1
|
da Costa Salomão KC, da Silva MC, Fabiano LC, de Freitas PLZ, Neves CQ, Borges SC, Breithaupt-Faloppa AC, Barbosa CP, Buttow NC. Cardiotoxicity Associated With a Low Doses of 5-FU Promotes Morphoquantitative Changes in the Intrinsic Cardiac Nervous System. Cardiovasc Toxicol 2025:10.1007/s12012-024-09958-y. [PMID: 39864046 DOI: 10.1007/s12012-024-09958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats. The rats were divided into two groups: treated and 5-FU (n = 6/group). The control group received saline only. The treated group received the following clinical doses of 5-FU: 15 mg/kg for 4 consecutive days, followed by 6 mg/kg for 4 days alternated with non-treatment days, and finally 15 mg/kg as the last dose on day 14. On day 15, the rats were euthanized and underwent thoracotomy. The atria were used for histological analysis, and the ventricles were used for biochemical analysis. The results showed an increase in neuronal density and a decrease in ganglionic and neuronal area in the ICNS. Furthermore, tissue inflammation was observed, indicated by an increase in proinflammatory factors and the enzymatic activity of myeloperoxidase and n-acetyl-glucosaminidase. Oxidative stress was also observed, confirmed by a reduction of endogenous antioxidant defenses and the presence of lipoperoxidation. Treatment with 5-FU also caused cardiac atrophy and fibrosis. These findings indicate that cardiotoxicity is present with 5-FU treatment and affects the morphometric aspects of the ICNS.
Collapse
Affiliation(s)
| | - Mariana Conceição da Silva
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Lilian Catarim Fabiano
- Department of Morphological Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Pedro Luiz Zonta de Freitas
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação, Instituto do Coração (Incor), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringa, Maringa, Parana, Brazil.
| |
Collapse
|
2
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zafeiropoulos S, Ahmed U, Bikou A, Mughrabi IT, Stavrakis S, Zanos S. Vagus nerve stimulation for cardiovascular diseases: Is there light at the end of the tunnel? Trends Cardiovasc Med 2024; 34:327-337. [PMID: 37506989 DOI: 10.1016/j.tcm.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Autonomic dysfunction and chronic inflammation contribute to the pathogenesis and progression of several cardiovascular diseases (CVD), such as heart failure with preserved ejection fraction, atherosclerotic CVD, pulmonary arterial hypertension, and atrial fibrillation. The vagus nerve provides parasympathetic innervation to the heart, vessels, and lungs, and is also implicated in the neural control of inflammation through a neuroimmune pathway involving the spleen. Stimulation of the vagus nerve (VNS) can in principle restore autonomic balance and suppress inflammation, with potential therapeutic benefits in these diseases. Although VNS ameliorated CVD in several animal models, early human studies have demonstrated variable efficacy. The purpose of this review is to discuss the rationale behind the use of VNS in the treatment of CVD, to critically review animal and human studies of VNS in CVD, and to propose possible means to overcome the challenges in the clinical translation of VNS in CVD.
Collapse
Affiliation(s)
- Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Alexia Bikou
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Zanos
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
5
|
Chattopadhyay M, Pal B. Drugs Acting on Autonomic Nervous System. ESSENTIALS OF PHARMACODYNAMICS AND DRUG ACTION 2024:57-88. [DOI: 10.1007/978-981-97-2776-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
6
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
7
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
8
|
Piccirillo G, Moscucci F, Sciomer S, Magrì D. Chronic Heart Failure Management: Monitoring Patients and Intercepting Exacerbations. Rev Cardiovasc Med 2023; 24:208. [PMID: 39077011 PMCID: PMC11266474 DOI: 10.31083/j.rcm2407208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 07/31/2024] Open
Abstract
Despite significant progress in the field of therapy and management, chronic heart failure (CHF) still remains one of the most common causes of morbidity and mortality, especially among the elderly in Western countries. In particular, frequent episodes of decompensation and, consequently, repeated hospitalizations represent an unsustainable burden for national health systems and the cause of worsening quality of life. CHF is more prevalent in elderly women, who often have "peculiar" clinical characteristics and a more preserved ejection fraction caused by endothelial dysfunction and micro-vessel damage. At the moment, noninvasive technologies that are able to remotely monitor these patients are not widely available yet, and clinical trials are underway to evaluate invasive remote sensors. Unfortunately, implantable devices for identifying decompensation are not the most practical solution in the majority of of patients with chronic heart failure. In particular, they are hypothesized to have the possibility of monitoring patients by pro-B-type natriuretic peptide, ventricular repolarization variability, and bioimpedance cardiography at the first point of care, but new technology and clinical trials must be planned to address the development and spread of these emergent possibilities.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, “Sapienza'' University of Rome, 00161 Rome, Italy
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, 00161 Rome, Italy
| | - Susanna Sciomer
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, “Sapienza'' University of Rome, 00161 Rome, Italy
| | - Damiano Magrì
- Dipartimento di Medicina Clinica e Molecolare, S. Andrea Hospital, “Sapienza'' University of Rome, 00189 Rome, Italy
| |
Collapse
|
9
|
Arya AV, Bisht H, Tripathi A, Agrawal M, Konat A, Patel J, Mozumder K, Shah D, Chaturvedi D, Sharma K. A Comparative Review of Vagal Nerve Stimulation Versus Baroreceptor Activation Therapy in Cardiac Diseases. Cureus 2023; 15:e40889. [PMID: 37492836 PMCID: PMC10364457 DOI: 10.7759/cureus.40889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Sympathetic imbalance coupled with impairment of baroreceptor control is a key factor responsible for hemodynamic abnormalities in congestive heart failure. Vagal nerve stimulation (VNS) and baroreceptor activation therapy (BAT) are two novel interventions for the same. In this paper, we review the role of sympathovagal alterations in cardiac diseases like heart failure, arrhythmia, hypertension (HTN), etc. Studies like neural cardiac therapy for heart failure (NECTAR-HF), autonomic regulation therapy to enhance myocardial function and reduce progression of heart failure (ANTHEM-HF), and baroreflex activation therapy for heart failure (BEAT-HF), which comprise the history, efficacy, limitations, and current protocols, were extensively analyzed in contrast to one another. Vagal nerve stimulation reverses the reflex inhibition of cardiac vagal efferent activity, which is caused as a result of sympathetic overdrive during the course for heart failure. It has shown encouraging results in certain pre-clinical studies; however, there is also a possibility of serious cardiovascular adverse events if given in higher than the recommended dosage. Attenuated baroreflex sensitivity is attributed to cardiac arrhythmogenesis during heart failure. Baroreceptor activation therapy reverses this phenomenon. However, the surgical procedure for baroreceptor stimulation can have unwarranted complications, including worsening heart failure and hypertension. Considering the effectiveness of the given modalities and taking into account the inconclusive evidence of their adverse events, more clinical trials are needed for establishing the future prospects of these interventional approaches.
Collapse
Affiliation(s)
- Akshat V Arya
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Himanshi Bisht
- Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | | | - Manali Agrawal
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Ashwati Konat
- Zoology, Biomedical Technology and Human Genetics, Gujarat University, Ahmedabad, IND
| | - Jay Patel
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Kamalika Mozumder
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Dhrumil Shah
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Gandhinagar, IND
| | | | - Kamal Sharma
- Cardiology, Kamal Sharma Cardiology Clinic, Ahmedabad, IND
| |
Collapse
|
10
|
Chung WH, Lin YN, Wu MY, Chang KC. Sympathetic Modulation in Cardiac Arrhythmias: Where We Stand and Where We Go. J Pers Med 2023; 13:786. [PMID: 37240956 PMCID: PMC10221179 DOI: 10.3390/jpm13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The nuance of autonomic cardiac control has been studied for more than 400 years, yet little is understood. This review aimed to provide a comprehensive overview of the current understanding, clinical implications, and ongoing studies of cardiac sympathetic modulation and its anti-ventricular arrhythmias' therapeutic potential. Molecular-level studies and clinical studies were reviewed to elucidate the gaps in knowledge and the possible future directions for these strategies to be translated into the clinical setting. Imbalanced sympathoexcitation and parasympathetic withdrawal destabilize cardiac electrophysiology and confer the development of ventricular arrhythmias. Therefore, the current strategy for rebalancing the autonomic system includes attenuating sympathoexcitation and increasing vagal tone. Multilevel targets of the cardiac neuraxis exist, and some have emerged as promising antiarrhythmic strategies. These interventions include pharmacological blockade, permanent cardiac sympathetic denervation, temporal cardiac sympathetic denervation, etc. The gold standard approach, however, has not been known. Although neuromodulatory strategies have been shown to be highly effective in several acute animal studies with very promising results, the individual and interspecies variation between human autonomic systems limits the progress in this young field. There is, however, still much room to refine the current neuromodulation therapy to meet the unmet need for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90024, USA
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
11
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
12
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
13
|
Wan HY, Weavil JC, Thurston TS, Georgescu VP, Morrissey CK, Amann M. On the hemodynamic consequence of the chemoreflex and muscle mechanoreflex interaction in women and men: two tales, one story. J Physiol 2022; 600:3671-3688. [PMID: 35710103 PMCID: PMC9378608 DOI: 10.1113/jp283051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cardiovascular response resulting from the activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), was previously shown to be different between women and men; this study focused on the hemodynamic consequence of the interaction of these two sympathoexcitatory reflexes. MMR and CR were activated by passive leg movement and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Individual and interactive reflex effects on central and peripheral hemodynamics were quantified in healthy young women and men. In men, the MMR:O2 -CR and MMR:CO2 -CR interactions restricted peripheral hemodynamics, likely by potentiating sympathetic vasoconstriction. In women, the MMR:O2 -CR interaction facilitated central and peripheral hemodynamics, likely by potentiating sympathetic vasodilation; however, the MMR:CO2 -CR interaction was simply additive for the central and peripheral hemodynamics. The interaction between the MMR and the CR exerts a profound influence on the autonomic control of cardiovascular function in humans, with the hemodynamic consequences differing between women and men. ABSTRACT The cardiovascular response resulting from the individual activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), is different between men and women. Whether the hemodynamic consequence resulting from the interaction of these sympathoexcitatory reflexes is also sex-dependent remains unknown. MMR and CR were activated by passive leg movement (LM) and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Twelve young men and 12 young women completed two experimental protocols: 1) resting in normoxia (PET O2 : ∼83mmHg, PET CO2 : ∼34mmHg), normocapnic hypoxia (PET O2 : ∼48mmHg, PET CO2 : ∼34mmHg), and hyperoxic hypercapnia (PET O2 : ∼524mmHg, PET CO2 : ∼44mmHg); 2) LM under the same gas conditions. During the MMR:O2 -CR coactivation, in men, the observed blood pressure (MAP) and cardiac output (CO) were not different (additive effect), while the observed leg blood flow (LBF) and vascular conductance (LVC) were significantly lower (hypo-additive), compared with the sum of the responses elicited by each reflex alone. In women, the observed MAP was not different (additive) while the observed CO, LBF, and LVC were significantly greater (hyper-additive), compared with the summated responses. During the MMR:CO2 -CR coactivation, in men, the observed MAP, CO, and LBF were not different (additive), while the observed LVC was significantly lower (hypo-additive), compared with the summated responses. In women, the observed MAP was significantly higher (hyper-additive), while the observed CO, LBF, and LVC were not different (additive), compared with the summated responses. The interaction of the MMR and CR has a pronounced influence on the autonomic cardiovascular control, with the hemodynamic consequences differing between men and women. Abstract figure legend The chemoreflex and the muscle mechanoreflex are sympathoexcitatory mechanisms which, via neural feedback to the cardiovascular centre in the medulla, mediate neurocirculatory responses during physical activity. The interaction of the peripheral chemoreflex and muscle mechanoreflex potentiates vasoconstriction in men, but potentiates vasodilatation in women (left panel). The interaction of the central chemoreflex and muscle mechanoreflex also potentiates vasoconstriction in men, whereas the reflex interaction is simply additive for the vasomotor tone in women (right panel). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Vincent P Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
14
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
15
|
Becker BK, Johnston JG, Young CM, Torres Rodriguez AA, Jin C, Pollock DM. Endothelin B receptors impair baroreflex function and increase blood pressure variability during high salt diet. Auton Neurosci 2021; 232:102796. [PMID: 33798837 PMCID: PMC8040376 DOI: 10.1016/j.autneu.2021.102796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Baroreflex function is an integral component maintaining consistent blood pressure. Hypertension is often associated with baroreflex dysfunction, and environmental risk factors such as high salt diet exacerbate hypertension in subjects with baroreflex dysfunction. However, the interactions between high salt diet, baroreflex dysfunction, and hypertension are incompletely understood. The endothelin system is another potent mediator of blood pressure control especially in response to a high salt diet. We hypothesized that the endothelin B (ETB) receptor activation on adrenergic nerves decreases baroreflex sensitivity. We utilized male ETB receptor deficient (ETB-def) rats that express functional ETB receptors only on adrenergic nerves and transgenic (TG) controls to evaluate baroreflex function during normal (0.49% NaCl) and high (4.0% NaCl) salt diets. In conscious rats equipped with telemetry, ETB-def rats had an increased lability of systolic blood pressure (SBP) compared to TG controls as indicated by higher standard deviation (SD) of SBP under both normal (10.2 ± 0.6 vs. 12.4 ± 0.9 mmHg, respectively, p = 0.0001) and high (11.7 ± 0.6 vs. 16.1 ± 1.0 mmHg, p = 0.0001) salt diets. In anesthetized preparations, ETB-def rats displayed reduced heart rate (p genotype = 0.0167) and renal sympathetic nerve (p genotype = 0.0022) baroreflex sensitivity. We then gave male Sprague-Dawley rats the selective ETB receptor antagonist, A-192621 (10 mg/kg/day), to block ETB receptors. Following ETB receptor antagonism, even though SBP increased (131 ± 7 before vs. 152 ± 8 mmHg after, p < 0.0001), the lability (standard deviation) of SBP decreased (9.3 ± 2.0 vs. 7.1 ± 1.1 mmHg, p = 0.0155). These data support our hypothesis that ETB receptors on adrenergic nerves contribute to baroreflex dysfunction.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Carolyn M Young
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Alfredo A Torres Rodriguez
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| |
Collapse
|
16
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
17
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
18
|
Cavalcante GL, Ferreira FN, da Silva MTB, Soriano RN, Filho ALMM, Arcanjo DDR, Sabino JPJ. Acetylcholinesterase inhibition prevents alterations in cardiovascular autonomic control and gastric motility in L-NAME-induced hypertensive rats. Life Sci 2020; 256:117915. [DOI: 10.1016/j.lfs.2020.117915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
|
19
|
Wittwer ED, Radosevich MA, Ritter M, Cha YM. Stellate Ganglion Blockade for Refractory Ventricular Arrhythmias: Implications of Ultrasound-Guided Technique and Review of the Evidence. J Cardiothorac Vasc Anesth 2020; 34:2245-2252. [DOI: 10.1053/j.jvca.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023]
|
20
|
Dale EA, Kipke J, Kubo Y, Sunshine MD, Castro PA, Ardell JL, Mahajan A. Spinal cord neural network interactions: implications for sympathetic control of the porcine heart. Am J Physiol Heart Circ Physiol 2020; 318:H830-H839. [PMID: 32108524 DOI: 10.1152/ajpheart.00635.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inherent and acquired factors determine the integrated autonomic response to cardiovascular stressors. Excessive sympathoexcitation to ischemic stress is a major contributor to the potential for sudden cardiac death. To define fundamental aspects of cardiac-related autonomic neural network interactions within the thoracic cord, specifically as related to modulating sympathetic preganglionic (SPN) neural activity. Adult, anesthetized Yorkshire pigs (n = 10) were implanted with penetrating high-density microarrays (64 electrodes) at the T2 level of the thoracic spinal cord to record extracellular potentials concurrently from left-sided dorsal horn (DH) and SPN neurons. Electrical stimulation of the T2 paravertebral chain allowed for antidromic identification of SPNs located in the intermediolateral cell column (57 of total 1,760 recorded neurons). Cardiac stressors included epicardial touch, occlusion of great vessels to transiently alter preload/afterload, and transient occlusion of the left anterior descending coronary artery (LAD). Spatial/temporal assessment of network interactions was characterized by cross-correlation analysis. While some DH neurons responded solely to changes in preload/afterload (8.5 ± 1.9%) or ischemic stress (10.5 ± 3.9%), the majority of cardiovascular-related DH neurons were multimodal (30.2 ± 4.7%) with ischemia sensitivity being one of the modalities (26.1 ± 4.7%). The sympathoexcitation associated with transient LAD occlusion was associated with increased correlations from baseline within DH neurons (2.43 ± 0.61 to 7.30 ± 1.84%, P = 0.04) and between SPN to DH neurons (1.32 ± 0.78 to 7.24 ± 1.84%, P = 0.02). DH to SPN network correlations were reduced during great vessel occlusion. In conclusion, increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.NEW & NOTEWORTHY In an in vivo pig model, we demonstrate using novel high-resolution neural electrode arrays that increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.
Collapse
Affiliation(s)
- Erica A Dale
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jasmine Kipke
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yukiko Kubo
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Peter A Castro
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Medicine, Cardiac Arrhythmia Center and Cardiac Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
21
|
Ardell JL, Foreman RD, Armour JA, Shivkumar K. Cardiac sympathectomy and spinal cord stimulation attenuate reflex-mediated norepinephrine release during ischemia preventing ventricular fibrillation. JCI Insight 2019; 4:131648. [PMID: 31671074 DOI: 10.1172/jci.insight.131648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to define the mechanism by which cardiac neuraxial decentralization or spinal cord stimulation (SCS) reduces ischemia-induced ventricular fibrillation (VF). Direct measurements of norepinephrine (NE) levels in the left ventricular interstitial fluid (ISF) by microdialysis, in response to transient (15-minute) coronary artery occlusion (CAO), were performed in anesthetized canines. Responses were studied in animals with intact neuraxes and were compared with those in which the intrathoracic component of the cardiac neuraxes (stellate ganglia) or the intrinsic cardiac neuronal (ICN) system was surgically delinked from the central nervous system and those with intact neuraxes with preemptive SCS (T1-T3). With intact neuraxes, animals with exaggerated NE release due to CAO were at increased risk for VF. During CAO, there was a 152% increase in NE when the neuraxes were intact compared with 114% following stellate decentralization and 16% following ICN decentralization. During SCS, CAO NE levels increased by 59%. Risk for CAO-induced VF was 38% in controls, 8% following decentralization, and 11% following SCS. These data indicate that ischemia-related afferent neuronal transmission differentially engages central and intrathoracic sympathetic reflexes and amplifies sympathoexcitation. Differences in regional ventricular NE release are associated with increased risk for VF. Surgical decentralization or SCS reduced NE release and VF.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and.,Molecular Cellular and Integrative Physiology, UCLA, Los Angeles, California, USA.,Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Robert D Foreman
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and.,Molecular Cellular and Integrative Physiology, UCLA, Los Angeles, California, USA.,Neuroscience Interdepartmental Programs, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Salavatian S, Ardell SM, Hammer M, Gibbons D, Armour JA, Ardell JL. Thoracic spinal cord neuromodulation obtunds dorsal root ganglion afferent neuronal transduction of the ischemic ventricle. Am J Physiol Heart Circ Physiol 2019; 317:H1134-H1141. [PMID: 31538809 DOI: 10.1152/ajpheart.00257.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.
Collapse
Affiliation(s)
- Siamak Salavatian
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Sarah M Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Mathew Hammer
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - David Gibbons
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - J Andrew Armour
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| |
Collapse
|
23
|
Meng L, Tseng CH, Shivkumar K, Ajijola O. Efficacy of Stellate Ganglion Blockade in Managing Electrical Storm: A Systematic Review. JACC Clin Electrophysiol 2019; 3:942-949. [PMID: 29270467 DOI: 10.1016/j.jacep.2017.06.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The efficacy of percutaneous stellate ganglion block (SGB) for managing electrical storm (ES) is not well understood. OBJECTIVE To characterize the efficacy of SGB as a treatment for ES. METHODS We conducted literature searches using PubMed/Medline and Google Scholar, for mixed combinations of terms including "stellate ganglion block", *ganglion block (ade)", "sympathetic block (ade)" and "arrhythmia", "ventricular arrhythmia (VA)" or "tachycardia" (VT), "ventricular fibrillation" (VF), "electrical storm". Inclusion criteria were presentation with guideline-defined ES and treatment with SGB. Exclusion criteria: presentation with any supraventricular arrhythmia, VA without ES, or surgical sympathectomy. Studies lacking basic demographic data, arrhythmia description, and outcomes were excluded. RESULTS Of 3,374 publications reviewed, 38 patients from 23 studies met study criteria (52 ± 19.1 years, 11 F, 17 with ischemic cardiomyopathy). Anti-arrhythmics were used in all patients. Mean Left ventricular ejection fraction was 31 ± 10%. ES was triggered by acute myocardial infarction in 15 patients and QT prolongation in 7 patients. The most common local anesthetic used for SGB was bupivacaine (0.25-0.5%). SGB resulted in a significant decrease in VA burden (12.4±8.8 vs. 1.04±2.12 episodes/day, p< 0.001) and number of external and ICD shocks (10.0±9.1 vs. 0.05±0.22 shocks/day, p< 0.01). Following SGB, 80.6% of patients survived to discharge. CONCLUSION SGB is an effective acute treatment for ES. However, larger prospective randomized studies are needed to better understand the role of SGB in ES and other VAs.
Collapse
Affiliation(s)
- Lingjin Meng
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA
| | - Chi-Hong Tseng
- Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, CA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA
| |
Collapse
|
24
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
25
|
The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna) 2019; 126:265-278. [PMID: 30767081 PMCID: PMC6449302 DOI: 10.1007/s00702-019-01973-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular (CV) diseases and mood disorders are common public health problems worldwide. Their connections are widely studied, and the role of neurotrophins (NTs) is already supposed in both conditions. However, data in the literature of clinical aspects are sometimes controversial and no reviews are available describing possible associations between CV risk and mood disorders based on NTs. The mostly studied NT is brain-derived neurotrophic factor (BDNF). Decreased level of BDNF is observed in depression and its connection to hypertension has also been demonstrated with affecting the arterial baroreceptors, renin–angiotensin system and endothelial nitric oxide synthase. BDNF was also found to be the predictor of CV outcome in different patient populations. Other types of human NT-s, such as nerve growth factor, neurotrophin 3 and neurotrophin 4 also seem to have both psychopathological and CV connections. Our aim was to overview the present knowledge in this area, demonstrating a new aspect of the associations between mood disorders and CV diseases through the mediation of NTs. These findings might enlighten new psychosomatic connections and suggest new therapeutic targets that are beneficial both in respect of mood disorders and CV pathology.
Collapse
|
26
|
Balasubramanian P, Hall D, Subramanian M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. GeroScience 2018; 41:13-24. [PMID: 30519806 DOI: 10.1007/s11357-018-0048-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic sympathetic nervous system overactivity is a hallmark of aging and obesity and contributes to the development of cardiovascular diseases including hypertension and heart failure. The cause of this chronic sympathoexcitation in aging and obesity is multifactorial and centrally mediated. In this mini-review, we have provided an overview of the key and emerging central mechanisms contributing to the pathogenesis of sympathoexcitation in obesity and healthy aging, specifically focusing on hypertension. A clear understanding of these mechanisms will pave way for targeting the sympathetic nervous system for the treatment of cardiovascular diseases in obesity and aging.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Delton Hall
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
27
|
Shivkumar K, Ardell JL. Cardiac autonomic control in health and disease. J Physiol 2018; 594:3851-2. [PMID: 27417670 DOI: 10.1113/jp272580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| |
Collapse
|
28
|
Ueland T, Gullestad L, Kou L, Aukrust P, Anand IS, Broughton MN, McMurray JJ, van Veldhuisen DJ, Warren DJ, Bolstad N. Pro-gastrin-releasing peptide and outcome in patients with heart failure and anaemia: results from the RED-HF study. ESC Heart Fail 2018; 5:1052-1059. [PMID: 30145817 PMCID: PMC6300802 DOI: 10.1002/ehf2.12312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/08/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Aims Neuroendocrine activation is associated with poor outcome in heart failure (HF). The neuropeptide gastrin‐releasing peptide (GRP), derived from the precursor proGRP1‐125 (proGRP), has recently been implicated in inflammation and wound repair. We investigated the predictive value of proGRP on clinical outcomes in HF patients with reduced ejection fraction. Methods and results The association between plasma proGRP (time‐resolved immunofluorometric assay) and the primary endpoint of death from any cause or first hospitalization for worsening of HF was evaluated using multivariable Cox proportional hazard models in 1541 patients with systolic HF and mild to moderate anaemia, enrolled in the Reduction of Events by Darbepoetin alfa in Heart Failure (RED‐HF) trial. Median proGRP levels in the RED‐HF cohort were markedly increased [95 ng/L (25th, 75th percentile, 69–129 ng/L)] with 64% patients above the 80 ng/L reference limit. Baseline proGRP correlated with estimated glomerular filtration rate (r = 0.52), N terminal pro brain natriuretic peptide (r = 0.33), troponin T (r = 0.34), and haemoglobin (r = 0.16) (all P < 0.001). The incidence outcome increased with increasing tertiles of baseline proGRP (primary endpoint third tertile vs. the lowest tertile; hazard ratio 1.91; 95% confidence interval 1.60–2.28, P < 0.001). However, these associations were markedly attenuated and non‐significant in adjusted models. No interaction between baseline proGRP and the effect of darbepoetin alfa treatment was detected. Moreover, no significant association between changes in proGRP during 6 month follow‐up and outcome was observed. Conclusions Pro‐gastrin‐releasing peptide is increased in patients with HF with reduced ejection fraction and anaemia, in particular in patients with poor renal function. However, proGRP adds little as a prognostic marker on top of conventional HF risk factors.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lei Kou
- Cleveland Clinic, Cleveland, OH, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Inderjit S Anand
- VA Medical Center, University of Minnesota, Minneapolis, MN, USA
| | | | - John J McMurray
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Dirk J van Veldhuisen
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David J Warren
- Department of Medical Biochemistry, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
29
|
Derda AA, Woo CC, Wongsurawat T, Richards M, Lee CN, Kofidis T, Kuznetsov VA, Sorokin VA. Gene expression profile analysis of aortic vascular smooth muscle cells reveals upregulation of cadherin genes in myocardial infarction patients. Physiol Genomics 2018; 50:648-657. [PMID: 29775430 DOI: 10.1152/physiolgenomics.00042.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myocardial infarction (MI) induced by acute coronary arterial occlusion is usually secondary to atherosclerotic plaque rupture. Dysregulated response of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques may promote plaque rupture. Cadherins (CDHs) form adherens junctions and are known stabilizers of atherosclerotic plaques. To date, the expression patterns of cadherin have not been well investigated in MI aortic VSMCs. We aimed to investigate the expression of cadherin genes in the aortic wall of patients with and without MI. Laser capture microdissected VSMCs were obtained from aortic tissue samples of patients undergoing coronary artery bypass graft surgery. Integrative bioinformatic analysis of the microarray profiles of the VSMCs revealed that MI is discriminated at the whole transcriptome level by hundreds of differentially expressed genes, including genes involved in cell adhesion, of which the cadherin superfamily genes were among the top structural category. Eleven significantly deregulated candidates of the cadherin superfamily were chosen and formed a new classifier that collectively discriminated MI vs. non-MI with ~95% accuracy. Significance validation was performed with an independent cohort by quantitative RT-quantitative PCR, confirming overexpression of CDH2, CDH12, PCDH17, and PCDH18 in MI VSMCs. The dysregulation of these cadherin superfamily genes might be related to an MI-induced remote effect on aortic wall VSMCs and to imbalances in signaling pathways and myocardial repair mechanisms. Although pathophysiological significance of our findings requires functional studies, mRNA upregulation of the identified cadherin superfamily members in VSMCs might be associated with the progression of atherosclerosis and angiogenesis activation in MI.
Collapse
Affiliation(s)
- Anselm A Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School , Hannover , Germany
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System , Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System , Singapore
| | - Vladimir A Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Urology, SUNY Upstate Medical University , Syracuse, New York
| | - Vitaly A Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System , Singapore
| |
Collapse
|
30
|
Yoshie K, Rajendran PS, Massoud L, Kwon O, Tadimeti V, Salavatian S, Ardell JL, Shivkumar K, Ajijola OA. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am J Physiol Heart Circ Physiol 2018; 314:H954-H966. [PMID: 29351450 DOI: 10.1152/ajpheart.00593.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Afferent fibers expressing the vanilloid receptor 1 (VR1) channel have been implicated in cardiac nociception; however, their role in modulating reflex responses to cardiac stress is not well understood. We evaluated this role in Yorkshire pigs by percutaneous epicardial application of resiniferatoxin (RTX), a toxic activator of the VR1 channel, resulting in the depletion of cardiac VR1-expressing afferents. Hemodynamics, epicardial activation recovery intervals, and in vivo activity of stellate ganglion neurons (SGNs) were recorded in control and RTX-treated animals. Stressors included inferior vena cava or aortic occlusion and rapid right ventricular pacing (RVP) to induce dyssynchrony and ischemia. In the epicardium, stellate ganglia, and dorsal root ganglia, immunostaining for the VR1 channel, calcitonin gene-related peptide, and substance P was significantly diminished by RTX. RTX-treated animals exhibited higher basal systolic blood pressures and contractility than control animals. Reflex responses to epicardial bradykinin and capsaicin were mitigated by RTX. Cardiovascular reflex function, as assessed by inferior vena cava or aortic occlusion, was similar in RTX-treated versus control animals. RTX-treated animals exhibited resistance to hemodynamic collapse induced by RVP. Activation recovery interval shortening during RVP, a marker of cardiac sympathetic outflow, was greater in RTX-treated animals and exhibited significant delay in returning to baseline values after cessation of RVP. The basal firing rate of SGNs and firing rates in response to RVP were also greater in RTX-treated animals, as was the SGN network activity in response to cardiac stressors. These data suggest that elimination of cardiac nociceptive afferents reorganizes the central-peripheral nervous system interaction to enhance cardiac sympathetic outflow. NEW & NOTEWORTHY Our work demonstrates a role for cardiac vanilloid receptor-1-expressing afferents in reflex processing of cardiovascular stress. Current understanding suggests that elimination of vanilloid receptor-1 afferents would decrease reflex cardiac sympathetic outflow. We found, paradoxically, that sympathetic outflow to the heart is instead enhanced at baseline and during cardiac stress.
Collapse
Affiliation(s)
- Koji Yoshie
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Pradeep S Rajendran
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Louis Massoud
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - OhJin Kwon
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Vasudev Tadimeti
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Siamak Salavatian
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Olujimi A Ajijola
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| |
Collapse
|
31
|
Autonomic Control of the Heart. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Abstract
Heart failure (HF) is associated with significant morbidity and mortality. The disease is characterised by autonomic imbalance with increased sympathetic activity and withdrawal of parasympathetic activity. Despite the use of medical therapies that target, in part, the neurohormonal axis, rates of HF progression, morbidity and mortality remain high. Emerging therapies centred on neuromodulation of autonomic control of the heart provide an alternative device-based approach to restoring sympathovagal balance. Preclinical studies have proven favourable, while clinical trials have had mixed results. This article highlights the importance of understanding structural/functional organisation of the cardiac nervous system as mechanistic-based neuromodulation therapies evolve.
Collapse
Affiliation(s)
- Peter Hanna
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Jeffrey L Ardell
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| |
Collapse
|
33
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
|
35
|
Luo Q, Jin Q, Zhang N, Huang S, Han Y, Lin C, Ling T, Chen K, Pan W, Wu L. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure. Exp Physiol 2017; 103:19-30. [PMID: 29094471 DOI: 10.1113/ep086472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Qingzhi Luo
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ning Zhang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Shangwei Huang
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanxin Han
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Changjian Lin
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Tianyou Ling
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Kang Chen
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wenqi Pan
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Liqun Wu
- Department of Cardiology, Shanghai Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
36
|
Becker BK, Speed JS, Powell M, Pollock DM. Activation of neuronal endothelin B receptors mediates pressor response through alpha-1 adrenergic receptors. Physiol Rep 2017; 5:5/4/e13077. [PMID: 28219980 PMCID: PMC5328762 DOI: 10.14814/phy2.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
Abnormalities in activity of the endothelin (ET) system have been widely reported in a number of cardiovascular disease states such as hypertension and heart failure. Although the vascular responses to ET are well established, the interaction between ET and other important modulators of blood pressure, such as the sympathetic nervous system, are less understood. Previous reports implicate ET signaling through ET type B (ETB) receptors in increasing neuronal activity. Therefore, we hypothesized that activation of ETB receptors on sympathetic nerves would increase blood pressure through an adrenergic‐mediated mechanism. Thus, we used anesthetized ETB‐deficient rats, which only express functional ETB receptors on adrenergic neurons, and genetic controls, which express functional ETB receptors in vascular tissue and kidney epithelium. We determined the pressor response to the selective ETB receptor agonist sarafotoxin c (S6c). Separate groups of rats were treated with the α1‐adrenergic receptor antagonist prazosin or the β‐adrenergic receptor antagonist propranolol to elucidate the role of adrenergic signaling in mediating the blood pressure response. We observed a dose‐dependent pressor response to S6c in ETB‐deficient rats that was reversed by prazosin treatment and augmented by propranolol. In genetic control rats, the effects of S6c on sympathetic neurons were mostly masked by the direct activity of ETB receptor activation on the vasculature. Heart rate was mostly unaffected by S6c across all groups and treatments. These results suggest that ETB activation on sympathetic neurons causes an increase in blood pressure mediated through α1‐adrenergic receptor signaling.
Collapse
Affiliation(s)
- Bryan K Becker
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mackenzie Powell
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Division of Nephrology, Department of Medicine, Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
37
|
Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, KenKnight BH, Armour JA. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J Physiol 2017; 595:6887-6903. [PMID: 28862330 PMCID: PMC5685838 DOI: 10.1113/jp274678] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. ABSTRACT Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as 'neural fulcrum') during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.
Collapse
Affiliation(s)
- Jeffrey L. Ardell
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| | - Heath Nier
- Biomedical SciencesEast Tennessee State UniversityJohnson CityTNUSA
| | - Matthew Hammer
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| | | | | | - Eric Beaumont
- Biomedical SciencesEast Tennessee State UniversityJohnson CityTNUSA
| | | | - J. Andrew Armour
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| |
Collapse
|
38
|
Hypothalamic dysfunction in heart failure: pathogenetic mechanisms and therapeutic implications. Heart Fail Rev 2017; 23:55-61. [DOI: 10.1007/s10741-017-9659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Salavatian S, Beaumont E, Gibbons D, Hammer M, Hoover DB, Armour JA, Ardell JL. Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia. Auton Neurosci 2017; 208:57-65. [PMID: 28919363 DOI: 10.1016/j.autneu.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autonomic regulation therapy involving either vagus nerve stimulation (VNS) or spinal cord stimulation (SCS) represents emerging bioelectronic therapies for heart disease. The objective of this study was to determine if VNS and/or SCS modulate primary cardiac afferent sensory transduction of the ischemic myocardium. METHODS Using extracellular recordings in 19 anesthetized canines, of 88 neurons evaluated, 36 ventricular-related nodose ganglia sensory neurons were identified by their functional activity responses to epicardial touch, chemical activation of their sensory neurites (epicardial veratridine) and great vessel (descending aorta or inferior vena cava) occlusion. Neural responses to 1min left anterior descending (LAD) coronary artery occlusion (CAO) were then evaluated. These interventions were then studied following either: i) SCS [T1-T3 spinal level; 50Hz, 90% motor threshold] or ii) cervical VNS [15-20Hz; 1.2× threshold]. RESULTS LAD occlusion activated 66% of identified nodose ventricular sensory neurons (0.33±0.08-0.79±0.20Hz; baseline to CAO; p<0.002). Basal activity of cardiac-related nodose neurons was differentially reduced by VNS (0.31±0.11 to 0.05±0.02Hz; p<0.05) as compared to SCS (0.36±0.12 to 0.28±0.14, p=0.59), with their activity response to transient LAD CAO being suppressed by either SCS (0.85±0.39-0.11±0.04Hz; p<0.03) or VNS (0.75±0.27-0.12±0.05Hz; p<0.04). VNS did not alter evoked neural responses of cardiac-related nodose neurons to great vessel occlusion. CONCLUSIONS Both VNS and SCS obtund ventricular ischemia induced enhancement of nodose afferent neuronal inputs to the medulla.
Collapse
Affiliation(s)
- Siamak Salavatian
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - David Gibbons
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Hammer
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States
| | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - J Andrew Armour
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States.
| |
Collapse
|
40
|
Kember G, Ardell JL, Shivkumar K, Armour JA. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control. PLoS One 2017; 12:e0180194. [PMID: 28692680 PMCID: PMC5503241 DOI: 10.1371/journal.pone.0180194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Guy Kember
- Dept. of Engineering Mathematics and Internetworking/Faculty of Engineering/Dalhousie University, Halifax, NS, Canada
- * E-mail:
| | - Jeffrey L. Ardell
- David Geffen School of Medicine/Cardiac Arrhythmia Center, University of California – Los Angeles (UCLA), Los Angeles, CA, United States of America
| | - Kalyanam Shivkumar
- David Geffen School of Medicine/Cardiac Arrhythmia Center, University of California – Los Angeles (UCLA), Los Angeles, CA, United States of America
| | - J. Andrew Armour
- David Geffen School of Medicine/Cardiac Arrhythmia Center, University of California – Los Angeles (UCLA), Los Angeles, CA, United States of America
| |
Collapse
|
41
|
Kingma JG, Simard D, Rouleau JR. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. World J Cardiol 2017; 9:508-520. [PMID: 28706586 PMCID: PMC5491468 DOI: 10.4330/wjc.v9.i6.508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies.
Collapse
|
42
|
Becker BK, Wang H, Zucker IH. Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats. Auton Neurosci 2017; 205:77-86. [PMID: 28549782 DOI: 10.1016/j.autneu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Increased sympathetic nerve activity and the activation of the central renin-angiotensin system are commonly associated with cardiovascular disease states such as hypertension and heart failure, yet the precise mechanisms contributing to the long-term maintenance of this sympatho-excitation are incompletely understood. Due to the established physiological role of neurotrophins contributing toward neuroplasticity and neuronal excitability along with recent evidence linking the renin-angiotensin system and brain-derived neurotrophic factor (BDNF) along with its receptor (TrkB), it is likely the two systems interact to promote sympatho-excitation during cardiovascular disease. However, this interaction has not yet been fully demonstrated, in vivo. Thus, we hypothesized that central angiotensin II (Ang II) treatment will evoke a sympatho-excitatory state mediated through the actions of BDNF/TrkB. We infused Ang II (20ng/min) into the right lateral ventricle of male Sprague-Dawley rats for twelve days with or without the TrkB receptor antagonist, ANA-12 (50ng/h). We found that ICV infusion of Ang II increased mean arterial pressure (+40.4mmHg), increased renal sympathetic nerve activity (+19.4% max activity), and induced baroreflex dysfunction relative to vehicle. Co-infusion of ANA-12 attenuated the increase in blood pressure (-20.6mmHg) and prevented the increase in renal sympathetic nerve activity (-22.2% max) and baroreflex dysfunction relative to Ang II alone. Ang II increased thirst and decreased food consumption, and Ang II+ANA-12 augmented the thirst response while attenuating the decrease in food consumption. We conclude that TrkB signaling is a mediator of the long-term blood pressure and sympathetic nerve activity responses to central Ang II activity. These findings demonstrate the involvement of neurotrophins such as BDNF in promoting Ang II-induced autonomic dysfunction and further implicate TrkB signaling in modulating presympathetic autonomic neurons during cardiovascular disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irving H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA..
| |
Collapse
|
43
|
Tahsili-Fahadan P, Geocadin RG. Heart-Brain Axis: Effects of Neurologic Injury on Cardiovascular Function. Circ Res 2017; 120:559-572. [PMID: 28154104 DOI: 10.1161/circresaha.116.308446] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
A complex interaction exists between the nervous and cardiovascular systems. A large network of cortical and subcortical brain regions control cardiovascular function via the sympathetic and parasympathetic outflow. A dysfunction in one system may lead to changes in the function of the other. The effects of cardiovascular disease on the nervous system have been widely studied; however, our understanding of the effects of neurological disorders on the cardiovascular system has only expanded in the past 2 decades. Various pathologies of the nervous system can lead to a wide range of alterations in function and structure of the cardiovascular system ranging from transient and benign electrographic changes to myocardial injury, cardiomyopathy, and even cardiac death. In this article, we first review the anatomy and physiology of the central and autonomic nervous systems in regard to control of the cardiovascular function. The effects of neurological injury on cardiac function and structure will be summarized, and finally, we review neurological disorders commonly associated with cardiovascular manifestations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Romergryko G Geocadin
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
44
|
Affiliation(s)
- Prashant D Bhave
- Divison of Cardiology, Wake Forest University Health Sciences Center, Winston-Salem, NC
| |
Collapse
|
45
|
Buckley U, Chui RW, Rajendran PS, Vrabec T, Shivkumar K, Ardell JL. Bioelectronic neuromodulation of the paravertebral cardiac efferent sympathetic outflow and its effect on ventricular electrical indices. Heart Rhythm 2017; 14:1063-1070. [PMID: 28219848 DOI: 10.1016/j.hrthm.2017.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromodulation of the paravertebral ganglia by using symmetric voltage controlled kilohertz frequency alternating current (KHFAC) has the potential to be a reversible alternative to surgical intervention in patients with refractory ventricular arrhythmias. KHFAC creates scalable focal inhibition of action potential conduction. OBJECTIVE The purpose of this article was to evaluate the efficacy of KHFAC when applied to the T1-T2 paravertebral chain to mitigate sympathetic outflow to the heart. METHODS In anesthetized, vagotomized, porcine subjects, the heart was exposed via a midline sternotomy along with paravertebral chain ganglia. The T3 paravertebral ganglion was electrically stimulated, and activation recovery intervals (ARIs) were obtained from a 56-electrode sock placed over both ventricles. A bipolar Ag electrode was wrapped around the paravertebral chain between T1 and T2 and connected to a symmetric voltage controlled KHFAC generator. A comparison of cardiac indices during T3 stimulation conditions, with and without KHFAC, provided a measure of block efficacy. RESULTS Right-sided T3 stimulation (at 4 Hz) was titrated to produce reproducible ARI changes from baseline (52 ± 30 ms). KHFAC resulted in a 67% mitigation of T3 electrical stimulation effects on ARI (18.5 ± 22 ms; P < .005). T3 stimulation repeated after KHFAC produced equivalent ARI changes as control. KHFAC evoked a transient functional sympathoexcitation at onset that was inversely related to frequency and directly related to intensity. The optimum block threshold was 15 kHz and 15 V. CONCLUSION KHFAC applied to nexus (convergence) points of the cardiac nervous system produces a graded and reversible block of underlying axons. As such, KHFAC has the therapeutic potential for on-demand and reversible mitigation of sympathoexcitation.
Collapse
Affiliation(s)
- Una Buckley
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California
| | - Ray W Chui
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California; Molecular, Cellular, & Integrative Physiology Program, UCLA, Los Angeles, California
| | - Pradeep S Rajendran
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California; Molecular, Cellular, & Integrative Physiology Program, UCLA, Los Angeles, California
| | - Tina Vrabec
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kalyanam Shivkumar
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California; Molecular, Cellular, & Integrative Physiology Program, UCLA, Los Angeles, California
| | - Jeffrey L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California; Molecular, Cellular, & Integrative Physiology Program, UCLA, Los Angeles, California.
| |
Collapse
|
46
|
Abstract
Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF.
Collapse
Affiliation(s)
- Matthew E Harinstein
- Heart and Vascular Institute, University of Pittsburgh Medical Center, A-429 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Prem Soman
- Heart and Vascular Institute, University of Pittsburgh Medical Center, A-429 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
47
|
Becker BK, Tian C, Zucker IH, Wang HJ. Influence of brain-derived neurotrophic factor-tyrosine receptor kinase B signalling in the nucleus tractus solitarius on baroreflex sensitivity in rats with chronic heart failure. J Physiol 2016; 594:5711-25. [PMID: 27151332 PMCID: PMC5043030 DOI: 10.1113/jp272318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Impairment of baroreflex function is associated with the progression of chronic heart failure (CHF) and a poor prognosis. The baroreflex desensitization in CHF is at least partly the result of central neuronal network dysfunction. The dorsal medial nucleus tractus solitarius (dmNTS) has long been appreciated as a primary site of baroreceptor afferent termination in the central nervous system. However, the influence of neurotransmitters and neuromodulators in the dmNTS on baroreflex function both in normal and CHF states is not fully understood. The present study provides the first evidence showing a tonic sympatho-inhibitory role for brain-derived neurotrophic factor (BDNF) neurotransmission in the dmNTS. Most importantly, BDNF- tyrosine receptor kinase B (TrkB) signalling in the dmNTS is integral for normal baroreflex function as indicated by the blunting of baroreflex sensitivity (BRS) following the antagonization of TrkB, which inhibited baroreflex gain and range. Furthermore, we found that the tonic sympatho-inhibition of BDNF was withdrawn in the CHF state, thus contributing to the increased sympathetic tone associated with CHF. Consistent with this finding, BDNF/TrkB antagonism had little effect on reducing BRS in CHF animals, which is corroborated by the observation of decreased TrkB expression in the dmNTS during CHF. Taken together, these results implicate a reduction in BDNF-TrkB signalling in the dmNTS during CHF that contributes to sympatho-excitation and baroreflex desensitization. The observation that the BDNF/TrkB pathway is impaired in the dmNTS during CHF provides a novel mechanism for understanding the central alterations that contribute to baroreflex desensitization during CHF. ABSTRACT Chronic heart failure (CHF) results in blunting of arterial baroreflex sensitivity (BRS), which arises from alterations to both peripheral baroreceptors and central autonomic nuclei such as the nucleus tractus solitarius (NTS). Although glutamate is known to be an important neurotransmitter released from baroreceptor afferent synapses in the NTS, the influence of other neurotransmitters and neuromodulators remains unclear. Alterations to NTS signalling in CHF remain particularly undefined. The present study aimed to evaluate the role of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) receptor signalling in the NTS on baroreflex control both in healthy and CHF rats. To this end, we microinjected BDNF or the highly selective TrkB receptor antagonist [N2-2-2-oxoazepan-3-yl amino] carbonyl phenyl benzo (b)thiophene-2-carboxamide (ANA-12) into the dorsal medial NTS (dmNTS) of male Sprague-Dawley rats with coronary artery ligation-induced CHF and sham operated controls and recorded blood pressure and renal sympathetic nerve activity responses. We subsequently measured BRS before and after bilateral dmNTS microinjections of ANA-12. In sham rats, BDNF evoked a dose-dependent depressor and sympatho-inhibitory effect and ANA-12 produced the opposite response. Both of these responses were significantly blunted in CHF rats. Furthermore, bilateral microinjection of ANA-12 into the dmNTS greatly diminished baroreflex sensitivity in sham rats, whereas it had less of an effect in CHF rats. We observed decreased levels of TrkB protein and mRNA in the dmNTS of CHF rats. These data indicate that endogenous BDNF signalling in the NTS is integral for the maintenance of BRS and that BDNF/TrkB signalling is impaired in the NTS in the CHF state.
Collapse
Affiliation(s)
- Bryan K Becker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Nephrology/Cardio-Renal Physiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
48
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
49
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
50
|
Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, Shivkumar K, Ardell JL. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol 2016; 311:H1311-H1320. [PMID: 27591222 DOI: 10.1152/ajpheart.00443.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory.
Collapse
Affiliation(s)
- Siamak Salavatian
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada.,Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Jean-Philippe Longpré
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - J Andrew Armour
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Alain Vinet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Vincent Jacquemet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Kalyanam Shivkumar
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and .,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|