicochemical Characterization of Thermostable Moringa Gum: A Potential Pharmaceutical Excipient. ACS OMEGA 2020; 5:29189-29198. [PMID: 33225150 PMCID: PMC7675538 DOI: 10.1021/acsomega.0c03966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
An efficient protocol for physico-chemical characterization of gum exudates collected from the drumstick tree (Moringa oleifera Lam.) has been reported in the present study. Extraction of gum metabolites was done using a series of water, alcohol, acid, and alkali solvent systems. The gum was sparingly soluble in water at room temperature and formed a colloidal solution. Solubility of the gum gradually increased in the solvent gradient (80% ethanol, deionized water, 0.05 M HCl, and 0.05 M NaOH) at 90 °C. Further, electron microscopy revealed that the acetyl group is essential in maintaining the structural integrity, and deacetylation of gum resulted in formation of a mesh of scattered and fibrous particles. Treatment of gum with deionized water resulted in development of a hydrocolloidal matrix with a pore size of 0.5 μm, which upon deacetylation was reduced up to 0.2 μm. The polymer was amorphous in nature and showed maximum thermal stability in ethanol. Gas chromatography-mass spectrometry of the gum polymer revealed that carbohydrate derivatives constituted its major part (>75%). Maximum carbohydrate concentration was obtained in the ethanol soluble fraction, along with fatty acids (10%) and secondary metabolites (9%). The results provided very first confirmation of the hydrocolloidal properties and thermostability of the gum exudates obtained from the drumstick tree, which can further be used to develop an eco-friendly and nontoxic bioligand.
Collapse
Affiliation(s)
- Swati Gupta
- Department
of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Sumita Kachhwaha
- Department
of Botany, University of Rajasthan, Jaipur 302004, India
| | - SL Kothari
- Amity
University Rajasthan, Jaipur, Rajasthan 303007, India
| | - Manoj Kumar Bohra
- Department
of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India
| | - Rohit Jain
- Department
of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| |
Collapse
|
39
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
40
|
Chandrashekar S, Vijayakumar R, Chelliah R, Oh DH. Identification and Purification of Potential Bioactive Peptide of Moringa oleifera Seed Extracts. PLANTS 2020; 9:plants9111445. [PMID: 33120901 PMCID: PMC7716235 DOI: 10.3390/plants9111445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate the antibacterial and anticoagulant activity of Moringa (Moringa oleifera) seed extracts and coagulant protein for their potential application in water treatment. Pathogenic microorganisms were obtained from Ramachandra Hospital, Chennai, India. Bacterial cell aggregation and growth kinetics studies were employed for six bacterial strains with different concentrations of seed extracts and coagulant protein. Moringa seed extract and coagulant protein showed cell aggregation against six bacterial strains, whereas seed extract alone showed growth inhibition of all six bacterial strains for up to 6 h, compared to that of control. Escherichia coli and Salmonella para typhi B did not develop resistance against coagulant protein. The results imply that Moringa oleifera is likely an efficient low-molecular bioactive peptide (with <7.5 kDa plant-based coagulant and antimicrobial peptides, confirmed by applying amino acid sequences), using liquid chromatography–mass spectrometry and HPLC, with the corresponding sequences from Napin-1A peptide posing different degrees of antibacterial activity against different pathogenic organisms.
Collapse
Affiliation(s)
- Sangeeta Chandrashekar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea;
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600 073, India
| | - Raman Vijayakumar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600 073, India
- Correspondence: (R.V.); (R.C.); (D.-H.O.); Tel.: +82-33-250-6457 (D.-H.O.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (R.V.); (R.C.); (D.-H.O.); Tel.: +82-33-250-6457 (D.-H.O.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (R.V.); (R.C.); (D.-H.O.); Tel.: +82-33-250-6457 (D.-H.O.)
| |
Collapse
|
41
|
Alam MW, Pandey P, Khan F, Souayeh B, Farhan M. Study to Investigate the Potential of Combined Extract of Leaves and Seeds of Moringa oleifera in Groundwater Purification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7468. [PMID: 33066518 PMCID: PMC7602185 DOI: 10.3390/ijerph17207468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Several parts of the Moringa oleifera plant have revealed incredible potential for water quality improvement. However, the purification potential of a combined leaf and seed extract of Moringa oleifera plants remains unexplored. To the best of our knowledge, this research would be the first to work towards exploiting the combined potential of a leaf and seed extract of the Moringa oleifera plant in the process of water purification. In this study, we investigated the combined effectiveness of the leaf and seed extract in the purification of groundwater. The jar test method was used to analyze the effectiveness of Moringa plant extract (in combination) on different quality parameters of groundwater. Treatment with the combined plant extract (seed and leaf) resulted in significant improvement of various physicochemical (hardness, pH, turbidity, Total Dissolved Solid (TDS), and metallic impurities) and biological parameters (E.coli count) over individual seed and leaf extracts in groundwater samples. Experimental findings have strongly shown the enhanced purification efficacy of the hexane extract of combined plant materials in comparison to the individual extracts, thereby providing us with a potent natural coagulant that could combat the side effects of chemical coagulants.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Hassa 31982, Saudi Arabia;
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306 (U.P.), India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306 (U.P.), India;
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Hassa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Science, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Hofuf, Al-Hassa 31982, Saudi Arabia;
| |
Collapse
|
42
|
Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, Liu Z, Zhu Q, He Z. Moringa oleifera – A Functional Food and Its Potential Immunomodulatory Effects. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1825479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yongai Xiong
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Tao Anjin
- Department of Pharmacy, Hybio Pharmaceutical Co., Ltd., Shenzhen, 518057, PR China
| | - Zhigang Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University., Shenzhen, 518060, PR China
| |
Collapse
|
43
|
Heavy Metal Accumulation and Health Risk Assessment in Moringa Oleifera from Awi Zone, Ethiopia. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00181-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Wu F, Chen B, Liu S, Xia X, Gao L, Zhang X, Pan Q. Effects of woody forages on biodiversity and bioactivity of aerobic culturable gut bacteria of tilapia (Oreochromis niloticus). PLoS One 2020; 15:e0235560. [PMID: 32614907 PMCID: PMC7332033 DOI: 10.1371/journal.pone.0235560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
The present study investigated the effects of four woody forages (Moringa oleifera Lam (MOL), fermented MOL, Folium mori (FM) and fermented FM) on biodiversity and bioactivity of aerobic culturable gut bacteria of tilapia (Oreochromis niloticus) by a traditional culture-dependent method. A total of 133 aerobic culturable isolates were recovered and identified from the gut of tilapia, belonging to 35 species of 12 genera in three bacterial phyla (Firmicutes, Actinobacteria and Proteobacteria). Among them, 6 bacterial isolates of Bacillus baekryungensis, Bacillus marisflavi, Bacillus pumilus, Bacillus methylotrophicus, Proteus mirabilis and Pseudomonas taiwanensis were isolated from all the five experimental groups. The Bray-Curtis analysis showed that the bacterial communities among the five groups displayed obvious differences. In addition, this result of bioactivity showed that approximate 43% of the aerobic culturable gut bacteria of tilapia displayed a distinct anti-bacterial activity against at least one of four fish pathogens Streptococcus agalactiae, Streptococcus iniae, Micrococcus luteus and Vibrio parahemolyticus. Furthermore, Bacillus amyloliquefaciens and Streptomyces rutgersensis displayed strong activity against all four indicator bacteria. These results contribute to our understanding of the intestinal bacterial diversity of tilapia when fed with woody forages and how certain antimicrobial bacteria flourished under such diets. This can aid in the further exploitation of new diets and probiotic sources in aquaculture.
Collapse
Affiliation(s)
- Feng Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Biao Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sha Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiongjian Xia
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liuling Gao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qing Pan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
45
|
Monir W, Abdel-Rahman MA, El-Din Hassan S, Mansour ES, Awad SMM. Pomegranate peel and moringa-based diets enhanced biochemical and immune parameters of Nile tilapia against bacterial infection by Aeromonas hydrophila. Microb Pathog 2020; 145:104202. [PMID: 32330516 DOI: 10.1016/j.micpath.2020.104202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
We previously reported that Aeromonas hydrophila exhibited the highest prevalence rate amongst 182 bacterial strains isolated from naturally diseased Nile tilapia (Oreochromis niloticus) collected from El-Abassa Fish Farm, Egypt (Hassan et al., Egypt. J. Aquac., 10, 23-43, 2020). The overuse of antibiotics for controlling diseases has led to acquired antibiotics resistance of aquatic bacteria, besides the developments of human, aquatic animal and environmental risks arising from residual antibiotics. Therefore, the evaluation of safe alternative phytotherapies is of great importance. This study was conducted to evaluate and compare growth performance and immune potentiating activities of moringa (Moringa oleifera) leaves extract (Moringa LE) and pomegranate (Punica granatum) peel extract (Pomegranate PE) on Nile tilapia against infection with a pathogenic bacterium, Aeromonas hydrophila. A total of 150 Oreochromis niloticus were randomly divided into 5 groups to be fed at 3% of body weight with isonitrogenous/isoenergetic diets supplemented with Moringa LE at 0.15 and 0.25% kg-1 or Pomegranate PE at of 0.3 and 0.5% kg-1, separately. Growth performance was significantly affected by Moringa LE as compared with the control group without supplementation of plant extract, while Pomegranate PE levels did not affect growth performance. Maximum average daily gains, specific growth rate, albumin, globulin, total protein, A/G ratio, alanine amino transaminase (ALT), aspartate amino transaminase (AST), cholesterol, triglyceride, creatinine, urea, and lysozyme were analyzed. Antioxidant enzymes of catalase and superoxide dismutase were also evaluated in liver tissues. After feeding experiment, the results indicated that the addition of Moringa LE and Pomegranate PE improved lipid profile, liver and kidney functions, immune response towards the emerging bacterial diseases. Besides this, feeding the fishes on diets supplemented with Moringa LE at concentration 0.25% kg-1 showed the best growth performance, and improved immunity. Moreover, it exhibited the highest protection against bacterial infection with Aeromonas hydrophila achieving the lowest mortality rate of 10% as compared to 80% of mortality rate at the control group.
Collapse
Affiliation(s)
- Walid Monir
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt.
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science (boys-branch), Al-Azhar University, Cairo, Egypt
| | - El Sayed Mansour
- Bacteriology Department, Animal Health Research Institute, Zagazig Branch, Egypt
| | - Somayah M M Awad
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
46
|
Sousa AMP, Salles HO, Oliveira HDD, Souza BBPD, Cardozo Filho JDL, Sifuentes DN, Prates MV, Bloch Junior C, Bemquerer MP, Egito ASD. Mo-HLPs: New flocculating agents identified from Moringa oleifera seeds belong to the hevein-like peptide family. J Proteomics 2020; 217:103692. [PMID: 32068186 DOI: 10.1016/j.jprot.2020.103692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Cationic peptides found in Moringa oleifera seeds belong to different protein families and are described as the main flocculating agents of the species. In this study we report the identification and isolation of four new flocculant peptides, called Mo-HLPs 1-4, belonging to the family of hevein-like peptides, previously only known for their members' antimicrobial activity. Purification of the peptides followed two sequential membrane ultrafiltration steps and separation by reverse-phase liquid chromatography. Proteomic analyses showed that Mo-HLPs are extremely basic (pI >10) cysteine-rich molecules with molecular masses between 4.5 and 4.8 kDa and with a highly conserved chitin-binding domain. Searches in BLAST revealed high similarity of Mo-HLPs with hevein and other hevein-like peptides and 90% identity with morintides, which are members of the 8C-hevein-like subfamily found in M. oleifera leaves. Mo-HLPs microflocculation assays showed distinct coagulation/flocculation efficiencies, promoting turbidity reduction levels between 67 and 89% in synthetic turbid water. Activity variations were attributed to the substitution of some amino acids among the isoforms, which may have altered the final net charge of the molecules. The identification of Mo-HLPs represents the discovery of a new group of cationic peptides involved in the flocculation properties of M. oleifera seeds. SIGNIFICANCE: The study reveals the presence of hevein-like peptides in Moringa oleifera seeds. It is reported for the first time that members of this family have properties to act as flocculating agents of importance for water treatment processes. The identification of these peptides as well as new functional assignment broadens the horizon for speculation on new species which could act as sources of green coagulants for sustainable water treatment, and contributes to the knowledge about occurrence, distribution, molecular and active diversity of peptides belonging to the hevein-like family.
Collapse
Affiliation(s)
- Ana Márjory Paiva Sousa
- Rede Nordeste de Biotecnologia-RENORBIO, Universidade Estadual do Ceará, Campus do Itaperi, CEP: 60714-903 Fortaleza, CE, Brazil; Laboratório de Bioquímica, Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras, Km 4, CP 71, CEP: 62010-970 Sobral, CE, Brazil.
| | - Hévila Oliveira Salles
- Laboratório de Bioquímica, Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras, Km 4, CP 71, CEP: 62010-970 Sobral, CE, Brazil
| | - Hermógenes David de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici Prof. Prisco Bezerra, CEP: 60440-900 Fortaleza, CE, Brazil
| | - Beatriz Blenda Pinheiro de Souza
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - José de Lima Cardozo Filho
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - Daniel Nogoceke Sifuentes
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - Maura Vianna Prates
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - Carlos Bloch Junior
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - Marcelo Porto Bemquerer
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CEP: 70770-901 Brasília, DF, Brazil
| | - Antonio Silvio do Egito
- Laboratório de Bioquímica, Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras, Km 4, CP 71, CEP: 62010-970 Sobral, CE, Brazil
| |
Collapse
|
47
|
He L, Lv H, Chen N, Wang C, Zhou W, Chen X, Zhang Q. Improving fermentation, protein preservation and antioxidant activity of Moringa oleifera leaves silage with gallic acid and tannin acid. BIORESOURCE TECHNOLOGY 2020; 297:122390. [PMID: 31740244 DOI: 10.1016/j.biortech.2019.122390] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Whether tannins reducing proteolysis is related to protease or the antioxidant capacity could be preserved during Moringa oleifera leaves (MOL) ensiling are unclear. In the present study, MOL ensiled with 1% and 2% gallic acid (GA) or tannic acid (TA) were analyzed for fermentation parameters, protein fractions, protease activities and antioxidant capacity on day 3, 7, 14 and 30 of ensiling. The results showed that GA and TA decreased dry matter loss (11.13% vs 8.35% and 3.11%, in the level of 2%) and proteolysis (nonprotein-N: 56.31% vs 32.64% and 26.04% TN). Meanwhile, GA and TA increased pH, yeasts number, ammonia-N content and aminopeptidase activity. The antioxidant capacity of MOL silage gradually increased during ensiling, and was dramatically enhanced by the addition of GA and TA. In conclusion, this study suggests that GA and TA could help to improve the preservation of protein and antioxidant capacity during MOL ensiling.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Na Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
48
|
Afolabi-owolabi OT, Abidin SZ, Ariffin F. Electrospun Polymer Nanofiber from Moringa Oleifera Kernel Oil with Coaxial Electrospinning Method. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666181120113219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
Moringa oleifera kernel oil consist of monounsaturated fatty acid with high
percentage of oleic acid. The oil consist of phytochemicals, bioactive compounds and nutrients that
have several application in health industries. However, the oil degrades on exposure to light, heat and
oxygen overtime. In addition, rancidity cause the oil quality to defect and reduce the shelf-life.
Therefore, microencapsulation techniques are uniquely applied to oil to preserve their native quality
and prolong their shelf life.
Objective:
This study examines different polymer concentrations and injection flowrates of zein nanofiber
from Moringa oleifera kernel oil using coaxial electrospinning method.
Methods:
A 40% w/v zein polymer was the optimal loading concentration and 0.7 mL/hour of zein
polymer with 0.1 mL/hour of Moringa oleifera kernel oil was the optimal injection flowrates for
electrospun nanofiber. Analysis of the Moringa oleifera kernel oil and polymer sample micromorphology,
were investigated with Field Emission Scanning Electron Microscopy (FESEM) and transmission
electron microscopy (TEM).
Result:
result shows uniformly layered nanofiber. The nanofiber has no beads formation and the fiber
strands are continuous with no entanglement. The polymer encapsulated the oil efficiently. Furthermore,
thermal analysis through Differential Scanning Calorimetry (DSC) showed consistency in
the nanofiber thermal behavior. Thermogravimetric (TGA) analysis revealed the weight loss and
thermal dissociation of the polymer structure. The electrospun nanofiber average diameter was 450 ±
24 nm and exhibited hydrophobicity.
Conclusion:
The co-axial electrospine technique was effective in fabricating electrospune nanofibers.
Collapse
Affiliation(s)
- Oluwafunke T. Afolabi-owolabi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, P.M.B 11800, Minden Gelugor, Pulau-Penang, Malaysia
| | - Syahariza Z. Abidin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, P.M.B 11800, Minden Gelugor, Pulau-Penang, Malaysia
| | - Fazila Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, P.M.B 11800, Minden Gelugor, Pulau-Penang, Malaysia
| |
Collapse
|
49
|
Ziegler V, Ugalde ML, Veeck IDA, Barbosa FDF. Nutritional enrichment of beef burgers by adding components of non-conventional food plants. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.03019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Some non-conventional food plants (NCFPs) such as Yacon potato, Moringa, and Ora-pro-nobis have been studied to identify their constitution and health-promoting substances. The purpose of this study was to enrich the beef burger with unconventional food plant and to evaluate its physical, chemical and sensorial properties. Ten formulations were prepared, being one formulation for the conventional burger (with soy protein and without addition of NCFPs) and nine formulations with variations of 2%, 4% and 6% of flour of each of the NCFPs. Addition of NCFPs flours improved nutritional burger properties and resulted in an increase in protein, ash, and dietary fiber content, a slight reduction in fats and significant reduction in carbohydrates. The burgers produced using 2% and 4% of Yacon flour had the lowest differences in these parameters as compared to those of the conventional burger, and also presented acceptance rates that were similar to that of the conventional burger. Both formulations showed the greatest similarity to the conventional burger during sensory analysis, which could be well accepted by consumers who are looking for healthier foods.
Collapse
|
50
|
The Effect of Ultrasonication Pretreatment on the Production of Polyphenol-Enriched Extracts from Moringa oleifera L. (Drumstick Tree) Using a Novel Bio-Based Deep Eutectic Solvent. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Moringa oleifera L. leaves are a plant tissue particularly rich in polyphenolic phytochemicals with significant bioactivities, and there has been significant recent interest for the production of extracts enriched in these substances. The current investigation is aimed at establishing a green extraction process, using a novel eco-friendly natural deep eutectic solvent, composed of glycerol and nicotinamide. Furthermore, sample ultrasonication prior to batch stirred-tank extraction was studied to examine its usefulness as a pretreatment step. Optimization of the extraction process through response surface methodology showed that the maximum total polyphenol yield (82.87 ± 4.28 mg gallic acid equivalents g−1 dry mass) could be achieved after a 30 min ultrasonication pretreatment, but the difference with the yield obtained from the non-pretreated sample was statistically non-significant (p < 0.05). Extraction kinetics revealed that the activation energy for the ultrasonication-pretreated samples was more energy-demanding, a fact attributed to phenomena pertaining to washing of the readily extracted polyphenols during pretreatment. Liquid-chromatography-diode array-mass spectrometry showed that ultrasonication pretreatment may have a limited positive effect on polyphenol extractability, but the overall polyphenolic profile was identical for the ultrasonication-pretreated and non-pretreated samples.
Collapse
|