1
|
Zheng X, Li H, Gao S, Müllen K, Zhang J, Ji C, Yin M. "One-Stone-Three-Birds" H 2S-Photothermal Therapy for Enhanced Thrombolysis and Vascular Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403284. [PMID: 39037367 DOI: 10.1002/smll.202403284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Thrombus causes a serious condition characterized by the formation of blood clots in blood vessels or heart, potentially leading to life-threatening emergencies. Photothermal therapy (PTT) serves as a treatment for thrombosis that provides noninvasive thrombus dissolution and fewer bleeding side effects. However, the high temperatures generated by PTT can exacerbate vascular inflammation and promote thrombus recurrence. In this study, a photothermal hydrogen sulfide (H2S) nanogenerator (PSA@ADT-OH) is constructed using a perylene-cored photothermal agent (PSA) coassembled with a H2S donor ADT-OH. The system PSA@ADT-OH demonstrates outstanding targeting and accumulation efficiency against blood flow shear forces. It also provides sustained H2S release at thrombus sites, contributing to antiplatelet aggregation, reactive oxygen species clearance, and vascular healing. This approach opens up new possibilities for advanced thrombus treatment.
Collapse
Affiliation(s)
- Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hanyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuwei Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Jin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
3
|
Yang YW, Deng NH, Tian KJ, Liu LS, Wang Z, Wei DH, Liu HT, Jiang ZS. Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities. Front Cardiovasc Med 2022; 9:909178. [PMID: 36035922 PMCID: PMC9412017 DOI: 10.3389/fcvm.2022.909178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S), a gas transmitter found in eukaryotic organisms, plays an essential role in several physiological processes. H2S is one of the three primary biological gas transmission signaling mediators, along with nitric oxide and carbon monoxide. Several animal and in vitro experiments have indicated that H2S can prevent coronary endothelial mesenchymal transition, reduce the expression of endothelial cell adhesion molecules, and stabilize intravascular plaques, suggesting its potential role in the treatment of atherosclerosis (AS). H2S donors are compounds that can release H2S under certain circumstances. Development of highly targeted H2S donors is a key imperative as these can allow for in-depth evaluation of the anti-atherosclerotic effects of exogenous H2S. More importantly, identification of an optimal H2S donor is critical for the creation of H2S anti-atherosclerotic prodrugs. In this review, we discuss a wide range of H2S donors with anti-AS potential along with their respective transport pathways and design-related limitations. We also discuss the utilization of nano-synthetic technologies to manufacture H2S donors. This innovative and effective design example sheds new light on the production of highly targeted H2S donors.
Collapse
Affiliation(s)
- Ye-Wei Yang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian-Hua Deng
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Kai-Jiang Tian
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lu-Shan Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Dang-Heng Wei
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Hui-Ting Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- *Correspondence: Zhi-Sheng Jiang
| |
Collapse
|
4
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
5
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
6
|
Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, Căruntu C, Voiculescu SE, Gologan Ş, Onisâi M, Iordan I, Zăgrean L. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med 2022; 11:jcm11030666. [PMID: 35160118 PMCID: PMC8837186 DOI: 10.3390/jcm11030666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Taurine is a semi-essential, the most abundant free amino acid in the human body, with a six times higher concentration in platelets than any other amino acid. It is highly beneficial for the organism, has many therapeutic actions, and is currently approved for heart failure treatment in Japan. Taurine has been repeatedly reported to elicit an inhibitory action on platelet activation and aggregation, sustained by in vivo, ex vivo, and in vitro animal and human studies. Taurine showed effectiveness in several pathologies involving thrombotic diathesis, such as diabetes, traumatic brain injury, acute ischemic stroke, and others. As human prospective studies on thrombosis outcome are very difficult to carry out, there is an obvious need to validate existing findings, and bring new compelling data about the mechanisms underlying taurine and derivatives antiplatelet action and their antithrombotic potential. Chloramine derivatives of taurine proved a higher stability and pronounced selectivity for platelet receptors, raising the assumption that they could represent future potential antithrombotic agents. Considering that taurine and its analogues display permissible side effects, along with the need of finding new, alternative antithrombotic drugs with minimal side effects and long-term action, the potential clinical relevance of this fascinating nutrient and its derivatives requires further consideration.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Radu Mirica
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Cristina-Mihaela Anghel-Timaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Alina Mititelu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Bogdan Ovidiu Popescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Constantin Căruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Şerban Gologan
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Minodora Onisâi
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Iuliana Iordan
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Department of Medical Semiology and Nephrology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zăgrean
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| |
Collapse
|
7
|
Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H 2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021; 9:biomedicines9091107. [PMID: 34572292 PMCID: PMC8472626 DOI: 10.3390/biomedicines9091107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelium controls vascular homeostasis through a delicate balance between secretion of vasodilators and vasoconstrictors. The loss of physiological homeostasis leads to endothelial dysfunction, for which inflammatory events represent critical determinants. In this context, therapeutic approaches targeting inflammation-related vascular injury may help for the treatment of cardiovascular disease and a multitude of other conditions related to endothelium dysfunction, including COVID-19. In recent years, within the complexity of the inflammatory scenario related to loss of vessel integrity, hydrogen sulfide (H2S) has aroused great interest due to its importance in different signaling pathways at the endothelial level. In this review, we discuss the effects of H2S, a molecule which has been reported to demonstrate anti-inflammatory activity, in addition to many other biological functions related to endothelium and sulfur-drugs as new possible therapeutic options in diseases involving vascular pathobiology, such as in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| |
Collapse
|
8
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
9
|
Zhang H, Hao LZ, Pan JA, Gao Q, Zhang JF, Kankala RK, Wang SB, Chen AZ, Zhang HL. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J Control Release 2021; 329:286-298. [DOI: 10.1016/j.jconrel.2020.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/25/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
|
10
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
11
|
Zhao AS, Zou D, Wang HH, Han X, Yang P, Huang N. Hydrogen sulphide-releasing aspirin enhances cell capabilities of anti-oxidative lesions and anti-inflammation. Med Gas Res 2020; 9:145-152. [PMID: 31552879 PMCID: PMC6779009 DOI: 10.4103/2045-9912.266990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hydrogen sulphide (H2S) has been considered as a toxic gas for a long time till new researches discovered the endogenous H2S effects on physiological and pathological processes. In virtue of H2S’s effects on cellular redox imbalance and aspirin’s good anticoagulation property, exogenous H2S donors, such as H2S-releasing aspirin (ACS14), have been explored to attenuate side effects of aspirin on gastrointestinal mucosal damage. However, existing researches mainly focus on the antithrombotic effects. Considering H2S role in angiogenesis and vascular-protection progress, we herein focused on if ACS14 further has the ability to attenuate oxidative lesion and inflammation in human umbilical vein endothelial cells (HUVECs) and macrophages. In this study, we synthesized ACS14 by 5-(4-methoxyphenyl)-1,2-dithiole-3-thione and o-acetylsalicylic acid (aspirin), and the obtained compounds showed the ability to release H2S. Our data illustrated that both aspirin and ACS14 had good cytocompatibility, and could support the proliferation of HUVECs. And, ACS14 was found to be able to promote 1.6 folds increase compared to aspirin. H2S released from ACS14 was detected inside cells, wherein H2S fluorescence intensity increased twofold in 5 μM and 10 μM ACS14 groups than 1 μM group. Owing to reactive oxygen species inside cells being obviously decreased in ACS14 group, the apoptosis rate of HUVEC herein was reduced as low as 1.6% from 60% of blank group. Meanwhile, the tumour necrosis factor alpha release in macrophage was also declined by 15% in ACS14 groups than the others. Basically, the ACS14 we obtained had the cyto-protective and anti-inflammatory capabilities. Potential applications for vascular intima repair in atherosclerosis are further expected.
Collapse
Affiliation(s)
- An-Sha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Hao-Hao Wang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xiao Han
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| |
Collapse
|
12
|
Mun J, Kang HM, Jung J, Park C. Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 2019; 42:446-454. [DOI: 10.1007/s12272-019-01135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
|
13
|
Magierowska K, Bakalarz D, Wójcik D, Chmura A, Hubalewska-Mazgaj M, Licholai S, Korbut E, Kwiecien S, Sliwowski Z, Ginter G, Brzozowski T, Magierowski M. Time-dependent course of gastric ulcer healing and molecular markers profile modulated by increased gastric mucosal content of carbon monoxide released from its pharmacological donor. Biochem Pharmacol 2019; 163:71-83. [PMID: 30753813 DOI: 10.1016/j.bcp.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Besides hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) contributes to the maintenance of gastric mucosal integrity. We investigated increased CO bioavailability effects on time-dependent dynamics of gastric ulcer healing mediated by particular growth factors, anti-inflammatory and molecular pathways. EXPERIMENTAL APPROACH Wistar rats with gastric ulcers induced by serosal acetic acid application (day 0) were treated i.g. throughout 3, 6 or 14 days with vehicle or CO-releasing tricarbonyldichlororuthenium (II) dimer (CORM-2, 2.5 mg/kg). Gross and microscopic alterations in gastric ulcer size and gastric blood flow (GBF) at ulcer margin were determined by planimetry, histology and laser flowmetry, respectively. Gastric mRNA/protein expressions of platelet derived growth factors (PDGFA-D), insulin-like growth factor (IGF-1), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGFA) and their receptors, heme oxygenases (HMOX), nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX-2), hypoxia inducible factor (HIF)-1α, anti-inflammatory annexin-1 and transforming growth factor (TGF-β1) were assessed by real-time PCR or Western blot. TGF-β1-3 and IL-10 plasma concentration were measured using Luminex platform. Prostaglandin E2 content at ulcer margin was assessed by ELISA. KEY RESULTS CORM-2 decreased ulcer area and increased GBF after 6 and 14 days of treatment comparing to vehicle. CO donor upregulated HGF, HGFr, VEGFR1, VEGFR2, TGF-β1, annexin-1 and maintained increased IGF-1, PDGFC and EGF expression at various time-intervals of ulcer healing. TGF-β3 and IL-10 plasma concentration were significantly increased after COMR-2 vs. vehicle. CONCLUSIONS CO time-dependently accelerates gastric ulcer healing and raises GBF at ulcer margin by mechanism involving subsequent upregulation of anti-inflammatory, growth promoting and angiogenic factors response, not observed physiologically.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, 9 Westerplatte Street, 31-033 Cracow, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Sabina Licholai
- Department of Molecular Biology and Clinical Genetics, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Cracow, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
14
|
Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B. Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide. Antioxid Redox Signal 2019; 30:184-197. [PMID: 29343087 DOI: 10.1089/ars.2017.7195] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Congkuo Du
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Xianjuan Lin
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Wenjing Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Fengjiao Zheng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Junyan Cai
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jichun Yang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Qinghua Cui
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Chaoshu Tang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jun Cai
- 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Guoheng Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Bin Geng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China .,2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
15
|
Clopidogrel as a donor probe and thioenol derivatives as flexible promoieties for enabling H 2S biomedicine. Nat Commun 2018; 9:3952. [PMID: 30262863 PMCID: PMC6160475 DOI: 10.1038/s41467-018-06373-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide has emerged as a critical endogenous signaling transmitter and a potentially versatile therapeutic agent. The key challenges in this field include the lack of approved hydrogen sulfide-releasing probes for in human exploration and the lack of controllable hydrogen sulfide promoieties that can be flexibly installed for therapeutics development. Here we report the identification of the widely used antithrombotic drug clopidogrel as a clinical hydrogen sulfide donor. Clopidogrel is metabolized in patients to form a circulating metabolite that contains a thioenol substructure, which is found to undergo spontaneous degradation to release hydrogen sulfide. Model studies demonstrate that thioenol derivatives are a class of controllable promoieties that can be conveniently installed on a minimal structure of ketone with an α-hydrogen. These results can provide chemical tools for advancing hydrogen sulfide biomedical research as well as developing hydrogen sulfide-releasing drugs. Hydrogen sulphide (H2S) is a gaseous signalling molecule, which has shown therapeutic value. Here, the authors show that a thioenol metabolite of the antithrombotic drug clopidogrel is an efficient H2S donor and masked thioenols can be linked to existing compounds to develop H2S-releasing agents.
Collapse
|
16
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Grambow E, Augustin VA, Strüder D, Kundt G, Klar E, Vollmar B. The effects of hydrogen sulfide on microvascular circulation in the axial pattern flap ear model in hairless mice. Microvasc Res 2018; 120:74-83. [PMID: 29991448 DOI: 10.1016/j.mvr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Eberhard Grambow
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany.
| | - Vicky A Augustin
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Strüder
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Rostock University Medical Center, Rostock, Germany
| | - Günther Kundt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ernst Klar
- Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
18
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
20
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
21
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
22
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Targeting aspirin resistance with nutraceuticals: a possible strategy for reducing cardiovascular morbidity and mortality. Open Heart 2017; 4:e000642. [PMID: 28912955 PMCID: PMC5589004 DOI: 10.1136/openhrt-2017-000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - James H O'Keefe
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, USA
| | | |
Collapse
|
23
|
Tkacheva NI, Morozov SV, Lomivorotov BB, Grigor’ev IA. Organic Hydrogen Sulfide Donor Compounds with Cardioprotective Properties (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1576-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Grambow E, Leppin C, Leppin K, Kundt G, Klar E, Frank M, Vollmar B. The effects of hydrogen sulfide on platelet-leukocyte aggregation and microvascular thrombolysis. Platelets 2016; 28:509-517. [PMID: 27819526 DOI: 10.1080/09537104.2016.1235693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The volatile transmitter hydrogen sulfide (H2S) is known for its various functions in vascular biology. This study evaluates the effect of the H2S-donor GYY4137 (GYY) on thrombus stability and microvascular thrombolysis. Human whole blood served for all in vitro studies and was analyzed in a resting state, after stimulation with thrombin-receptor activating peptide (TRAP) and after incubation with 10 or 30 mM GYY or its vehicle DMSO following TRAP-activation, respectively. As a marker for thrombus stability, platelet-leukocyte aggregation was assessed using flow cytometry after staining of human whole blood against CD62P and CD45, respectively. Furthermore, morphology and quantity of platelet-leukocyte aggregation were studied by means of scanning electron microscopy (scanning EM). Therefore, platelets were stained for CD62P followed by immuno gold labeling. In vivo, the dorsal skinfold chamber preparation was performed for light/dye induction of thrombi in arterioles and venules using intravital fluorescence microscopy. Thrombolysis was assessed 10 and 22 h after thrombus induction and treatment with the vehicle, GYY, or recombinant tissue plasminogen activator (rtPA). Flow cytometry revealed an increase of CD62P/CD45 positive aggregates after TRAP stimulation of human whole blood, which was significantly reduced by preincubation with 30 mM GYY. Scanning EM additionally showed a reduced platelet-leukocyte aggregation and a decreased leukocyte count within the aggregates after preincubation with GYY compared to TRAP stimulation alone. Further on, morphological signs of platelet activation were found markedly reduced upon treatment with GYY. In mice, both GYY and rtPA significantly accelerated arteriolar and venular thrombolysis compared to the vehicle control. In conclusion, GYY impairs thrombus stability by reducing platelet-leukocyte aggregation and thereby facilitates endogenous thrombolysis.
Collapse
Affiliation(s)
- Eberhard Grambow
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany.,b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Christian Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Katja Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Günther Kundt
- c Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center , Rostock , Germany
| | - Ernst Klar
- b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Marcus Frank
- d Medical Biology and Electron Microscopy Centre, Rostock University Medical Center , Rostock , Germany
| | - Brigitte Vollmar
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
26
|
Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biol 2016; 17 Suppl 1:11. [PMID: 27229925 PMCID: PMC4896245 DOI: 10.1186/s12860-016-0099-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.
Collapse
Affiliation(s)
- Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, München, Germany.
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, München, Germany
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - José L Vega
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
27
|
Abstract
Hydrogen sulfide (H(2)S) is a gasomediator synthesized from L- and D-cysteine in various tissues. It is involved in a number of physiological and pathological processes. H(2)S exhibits antiatherosclerotic, vasodilator, and proangiogenic properties, and protects the kidney and heart from damage following ischemia/reperfusion injury. H(2)S donors may be natural or synthetic, and may be used for the safe treatment of a wide range of diseases. This review article summarizes the current state of knowledge of the therapeutic function of H(2)S.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
28
|
|
29
|
Hydrogen Sulfide Treatment Mitigates Renal Allograft Ischemia-Reperfusion Injury during Cold Storage and Improves Early Transplant Kidney Function and Survival Following Allogeneic Renal Transplantation. J Urol 2015; 194:1806-15. [DOI: 10.1016/j.juro.2015.07.096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/30/2023]
|
30
|
Gasomediators (·NO, CO, and H2S) and their role in hemostasis and thrombosis. Clin Chim Acta 2015; 445:115-21. [DOI: 10.1016/j.cca.2015.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
|