1
|
Allison RL, Welby E, Ehlers V, Burand A, Isaeva O, Nieves Torres D, Highland J, Brandow AM, Stucky CL, Ebert AD. Sickle cell disease iPSC-derived sensory neurons exhibit increased excitability and sensitization to patient plasma. Blood 2024; 143:2037-2052. [PMID: 38427938 PMCID: PMC11143522 DOI: 10.1182/blood.2023022591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. Challenges to gaining mechanistic insight into pathogenic SCD pain processes include differential gene expression and function of sensory neurons between humans and mice with SCD, and extremely limited availability of neuronal tissues from patients with SCD. Here, we used induced pluripotent stem cells (iPSCs), derived from patients with SCD, differentiated into sensory neurons (SCD iSNs) to begin to overcome these challenges. We characterize key gene expression and function of SCD iSNs to establish a model to investigate intrinsic and extrinsic factors that may contribute to SCD pain. Despite similarities in receptor gene expression, SCD iSNs show pronounced excitability using patch clamp electrophysiology. Furthermore, we find that plasma taken from patients with SCD during acute pain associated with a vaso-occlusive event increases the calcium responses to the nociceptive stimulus capsaicin in SCD iSNs compared with those treated with paired plasma from patients with SCD at steady state baseline or healthy control plasma samples. We identified high levels of the polyamine spermine in baseline and acute pain states of plasma from patients with SCD, which sensitizes SCD iSNs to subthreshold concentrations of capsaicin. Together, these data identify potential intrinsic mechanisms within SCD iSNs that may extend beyond a blood-based pathology.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Vanessa Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Janelle Highland
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
2
|
Gupta P, Kumar R. Nitric oxide: A potential etiological agent for vaso-occlusive crises in sickle cell disease. Nitric Oxide 2024; 144:40-46. [PMID: 38316197 DOI: 10.1016/j.niox.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Nitric oxide (NO), a vasodilator contributes to the vaso-occlusive crisis associated with the sickle cell disease (SCD). Vascular nitric oxide helps in vasodilation, controlled platelet aggregation, and preventing adhesion of sickled red blood cells to the endothelium. It decreases the expression of pro-inflammatory genes responsible for atherogenesis associated with SCD. Haemolysis and activated endothelium in SCD patients reduce the bioavailability of NO which promotes the severity of sickle cell disease mainly causes vaso-occlusive crises. Additionally, NO depletion can also contribute to the formation of thrombus, which can cause serious complications such as stroke, pulmonary embolism etc. Understanding the multifaceted role of NO provides valuable insights into its therapeutic potential for managing SCD and preventing associated complications. Various clinical trials and studies suggested the importance of artificially induced nitric oxide and its supplements in the reduction of severity. Further research on the mechanisms of NO depletion in SCD is needed to develop more effective treatment strategies and improve the management of this debilitating disease.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, India.
| |
Collapse
|
3
|
Rees CA, Brousseau DC, Cohen DM, Villella A, Dampier C, Brown K, Campbell A, Chumpitazi CE, Airewele G, Chang T, Denton C, Ellison A, Thompson A, Ahmad F, Bakshi N, Coleman KD, Leibovich S, Leake D, Hatabah D, Wilkinson H, Robinson M, Casper TC, Vichinsky E, Morris CR. Sickle Cell Disease Treatment with Arginine Therapy (STArT): study protocol for a phase 3 randomized controlled trial. Trials 2023; 24:538. [PMID: 37587492 PMCID: PMC10433602 DOI: 10.1186/s13063-023-07538-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Despite substantial illness burden and healthcare utilization conferred by pain from vaso-occlusive episodes (VOE) in children with sickle cell disease (SCD), disease-modifying therapies to effectively treat SCD-VOE are lacking. The aim of the Sickle Cell Disease Treatment with Arginine Therapy (STArT) Trial is to provide definitive evidence regarding the efficacy of intravenous arginine as a treatment for acute SCD-VOE among children, adolescents, and young adults. METHODS STArT is a double-blind, placebo-controlled, randomized, phase 3, multicenter trial of intravenous arginine therapy in 360 children, adolescents, and young adults who present with SCD-VOE. The STArT Trial is being conducted at 10 sites in the USA through the Pediatric Emergency Care Applied Research Network (PECARN). Enrollment began in 2021 and will continue for 5 years. Within 12 h of receiving their first dose of intravenous opioids, enrolled participants are randomized 1:1 to receive either (1) a one-time loading dose of L-arginine (200 mg/kg with a maximum of 20 g) administered intravenously followed by a standard dose of 100 mg/kg (maximum 10 g) three times a day or (2) a one-time placebo loading dose of normal saline followed by normal saline three times per day at equivalent volumes and duration as the study drug. Participants, research staff, and investigators are blinded to the participant's randomization. All clinical care is provided in accordance with the institution-specific standard of care for SCD-VOE based on the 2014 National Heart, Lung, and Blood Institute guidelines. The primary outcome is time to SCD-VOE pain crisis resolution, defined as the time (in hours) from study drug delivery to the last dose of parenteral opioid delivery. Secondary outcomes include total parental opioid use and patient-reported outcomes. In addition, the trial will characterize alterations in the arginine metabolome and mitochondrial function in children with SCD-VOE. DISCUSSION Building on the foundation of established relationships between emergency medicine providers and hematologists in a multicenter research network to ensure adequate participant accrual, the STArT Trial will provide definitive information about the efficacy of intravenous arginine for the treatment of SCD-VOE for children. TRIAL REGISTRATION The STArT Trial was registered in ClinicalTrials.gov on April 9, 2021, and enrollment began on June 21, 2021 (NCT04839354).
Collapse
Affiliation(s)
- Chris A Rees
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David C Brousseau
- Department of Pediatrics, Nemours Children's Health Delaware and the Sidney Kimmel Medical College, Thomas Jefferson University, Wilmington, DE, USA
| | | | | | - Carlton Dampier
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathleen Brown
- Children's National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Andrew Campbell
- Children's National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Gladstone Airewele
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Todd Chang
- Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Christopher Denton
- Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Angela Ellison
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Fahd Ahmad
- Washington University in St. Louis, St. Louis, MO, USA
| | - Nitya Bakshi
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keli D Coleman
- Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | | | | | - Dunia Hatabah
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
| | | | | | | | - Elliott Vichinsky
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA, USA
- Department of Pediatrics, UCSF-Benioff Children's Hospital-Oakland, Oakland, CA, USA
| | - Claudia R Morris
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
4
|
Yamakawa PE, Fonseca AR, Guerreiro da Silva IDC, Gonçalves MV, Marchioni DM, Carioca AAF, Michonneau D, Arrais-Rodrigues C. Biochemical phenotyping of paroxysmal nocturnal hemoglobinuria reveals solute carriers and β-oxidation deficiencies. PLoS One 2023; 18:e0289285. [PMID: 37527257 PMCID: PMC10393180 DOI: 10.1371/journal.pone.0289285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal disease of hematopoietic cells with a variable clinical spectrum characterized by intravascular hemolysis, high risk of thrombosis, and cytopenias. To understand the biochemical shifts underlying PNH, this study aimed to search for the dysfunctional pathways involved in PNH physiopathology by comparing the systemic metabolic profiles of affected patients to healthy controls and the metabolomic profiles before and after the administration of eculizumab in PNH patients undergoing treatment. METHODS Plasma metabolic profiles, comprising 186 specific annotated metabolites, were quantified using targeted quantitative electrospray ionization tandem mass spectrometry in 23 PNH patients and 166 population-based controls. In addition, samples from 12 PNH patients on regular eculizumab maintenance therapy collected before and 24 hours after eculizumab infusion were also analyzed. RESULTS In the PNH group, levels of the long-chain acylcarnitines metabolites were significantly higher as compared to the controls, while levels of histidine, taurine, glutamate, glutamine, aspartate and phosphatidylcholines were significantly lower in the PNH group. These differences suggest altered acylcarnitine balance, reduction in the amino acids participating in the glycogenesis pathway and impaired glutaminolysis. In 12 PNH patients who were receiving regular eculizumab therapy, the concentrations of acylcarnitine C6:1, the C14:1/C6 ratio (reflecting the impaired action of the medium-chain acyl-Co A dehydrogenase), and the C4/C6 ratio (reflecting the impaired action of short-chain acyl-Co A dehydrogenase) were significantly reduced immediately before eculizumab infusion, revealing impairments in the Acyl CoA metabolism, and reached levels similar to those in the healthy controls 24 hours after infusion. CONCLUSIONS We demonstrated significant differences in the metabolomes of the PNH patients compared to healthy controls. Eculizumab infusion seemed to improve deficiencies in the acyl CoA metabolism and may have a role in the mitochondrial oxidative process of long and medium-chain fatty acids, reducing oxidative stress, and inflammation.
Collapse
Affiliation(s)
| | - Ana Rita Fonseca
- Hematology Division, Universidade Federal de São Paulo, São Paulo, Brazil
- Oncology Department, Hospital Sírio Libanês, São Paulo, Brazil
| | | | | | - Dirce Maria Marchioni
- Nutrition Department, School of Public Health, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - David Michonneau
- Hematology and Bone Marrow Transplant Department of the Saint-Louis Hospital, Paris, France
| | - Celso Arrais-Rodrigues
- Hematology Division, Universidade Federal de São Paulo, São Paulo, Brazil
- Hematology Department, Hospital Nove de Julho, DASA, São Paulo, Brazil
| |
Collapse
|
5
|
D’Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. Am J Hematol 2023; 98:1017-1028. [PMID: 36971592 PMCID: PMC10272107 DOI: 10.1002/ajh.26923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo. The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and transfusion therapy on sickle RBC metabolism. Results show that RBCs from patients with Hb SS genotypes-compared to AA RBCs from recent transfusion events or SC RBCs-are characterized by significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Metabolomics, clinical and hematological data were collated in a novel online portal. In conclusion, we identified metabolic signatures of HbS RBCs that correlate with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyle W. Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T Gladwin
- University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
6
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528368. [PMID: 36824724 PMCID: PMC9948995 DOI: 10.1101/2023.02.13.528368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo . The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events, and HbF related to hydroxyurea therapy. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and hydroxyurea and transfusion therapy on sickle RBC metabolism. Data - collated in an online portal - show that the Hb SS genotype is associated with significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Increasing in vivo concentrations of HbA improved glycolytic flux and normalized the HbS erythrocyte metabolome. An unexpectedly limited metabolic effect of hydroxyurea and HbF was observed, possibly related to the modest induction of HbF in this cohort. The metabolic signature of HbS RBCs correlated with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality. Key points In vivo dysregulation of RBC metabolism by HbS is evaluated by metabolic profiling of 587 patients with variable HbA, HbC and HbF levels;RBC acyl-carnitines, urate, pyruvate metabolism, S1P, kynurenine relate to hemolysis and cardiorenal dysfunction, respond to transfusion.
Collapse
|
7
|
Correlation of Asymmetric Dimethyl Arginine Level to Sickle Retinopathy in Children With Sickle Cell Disease. J Pediatr Hematol Oncol 2023; 45:e48-e51. [PMID: 35180766 DOI: 10.1097/mph.0000000000002435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/20/2022] [Indexed: 02/03/2023]
Abstract
Asymmetric dimethyl arginine (ADMA) is a competitive inhibitor of nitric oxide synthetase especially in L-arginine deficiency, which is the case in sickle cell disease (SCD). we aimed to assess the level of ADMA in children with sickle retinopathy and to correlate it to the degree of retinopathy. In this cross-sectional study 40 children with SCD were included, 20 of them with sickle cell retinopathy (SCR) (group I), 20 with normal fundus examination (group II), and another 20 healthy children served as controls (group III). We measured ADMA level by ELISA and performed fundus examination. Seventeen of the 20 children included in group I had Grade I retinopathy (85%), 2 children had Grade II retinopathy (10%), and 1 child had Grade III retinopathy (5%). ADMA was significantly higher in SCD than controls ( P -value <0.001), and it was even higher in patients with SCR compared those without retinopathy ( P -value <0.002), and there was positive linear correlation between ADMA and the grade of retinopathy. The type of retinopathy detect in the studied patients was the nonproliferative type. In conclusion, ADMA is elevated in children with SCD, and its level is even higher in those who develop SCR.
Collapse
|
8
|
Onalo R, Cilliers A, Cooper P, Morris CR. Arginine Therapy and Cardiopulmonary Hemodynamics in Hospitalized Children with Sickle Cell Anemia: A Prospective, Double-blinded, Randomized Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2022; 206:70-80. [PMID: 35426778 PMCID: PMC9954326 DOI: 10.1164/rccm.202108-1930oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Acute changes in cardiopulmonary hemodynamics that include tricuspid regurgitant jet velocity (TRV) elevation measured by Doppler echocardiography are often encountered during sickle cell vasoocclusive pain and acute chest syndrome (ACS). Arginine and nitric oxide depletion develop in patients with these complications. Arginine administration may therefore improve nitric oxide bioavailability and potentiate pulmonary vasodilatation. Objectives: To evaluate effects of l-arginine supplementation on Doppler indices of cardiopulmonary hemodynamics in children with sickle cell anemia experiencing pain. Methods: This was a prospective, double-blinded, randomized placebo-controlled trial of oral arginine in children with sickle cell anemia age 5-17 years hospitalized with severe pain and/or ACS. Measurements and Main Results: Blood biomarkers and Doppler echocardiographic indices of cardiopulmonary hemodynamics were measured before and after supplementation. The mean change in TRV, pulmonary artery systolic pressure, mean pulmonary artery pressure, and other indices of cardiopulmonary hemodynamics were tested with paired Student's t test and correlated with markers of arginine bioavailability using Pearson correlation. Sixty-six children were randomized into arginine versus placebo groups. An elevated TRV ⩾ 2.5 m/s was seen in 40 (61%) patients. A Day 5 Doppler echocardiogram was performed in 47 patients who remained hospitalized. A greater reduction in median TRV occurred in the arginine group than placebo (22.2%, n = 22 vs. 3.8%, n = 25; p < 0.01). A larger percentage increase in global arginine bioavailability was associated with a lower TRV after 5 days of supplementation (r = -0.533; P = 0.001). Significant differences in multiple indices of cardiopulmonary hemodynamics and mean N-terminal pro B-type brain natriuretic peptide were also noted after arginine therapy. Conclusions: Oral arginine supplementation improves cardiopulmonary hemodynamics during sickle cell disease vasoocclusive pain and ACS.Clinical trial registered with Pan African Clinical Trial Registry https://pactr.samrc.ac.za/Search.aspx (PACTR201611001864290).
Collapse
Affiliation(s)
- Richard Onalo
- Cardiology Unit, Department of Paediatrics, Faculty of Clinical Sciences, University of Abuja, Abuja, Nigeria
| | - Antoinette Cilliers
- Division of Paediatric Cardiology, Department of Paediatrics, Chris Hani Baragwanath Academic Hospital, and
| | - Peter Cooper
- Department of Paediatrics and Child Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Claudia R. Morris
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;,Children’s Healthcare of Atlanta, Atlanta, Georgia; and,Center for Clinical and Translational Research of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Morris CR, Kuypers FA, Hagar R, Larkin S, Lavrisha L, Saulys A, Vichinsky EP, Suh JH. Implications for the Metabolic Fate of Oral Glutamine Supplementation within Plasma and Erythrocytes of Patients with Sickle Cell Disease: A Pharmacokinetics Study. Complement Ther Med 2022; 64:102803. [PMID: 35032556 DOI: 10.1016/j.ctim.2022.102803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 11/13/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES L-Glutamine is FDA-approved for sickle cell disease (SCD), yet the mechanism(s)-of-action are poorly understood. We performed a pharmacokinetics (pK) study to determine the metabolic fate of glutamine supplementation on plasma and erythrocyte amino acids in patients with SCD. DESIGN A pK study was performed where patients with SCD fasting for >8hours received oral L-glutamine (10 grams). Blood was analyzed at baseline, 30/60/90minutes/2/3/4/8 hrs. A standardized diet was administered to all participants at 3 established time-points (after 2/5/7hrs). A subset of patients also had pK studies performed without glutamine supplementation to follow normal diurnal fluctuations in amino acids. SETTING Comprehensive SCD Center in Oakland, California RESULTS: Five patients with SCD were included, three of whom performed pK studies both with and without glutamine supplementation. Average age was 50.6 ± 5.6 years, 60% were female, 40% SS, 60% SC. Plasma glutamine levels increased significantly after oral glutamine supplementation, compared to minimal fluctuations with diet. Plasma glutamine concentration peaked within 30-minutes of ingestion (p=0.01) before decreasing to a plateau by 2-hours that remained higher than baseline by 8hours. Oral glutamine also increased plasma arginine concentration, which peaked by 4-hrs (p=0.03) and remained elevated through 8-hrs. Erythrocyte glutamine levels began to increase by 8-hours, while erythrocyte arginine concentration peaked at 4-hours. CONCLUSIONS Oral glutamine supplementation acutely improved glutamine and arginine bioavailability in both plasma and erythrocytes. This is the first study to demonstrate that glutamine therapy increases arginine bioavailability and may provide insight into shared mechanisms-of-action between these conditionally-essential amino acids.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Frans A Kuypers
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Robert Hagar
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Sandra Larkin
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Lisa Lavrisha
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Augusta Saulys
- Department of Emergency Medicine, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Elliott P Vichinsky
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Jung H Suh
- Department of Hematology/Oncology, UCSF-Benioff Children's Hospital Oakland, Oakland, CA, USA
| |
Collapse
|
10
|
Scott JA, Maarsingh H, Holguin F, Grasemann H. Arginine Therapy for Lung Diseases. Front Pharmacol 2021; 12:627503. [PMID: 33833679 PMCID: PMC8022134 DOI: 10.3389/fphar.2021.627503] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.
Collapse
Affiliation(s)
- Jeremy A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, United States
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
11
|
Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood 2021; 136:1402-1406. [PMID: 32384147 DOI: 10.1182/blood.2019003672] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Altered mitochondrial function occurs in sickle cell disease (SCD), due in part to low nitric oxide (NO) bioavailability. Arginine, the substrate for NO production, becomes acutely deficient in SCD patients with vaso-occlusive pain episodes (VOE). To determine if arginine improves mitochondrial function, 12 children with SCD-VOE (13.6 ± 3 years; 67% male; 75% hemoglobin-SS) were randomized to 1 of 3 arginine doses: (1) 100 mg/kg IV 3 times/day (TID); (2) loading dose (200 mg/kg) then 100 mg/kg TID; or (3) loading dose (200 mg/kg) followed by continuous infusion (300 mg/kg per day) until discharge. Platelet-rich plasma mitochondrial activity, protein expression, and protein-carbonyls were measured from emergency department (ED) presentation vs discharge. All VOE subjects at ED presentation had significantly decreased complex-V activity compared to a steady-state cohort. Notably, complex-V activity was increased at discharge in subjects from all 3 arginine-dosing schemes; greatest increase occurred with a loading dose (P < .001). Although complex-IV and citrate synthase activities were similar in VOE platelets vs steady state, enzyme activities were significantly increased in VOE subjects after arginine-loading dose treatment. Arginine also decreased protein-carbonyl levels across all treatment doses (P < .01), suggesting a decrease in oxidative stress. Arginine therapy increases mitochondrial activity and reduces oxidative stress in children with SCD/VOE. This trial was registered at www.clinicaltrials.gov as #NCT02536170.
Collapse
|
12
|
Martí-Carvajal AJ, Martí-Amarista CE. Interventions for treating intrahepatic cholestasis in people with sickle cell disease. Cochrane Database Syst Rev 2020; 6:CD010985. [PMID: 32567054 PMCID: PMC7388850 DOI: 10.1002/14651858.cd010985.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sickle cell disease is the most common hemoglobinopathy occurring worldwide and sickle cell intrahepatic cholestasis is a complication long recognized in this population. Cholestatic liver diseases are characterized by impaired formation or excretion (or both) of bile from the liver. There is a need to assess the clinical benefits and harms of the interventions used to treat intrahepatic cholestasis in people with sickle cell disease. This is an update of a previously published Cochrane Review. OBJECTIVES To assess the benefits and harms of the interventions for treating intrahepatic cholestasis in people with sickle cell disease. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, which comprises references identified from comprehensive electronic database searches and handsearching of relevant journals and abstract books of conference proceedings. We also searched the LILACS database (1982 to 21 January 2020), the WHO International Clinical Trials Registry Platform Search Portal and ClinicalTrials.gov (21 January 2020). Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 25 November 2019. SELECTION CRITERIA We searched for published or unpublished randomised controlled trials. DATA COLLECTION AND ANALYSIS Each author intended to independently extract data, assess the risk of bias of the trials by standard Cochrane methodologies and assess the quality of the evidence using the GRADE criteria; however, no trials were included in the review. MAIN RESULTS We did not identify any randomised controlled trials. AUTHORS' CONCLUSIONS This updated Cochrane Review did not identify any randomised controlled trials assessing interventions for treating intrahepatic cholestasis in people with sickle cell disease. Randomised controlled trials are needed to establish the optimum treatment for this condition.
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE (Cochrane Ecuador), Quito, Ecuador
- School of Medicine, Universidad Francisco de Vitoria (Cochrane Madrid), Madrid, Spain
| | | |
Collapse
|
13
|
Samarasinghe AE, Rosch JW. Convergence of Inflammatory Pathways in Allergic Asthma and Sickle Cell Disease. Front Immunol 2020; 10:3058. [PMID: 32038616 PMCID: PMC6992560 DOI: 10.3389/fimmu.2019.03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
The underlying pathologies of sickle cell disease and asthma share many characteristics in terms of respiratory inflammation. The principal mechanisms of pulmonary inflammation are largely distinct, but activation of common pathways downstream of the initial inflammatory triggers may lead to exacerbation of both disease states. The altered inflammatory landscape of these respiratory pathologies can differentially impact respiratory pathogen susceptibility in patients with sickle cell disease and asthma. How these two distinct diseases behave in a comorbid setting can further exacerbate pulmonary complications associated with both disease states and impact susceptibility to respiratory infection. This review will provide a concise overview of how asthma distinctly affects individuals with sickle cell disease and how pulmonary physiology and inflammation are impacted during comorbidity.
Collapse
Affiliation(s)
- Amali E Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Microbiology Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
14
|
Matte A, Cappellini MD, Iolascon A, Enrica F, De Franceschi L. Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment? Expert Opin Investig Drugs 2019; 29:23-31. [PMID: 31847604 DOI: 10.1080/13543784.2020.1703947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Sickle cell disease (SCD) is caused by a mutation in the HBB gene which is key for making a component of hemoglobin. The mutation leads to the formation of an abnormal hemoglobin molecule called sickle hemoglobin (HbS). SCD is a chronic, complex disease with a multiplicity of pathophysiological targets; it has high morbidity and mortality.Hydroxyurea has for many years been the only approved drug for SCD; hence, the development of new therapeutics is critical.Areas covered: This article offers an overview of the key studies of new therapeutic options for SCD. We searched the PubMed database and Cochrane Database of Systemic Reviews for agents in early phase clinic trials and preclinical development.Expert opinion: Although knowledge of SCD has progressed, patient survival and quality of life must be improved. Phase II and phase III clinical trials investigating pathophysiology-based novel agents show promising results in the clinical management of SCD acute events. The design of long-term clinical studies is necessary to fully understand the clinical impact of these new therapeutics on the natural history of the disease. Furthermore, the building of global collaborations will enhance the clinical management of SCD and the design of primary outcomes of future clinical trials.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Maria Domenica Cappellini
- Ca Granda Foundation IRCCS, Dept of Clinical Science and Community, University of Milan, Milan, Italy
| | - Achille Iolascon
- Dept of Chemical Sciences, University Federico II, Naples, Italy
| | - Federti Enrica
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
15
|
Powell-Roach KL, Yao Y, Jhun EH, He Y, Suarez ML, Ezenwa MO, Molokie RE, Wang ZJ, Wilkie DJ. Vasopressin SNP pain factors and stress in sickle cell disease. PLoS One 2019; 14:e0224886. [PMID: 31710639 PMCID: PMC6844466 DOI: 10.1371/journal.pone.0224886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Frequencies of single nucleotide polymorphisms (SNPs) from pain related candidate genes are available for individuals with sickle cell disease (SCD). One of those genes, the arginine vasopressin receptor 1A gene (AVPR1A) and one of its SNPs, rs10877969, has been associated with pain and disability in other pain populations. In patients with SCD, clinical factors such as pain and stress have been associated with increased health care utilization, but it is not known if the presence of the AVPR1A SNP plays a role in this observation. The study purpose was to explore the relationships between rs10877969 and self-reported pain, stress, and acute care utilization events among individuals with SCD. METHODS In a cross-sectional investigation of outpatients with SCD, participants completed PAINReportIt®, a computerized pain measure, to describe their pain experience and contributed blood or saliva samples for genetic analysis. We extracted emergency department and acute care utilization from medical records. RESULTS The SNP genotype frequencies (%) for this sample were CC 30 (28%), CT 44 (41%), TT 33 (31%). Acute care utilization and stress as an aggravator of pain were significantly associated with the rs10877969 genotype (p = .02 and p = .002, respectively). The CT genotype had the highest mean utilization and CC genotype was associated with not citing stress as a pain aggravator. Chronic pain was not associated with rs10877969 (p = .41). CONCLUSION This study shows that rs10877969 is related to indicators of stress and acute pain. Further research is recommended with other measures of stress and acute pain.
Collapse
Affiliation(s)
- Keesha L. Powell-Roach
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Center for Palliative Care Research and Education, University of Florida College of Nursing, Gainesville, Florida, United States of America
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, United States of America
- Department of Biobehavioral Health Sciences, University of Illinois at Chicago College of Nursing, Chicago, Illinois, United States of America
| | - Ellie H. Jhun
- Committee on Clinical Pharmacology and Pharmacogenetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ying He
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Marie L. Suarez
- Department of Biobehavioral Health Sciences, University of Illinois at Chicago College of Nursing, Chicago, Illinois, United States of America
| | - Miriam O. Ezenwa
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, United States of America
| | - Robert E. Molokie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Division of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
- Jessie Brown Veteran’s Administration Medical Center, Chicago, Illinois, United States of America
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Diana J. Wilkie
- Center for Palliative Care Research and Education, University of Florida College of Nursing, Gainesville, Florida, United States of America
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, United States of America
- Department of Biobehavioral Health Sciences, University of Illinois at Chicago College of Nursing, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Greenwald MH, Gutman CK, Morris CR. Resolution of Acute Priapism in Two Children With Sickle Cell Disease Who Received Nitrous Oxide. Acad Emerg Med 2019; 26:1102-1105. [PMID: 31228879 DOI: 10.1111/acem.13822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nitrous oxide (N O) is an inhalational medication that has anxiolytic, amnestic, potent venodilatory and mild-to-moderate analgesic properties commonly used in the emergency department (ED) setting. N2 O has a rapid onset of action (<5 minutes) and recovery (<5 minutes) and can be quickly titrated to effect without the need for IV access. It has few side effects, does not require renal or hepatic metabolism for excretion and has no reports of allergic reaction. Priapism is a serious complication of sickle cell disease (SCD) affecting approximately 35% of males, with an adverse impact on quality of life. Treatment options are limited and not evidence based, including hydration, alkalization, analgesia, oxygenation to prevent further sickling, and exchange transfusion. Patients who do not respond within 4 hours often require a painful invasive procedure that includes aspiration of blood from the corpus cavernosum and phenylephrine injections. Case reports have described a therapeutic benefit from oral pseudoephedrine, sildenafil, and intravenous (IV) arginine, however controlled clinical trials are lacking. Although a 50:50 nitrous oxide/oxygen mix is commonly used in France to enhance analgesia in patients with SCD and vasoocclusive pain events (VOE) not sufficiently responding to IV morphine, there are no reports of its use to treat priapism. We describe the effects of N2 O for the treatment of acute priapism associated with SCD in a pediatric ED. METHODS This is a case series of two adolescent boys with Hb-SS who on 3 separate occasions presented to the ED with acute priapism that failed oral therapy (pseudoephedrine and opioids). N2 O gas was utilized to help facilitate IV catheter placement. RESULTS In each presentation (at ages 8 and 10 years for patient 1; age 15 years for patient 2), the patient experienced complete resolution of the priapism within 4-15 min of receiving N2 O (max 60%). The patients were discharged from the ED following each presentation and had no recurrence during the subsequent week. CONCLUSIONS Priapism is a challenging complication of SCD associated with long-term morbidity and a paucity of treatment options. Opioids are commonly used. Given the risks and inconsistent results of current recommended therapy, N2 O may represent a potential opioid-sparing treatment option for priapism presenting to the ED that warrants further investigation. Although anecdotal, N2 O inhalation is an intervention to consider during a time when a treating ED physician may have few alternatives.
Collapse
Affiliation(s)
- Michael H. Greenwald
- Department of Pediatrics Division of Emergency Medicine Emory University School of MedicineAtlanta GA
- Children's Healthcare of Atlanta Atlanta GA
| | - Colleen K. Gutman
- Department of Pediatrics Division of Emergency Medicine Emory University School of MedicineAtlanta GA
- Children's Healthcare of Atlanta Atlanta GA
| | - Claudia R. Morris
- Department of Pediatrics Division of Emergency Medicine Emory University School of MedicineAtlanta GA
- Children's Healthcare of Atlanta Atlanta GA
| |
Collapse
|
17
|
Abstract
Introduction: Acute pain from episodic vaso-occlusion (VOC) spans the lifespan of almost everyone with sickle cell disease (SCD), while additional chronic pain develops in susceptible individuals in early adolescences. Frequent acute pain with chronic pain causes significant physical and psychological morbidity, and frequent health-care utilization. Available pharmacologic therapies reduce acute pain frequency but few evidence-based therapies are available for chronic pain. Areas covered: An extensive PubMed literature search was performed with appropriate search criteria. The pathophysiology of acute pain from VOC in SCD is very complex with many events subsequent to sickle polymer formation. Sensitization of pain pathways and alterations of brain networks contributes to the experience of chronic pain. Numerous therapies targeting putative VOC mechanisms are in clinical trials, and show considerable promise. Alternative analgesic treatments for acute and chronic pain have been examined in small patient cohorts, but formal clinical trials are lacking. Expert opinion: Childhood is likely a critical window for prevention of acute and later chronic pain. New multimodal analgesic therapies are needed, particularly for chronic pain, and should be examined in clinical trials. Given the multifactorial nature of both pain and VOC, simultaneously targeting multiple mechanisms may be the optimal approach for effective preventive therapies.
Collapse
Affiliation(s)
- Carlton Dampier
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta , Atlanta , GA , USA
| |
Collapse
|
18
|
Double-Blind Clinical Trial of Arginine Supplementation in the Treatment of Adult Patients with Sickle Cell Anaemia. Adv Hematol 2019; 2019:4397150. [PMID: 30853991 PMCID: PMC6378076 DOI: 10.1155/2019/4397150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sickle cell anaemia (SCA) is the most prevalent monogenic disease in Brazil. In SCA, haemoglobin S (HbS) is formed, which modifies red blood cell morphology. Intravascular haemolysis occurs, in which free Hb and free radicals degrade nitric oxide (NO) and release arginase, which reduces arginine levels. Because arginine is a substrate for NO formation, this decrease leads to reduced NO (vasodilator) synthesis. SCA treatment uses hydroxyurea (HU) to maintain high foetal haemoglobin (HbF) levels and reduces HbS to avoid haemolytic episodes. Objective To analyse the efficacy of L-arginine as an adjuvant in the treatment of SCA patients. Setting The State Blood Centre of Ceará, Brazil. Methods This was a randomized double-blind clinical study of adults with SCA with continuous use of HU at the State Blood Centre of Ceará. The clinical study enrolled 25 patients receiving HU + L-arginine (500 mg) and 25 patients receiving HU + placebo. The treatment was carried out over four months. Laboratory tests were performed to determine the levels of the following: (1) complete blood count; (2) nitrite + nitrate; (3) HbF; and (4) reticulocytes. The clinical experiments were performed by a haematologist. The main outcome measures were nitrite and pain. Results Statistical analysis showed that the levels of NO were increased in the study group, and there was also a reduction in pain frequency using a pain frequency scale by day, week, and month. The levels of nitrite plus nitrate in the group receiving placebo plus HU did not change among the times evaluated (38.27 ± 17.27 mg/L, 39.49 ± 12.84 mg/L, 34.45 ± 11.25 mg/L, p >0.05), but in the patients who received supplementation with L-arginine plus HU, a significant increase in nitrite plus nitrate levels was observed between M0 and M4 (36.55 ± 20.23 mg/L versus 48.64 ± 20.63 mg/L, p =0.001) and M2 and M4 (35.71 ± 15.11 mg/L versus 48.64 ± 20.63 mg/L, p <0.001). It is important to note that the increase in nitrite plus nitrate levels occurred only in the fourth month of follow-up of patients in the treatment group, showing that at least 4 months of supplementation with L-arginine is necessary to show an increase in these metabolites in the serum. Conclusion The use of L-arginine as a coadjuvant in the treatment of sickle cell anaemia may function as a potential tool for pain relief, consequently improving the life of patients.
Collapse
|
19
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. [PMID: 30671208 PMCID: PMC6328043 DOI: 10.4084/mjhid.2019.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023] Open
Abstract
Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.
Collapse
|
21
|
Moerdler S, Manwani D. New insights into the pathophysiology and development of novel therapies for sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:493-506. [PMID: 30504350 PMCID: PMC6245971 DOI: 10.1182/asheducation-2018.1.493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although the seminal event in sickle cell disease is the polymerization of abnormal hemoglobin, the downstream pathophysiology of vasoocclusion results from heterotypic interactions between the altered, adhesive sickle cell red blood cells, neutrophils, endothelium, and platelets. Ischemia reperfusion injury, hemolysis, and oxidant damage all contribute to heightened inflammation and activation of the hemostatic system. These various pathways are the focus of emerging treatments with potential to ameliorate disease manifestations. This review summarizes the considerable progress in development of these agents despite challenges in selection of study end points and complex pathophysiology.
Collapse
Affiliation(s)
- Scott Moerdler
- Children’s Hospital, Montefiore Medical Center, Bronx, NY; and
- Department of Microbiology and Immunology and
| | - Deepa Manwani
- Children’s Hospital, Montefiore Medical Center, Bronx, NY; and
- Division of Pediatric Hematology, Oncology, Marrow and Blood Cell Transplantation, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
22
|
Okoh MP, Alli LA, Tolvanen MEE, Nwegbu MM. Herbal Drug use in Sickle Cell Disease Management; Trends and Perspectives in Sub-Saharan Africa - A Systematic Review. Curr Drug Discov Technol 2018; 16:372-385. [PMID: 30277160 DOI: 10.2174/1570163815666181002101611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Nigeria has the largest burden of Sickle Cell Disease (SCD) with estimated 100,000 new born affected annually. SCD is a Hemoglobin (Hb) disorder with the major form resulting from the substitution of a polar glutamate (Glu) by non-polar Valine (Val) in an invariant region of Hbβ chain-subunit. Species of Hb found in the sickle cell trait are HbA and HbS in a 60:40 proportion, in SCD only HbS, in the HbC disease only HbC, and in the SC disease it's HbS and HbC in a 50:50 equal proportion. OBJECTIVE This paper reviews herbal medicines usage in sub-Saharan Africa (sSA) to ameliorate the crisis associated with SCD. The model Hb tetramer suggests a higher membrane affinity of HbS and HbC, promoting dehydration of RBCs, with concomitant in vivo crystallization. Some drawbacks using these herbal drugs include; poor bioavailability and the lack of proper pharmacovigilance monitoring procedures arising from weak governance structure combined with under reporting of herbal usage to physicians were discussed. Probable epigenetic loci that could be targeted using phytomedicines for effective SCD management were also discussed. METHODS Using search engines, several databases including Google scholar, PubMed, Academic Resource Index were utilized as a source for relevant publications/ literature. The protein coordinates for the Hb tetramer were obtained from the Protein Data Bank (PDB). CONCLUSION Manipulation of epigenetics to achieve better SCD management involves careful thinking. Herein, we discuss some epigenetic interactions that could be putatively tweaked with a view of enhancing soluble bioactive small molecular components with the potential to reactivate γ -globin genes, thereby boosting immune response in patient with SCD.
Collapse
Affiliation(s)
- Michael P Okoh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, P.M.B 117 FCT, Abuja, Nigeria
| | - Lukman A Alli
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, P.M.B 117 FCT, Abuja, Nigeria
| | - Martti E E Tolvanen
- Department of Future Technologies, University of Turku, Vesilinnantie 5, 20014 University of Turku, Turku, Finland
| | - Maxwell M Nwegbu
- Department of Chemical Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Abuja, P.M.B 117 FCT, Abuja, Nigeria
| |
Collapse
|
23
|
Antwi-Boasiako C, Campbell AD. Low nitric oxide level is implicated in sickle cell disease and its complications in Ghana. Vasc Health Risk Manag 2018; 14:199-204. [PMID: 30233199 PMCID: PMC6134946 DOI: 10.2147/vhrm.s163228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nitric oxide (NO) plays a fundamental role in maintaining normal vasomotor tone. Recent clinical and experimental data suggest that NO may play a role in the pathogenesis and therapy of sickle cell disease (SCD). The aim of this study was to determine NO metabolites (NOx) in SCD patients at steady state and in vaso-occlusive crisis (VOC), as well as those with hemolytic clinical sub-phenotype that includes leg ulcers and priapism. METHODOLOGY This was a case-control cross-sectional study conducted on a total of 694 subjects including 148 comparison group HbAA, 208 HbSS SCD patients in steady state, 82 HbSC SCD patients in steady state, 156 HbSS SCD patients in VOC, 34 HbSC SCD patients in VOC, 34 HbSS SCD patients in post VOC, 21 HbSS SCD patients with leg ulcer and 11 HbSS SCD patients with priapism, with age ranging from 15 to 65 years. Laboratory diagnosis of SCD was done at the Sickle Cell Clinic of the Korle-Bu Teaching Hospital. Plasma nitric oxide metabolites were measured using Griess reagent system by ELISA method. RESULTS Mean NOx of 59.66±0.75 µMol/L in the comparison group was significantly different from those in steady state (P=0.02). During VOC, there was a significant reduction in mean NOx levels to 6.08±0.81 µMol/L (P<0.001). Mean NOx levels were however, significantly higher (50.97±1.68 µMol/L) (P<0.001) in the immediate postcrisis period. The mean NOx levels in the leg ulcer (21.70±1.18 µMol/L) (P<0.001) and priapism (28.97±1.27 µMol/L) (P<0.001) patients were significantly low as compared to the SCD patients in the steady state and comparison group. CONCLUSION This study presents the first report on plasma NOx levels in SCD complication in Ghanaian SCD patients and confirms reduced plasma NOx levels in SCD patients in general.
Collapse
Affiliation(s)
- Charles Antwi-Boasiako
- Department of Physiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana,
| | - Andrew D Campbell
- Comprehensive Sickle Cell Program Children's National Medical Center, Division of Hematology, School of Medicine and Health Sciences George Washington University, Washington, DC, USA
| |
Collapse
|
24
|
van Beers EJ, van Wijk R. Oxidative stress in sickle cell disease; more than a DAMP squib. Clin Hemorheol Microcirc 2018; 68:239-250. [PMID: 29614635 DOI: 10.3233/ch-189010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenetic disorder marked by hemolytic anemia and vaso-occlusive complications. The hallmark of SCD is the intracellular polymerization of sickle hemoglobin (HbS) after deoxygenation, and the subsequent characteristic shape change (sickling) of red cells. Vaso-occlusion occurs after endothelial activation, expression of adhesion molecules and subsequent adhesion of leucocytes and sickle erythrocytes to the vascular wall. Here we review how oxidative stress from various sources influences this process. Emerging evidence points towards a dominant mechanism in which innate immune receptors, such as Toll like receptor 4, activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidases to produce reactive oxygen species (ROS) which in turn enables downstream pro-inflammatory signaling and subsequent endothelial activation. By serving as an iron donor for the Fenton reaction, heme radically increases the amount of ROS further, thereby increasing the signal originating from the innate immune receptor and downstream effects of innate immune receptor activation. In SCD this results in the production of pro-inflammatory cytokines, endothelial activation and leucocyte adhesion, and eventually vaso-occlusion. Any intervention to stop this cascade, including Toll like receptor blockade, NADPH oxidase inhibition, ROS reduction, heme scavenging, iron chelation, or anti-adhesion molecule antibodies has been successfully used in pre-clinical studies and holds promise for patients with SCD.
Collapse
Affiliation(s)
- Eduard J van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
26
|
De A, Manwani D, Rastogi D. Airway inflammation in sickle cell disease-A translational perspective. Pediatr Pulmonol 2018; 53:400-411. [PMID: 29314737 DOI: 10.1002/ppul.23932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
Asthma and sickle cell disease (SCD) are common chronic conditions in children of African ancestry that are characterized by cough, wheeze, and obstructive patterns on pulmonary function. Pulmonary function testing in children with SCD has estimated a prevalence of obstructive lung disease ranging from 13% to 57%, and airway hyper-responsiveness of up to 77%, independent of a diagnosis of asthma. Asthma co-existing with SCD is associated with increased risk of acute chest syndrome (ACS), respiratory symptoms, pain episodes, and death. However, there are inherent differences in the pathophysiology of SCD and asthma. While classic allergic asthma in the general population is associated with a T-helper 2 cell (Th-2 cells) pattern of cell inflammation, increased IgE levels and often positive allergy testing, inflammation in SCD is associated with different inflammatory pathways, involving neutrophilic and monocytic pathways, which have been explored to a limited extent in mouse models and with a dearth of human studies. The current review summarizes the existent literature on sickle cell related airway inflammation and its cross roads with allergic asthma-related inflammation, and discusses the importance of further elucidating and understanding these common and divergent inflammatory pathways in human studies to facilitate development of targeted therapy for children with SCD and pulmonary morbidity.
Collapse
Affiliation(s)
- Aliva De
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Rastogi
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
27
|
Morris CR. Arginine Therapy Shows Promise for Treatment of Sickle Cell Disease Clinical Subphenotypes of Hemolysis and Arginine Deficiency. Anesth Analg 2018; 124:1369-1370. [PMID: 28221202 DOI: 10.1213/ane.0000000000001874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia R Morris
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia,
| |
Collapse
|
28
|
Marealle AI, Siervo M, Wassel S, Bluck L, Prentice AM, Minzi O, Sasi P, Kamuhabwa A, Soka D, Makani J, Cox SE. A pilot study of a non-invasive oral nitrate stable isotopic method suggests that arginine and citrulline supplementation increases whole-body NO production in Tanzanian children with sickle cell disease. Nitric Oxide 2018; 74:19-22. [PMID: 29305240 PMCID: PMC5832986 DOI: 10.1016/j.niox.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/25/2017] [Accepted: 12/29/2017] [Indexed: 12/24/2022]
Abstract
Background Low bioavailability of nitric oxide (NO) is implicated in the pathophysiology of sickle cell disease (SCD). We designed a nested pilot study to be conducted within a clinical trial testing the effects of a daily ready-to-use supplementary food (RUSF) fortified with arginine (Arg) and citrulline (Citr) vs. non-fortified RUSF in children with SCD. The pilot study evaluated 1) the feasibility of a non-invasive stable isotope method to measure whole-body NO production and 2) whether Arg+Citr supplementation was associated with increased whole-body NO production. Subjects Twenty-nine children (70% male, 9–11years, weight 16.3–31.3 kg) with SCD. Methods Sixteen children received RUSF+Arg/Citr (Arg, 0.2 g/kg/day; Citr, 0.1 g/kg/day) in combination with daily chloroquine (50 mg) and thirteen received the base RUSF in combination with weekly chloroquine (150 mg). Plasma amino acids were assessed using ion-exchange elution (Biochrom-30, Biochrom, UK) and whole-body NO production was measured using a non-invasive stable isotopic method. Results The RUSF+Arg/Citr intervention increased plasma arginine (P = .02) and ornithine (P = .003) and decreased the ratio of asymmetric dimethylarginine to arginine (P = .01), compared to the base RUSF. A significant increase in whole-body NO production was observed in the RUSF-Arg/Citr group compared to baseline (weight-adjusted systemic NO synthesis 3.38 ± 2.29 μmol/kg/hr vs 2.35 ± 1.13 μmol/kg/hr, P = .04). No significant changes were detected in the base RUSF group (weight-adjusted systemic NO synthesis 2.64 ± 1.14 μmol/kg/hr vs 2.53 ± 1.12 μmol/kg/hr, P = .80). Conclusions The non-invasive stable isotopic method was acceptable and the results provided supporting evidence that Arg/Citr supplementation may increase systemic NO synthesis in children with SCD. This method for measuring whole-body NO synthesis is feasible in young children. The isotopic decay of the stable isotope tracer demonstrated good linear fit. Arginine and citrulline supplementation may increase whole-body NO synthesis.
Collapse
Affiliation(s)
- Alphonce I Marealle
- Muhimbili Wellcome Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; School of Pharmacy, Department of Clinical Pharmacy & Pharmacology, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, UK
| | | | - Les Bluck
- MRC Human Nutrition Research, Cambridge, UK
| | - Andrew M Prentice
- MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Omary Minzi
- School of Pharmacy, Department of Clinical Pharmacy & Pharmacology, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | - Philip Sasi
- School of Medicine, Department of Clinical Pharmacology, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | - Appolinary Kamuhabwa
- School of Pharmacy, Department of Clinical Pharmacy & Pharmacology, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | - Deogratias Soka
- Muhimbili Wellcome Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Julie Makani
- Muhimbili Wellcome Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sharon E Cox
- Muhimbili Wellcome Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; School of Tropical Medicine & Global Health, Nagasaki University, Nagasaki, Japan; Dept of Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
29
|
Hua Y, Yao W, Ji P, Wei Y. Integrated metabonomic-proteomic studies on blood enrichment effects of Angelica sinensis on a blood deficiency mice model. PHARMACEUTICAL BIOLOGY 2017; 55:853-863. [PMID: 28140733 PMCID: PMC6130503 DOI: 10.1080/13880209.2017.1281969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
CONTEXT Angelica sinensis (Oliv.) Diels (Umbelliferae) (AS) is a well-known Traditional Chinese Medicine (TCM) that enriches and regulates the blood. OBJECTIVE An integrated metabonomic and proteomic method was developed and applied to study the blood enrichment effects and mechanisms of AS on blood deficiency (BD) mouse model. MATERIALS AND METHODS Forty mice were randomly divided into the control, BD, High-dose of AS (ASH), Middle-dose of AS (ASM), and Low-dose of AS (ASL) groups. BD model mice were established by injecting N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX) (ip). The aqueous extract of AS was administered at three dose of 20, 10, or 5 g/kg b. wt. orally for 7 consecutive days before/after APH and CTX administration. Gas chromatography-mass spectrometry (GC-MS) combined with pattern recognition method and 2D gel electrophoresis (2-DE) proteomics were performed in this study to discover the underlying hematopoietic regulation mechanisms of AS on BD mouse model. RESULTS Unlike in the control group, the HSP90 and arginase levels increased significantly (p < 0.05) in the BD group, but the levels of carbonic anhydrase, GAPDH, catalase, fibrinogen, GSTP, carboxylesterase and hem binding protein in the BD group decreased significantly (p < 0.05). Unlike the levels in the BD group, the levels of these biomarkers were regulated to a normal state near the control group in the ASM group. Unlike in the control group, l-alanine, arachidonic acid, l-valine, octadecanoic acid, glycine, hexadecanoic acid, l-threonine, butanoic acid, malic acid, l-proline and propanoic acid levels increased significantly (p < 0.05) in the BD group, the levels of d-fructose in the BD group decreased significantly (p < 0.05). The relative concentrations of 12 endogenous metabolites were also significantly affected by the ASL, ASM, and ASH treatments. Notably, most of the altered BD-related metabolites were restored to normal state after ASM administration. CONCLUSION AS can promote hematopoietic activities, inhibit production of reactive oxygen species, regulate energy metabolism, increase antiapoptosis, and potentially contribute to the blood enrichment effects of AS against APH- and CTX-induced BD mice.
Collapse
Affiliation(s)
- Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Wangling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
- CONTACT Yanming WeiCollege of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province730070, People’s Republic of China
| |
Collapse
|
30
|
Shilo NR, Morris CR. Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention. Expert Rev Hematol 2017; 10:875-890. [PMID: 28817980 DOI: 10.1080/17474086.2017.1364989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) develops in a significant number of patients with sickle cell disease (SCD), resulting in increased morbidity and mortality. This review focuses on PH pathophysiology, risk stratification, and new recommendations for screening and treatment for patients with SCD. Areas covered: An extensive PubMed literature search was performed. While the pathophysiology of PH in SCD is yet to be fully deciphered, it is known that the etiology is multifactorial; hemolysis, hypercoagulability, hypoxemia, ischemic-reperfusion injury, oxidative stress, and genetic susceptibility all contribute in varying degrees to endothelial dysfunction. Hemolysis, in particular, seems to play a key role by inciting an imbalance in the regulatory axis of nitric oxide and arginine metabolism. Systematic risk stratification starting in childhood based on clinical features and biomarkers that enable early detection is necessary. Multi-faceted, targeted interventions, before irreversible vasculopathy develops, will allow for improved patient outcomes and life expectancy. Expert commentary: Despite progress in our understanding of PH in SCD, clinically proven therapies remain elusive and additional controlled clinical trials are needed. Prevention of disease starts in childhood, a critical window for intervention. Given the complex and multifactorial nature of SCD, patients will ultimately benefit from combination therapies that simultaneously targets multiple mechanisms.
Collapse
Affiliation(s)
- Natalie R Shilo
- a Department of Pediatrics, Division of Pulmonary Medicine , University of Connecticut Heath Center , Farmington , CT , USA
| | - Claudia R Morris
- b Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
31
|
Martí‐Carvajal AJ, Martí‐Amarista CE. Interventions for treating intrahepatic cholestasis in people with sickle cell disease. Cochrane Database Syst Rev 2017; 7:CD010985. [PMID: 28759700 PMCID: PMC6483462 DOI: 10.1002/14651858.cd010985.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Sickle cell disease is the most common hemoglobinopathy occurring worldwide and sickle cell intrahepatic cholestasis is a complication long recognized in this population. Cholestatic liver diseases are characterized by impaired formation or excretion (or both) of bile from the liver. There is a need to assess the clinical benefits and harms of the interventions used to treat intrahepatic cholestasis in people with sickle cell disease. This is an update of a previously published Cochrane Review. OBJECTIVES To assess the benefits and harms of the interventions for treating intrahepatic cholestasis in people with sickle cell disease. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, which comprises references identified from comprehensive electronic database searches and handsearching of relevant journals and abstract books of conference proceedings. We also searched the LILACS database (1982 to 23 May 2017), the WHO International Clinical Trials Registry Platform Search Portal (23 May 2017) and ClinicalTrials.gov.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 12 April 2017. SELECTION CRITERIA We searched for published or unpublished randomised controlled trials. DATA COLLECTION AND ANALYSIS Each author intended to independently extract data and assess the risk of bias of the trials by standard Cochrane methodologies; however, no trials were included in the review. MAIN RESULTS There were no randomised controlled trials identified. AUTHORS' CONCLUSIONS This updated Cochrane Review did not identify any randomised controlled trials assessing interventions for treating intrahepatic cholestasis in people with sickle cell disease. Randomised controlled trials are needed to establish the optimum treatment for this condition.
Collapse
|
32
|
Serjeant GR, Vichinsky E. Variability of homozygous sickle cell disease: The role of alpha and beta globin chain variation and other factors. Blood Cells Mol Dis 2017; 70:66-77. [PMID: 28689691 DOI: 10.1016/j.bcmd.2017.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
The single base molecular substitution characterizing sickle cell haemoglobin, β6glu→val, might be expected to result in predictable haematological and clinical features. However, the disease manifests remarkable diversity believed to reflect the interaction with other genetic and environmental factors. Some of the genetic modifiers include the beta globin haplotypes, alpha thalassaemia, factors influencing the persistence of fetal haemoglobin and the effects of the environment are addressed in this review. It is concluded that much of the genetic data present conflicting results. Environmental factors such as climate and infections, and psychological, educational and social support mechanisms also influence expression of the disease. These interactions illustrate how the expression of a 'single gene' disorder may be influenced by a variety of other genetic and environmental factors.
Collapse
Affiliation(s)
- Graham R Serjeant
- Sickle Cell Trust (Jamaica), 14 Milverton Crescent, Kingston 6, Jamaica.
| | - Elliott Vichinsky
- Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, University of California San Francisco, 747 52nd Street, Oakland, CA 94609, United States.
| |
Collapse
|
33
|
Hurt RT, McClave SA, Martindale RG, Ochoa Gautier JB, Coss-Bu JA, Dickerson RN, Heyland DK, Hoffer LJ, Moore FA, Morris CR, Paddon-Jones D, Patel JJ, Phillips SM, Rugeles SJ, Sarav, MD M, Weijs PJM, Wernerman J, Hamilton-Reeves J, McClain CJ, Taylor B. Summary Points and Consensus Recommendations From the International Protein Summit. Nutr Clin Pract 2017; 32:142S-151S. [DOI: 10.1177/0884533617693610] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ryan T. Hurt
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stephen A. McClave
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Robert G. Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Juan B. Ochoa Gautier
- Nestlé HealthCare Nutrition, Inc, Florham Park, New Jersey, USA, and the Department of Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Jorge A. Coss-Bu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Roland N. Dickerson
- Department of Clinical Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Daren K. Heyland
- Department of Critical Care Medicine, Queens University, Kingston, Ontario, Canada
| | - L. John Hoffer
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Claudia R. Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Douglas Paddon-Jones
- School of Health Professions, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jayshil J. Patel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Saúl J. Rugeles
- Department of Surgery, Pontificia Universidad Javeriana Medical School, Hospital Universitario San Ignacio, Bogota, Colombia
| | - Menaka Sarav, MD
- Department of Medicine, Northshore University Health System, Evanston, Illinois, USA
| | - Peter J. M. Weijs
- Department of Medicine, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
| | - Jan Wernerman
- Department of Clinical Science, Karolinska University, Stockholm, Sweden
| | - Jill Hamilton-Reeves
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Beth Taylor
- Department of Food and Nutrition, Barnes-Jewish Hospital, St Louis, Missouri, USA
| |
Collapse
|
34
|
Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017; 32:30S-47S. [PMID: 28388380 DOI: 10.1177/0884533617691250] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.
Collapse
Affiliation(s)
- Claudia R Morris
- 1 Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jill Hamilton-Reeves
- 2 Department of Dietetics and Nutrition, University of Kansas, Kansas City, Kansas, USA
| | - Robert G Martindale
- 3 Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Menaka Sarav
- 4 Department of Medicine, Division of Nephrology, Northshore University Health System, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
35
|
Khan SA, Damanhouri G, Ali A, Khan SA, Khan A, Bakillah A, Marouf S, Al Harbi G, Halawani SH, Makki A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease--- A special nutritional consideration. Nutr Metab (Lond) 2016; 13:50. [PMID: 27508000 PMCID: PMC4977632 DOI: 10.1186/s12986-016-0109-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/22/2016] [Indexed: 01/19/2023] Open
Abstract
Nutritional research in sickle cell disease has been the focus in recent times owing to not only specific nutritional deficiencies, but also the improvements associated with less painful episodes. Though hydroxyurea remains the drug of choice, certain adverse health effects on long term supplementation makes room for researches of different compounds. Macro and micro nutrient deficiencies, along with vitamins, play an important role in not only meeting the calorific needs, but also reducing clinical complications and growth abnormalities. Symptoms of hyper protein metabolism, increased cell turnover, increased cardiac output, and appetite suppression due to enhanced cytokine production, might give us leads for better understanding of the mechanisms involved. Different nutritional approaches comprising of traditional herbal therapies, antioxidants, flavonoids, vitamins, minerals etc., reducing oxidative stress and blood aggregation, have been tried out to increase the health potential. Nutritional therapies may also serve complementary to the newer therapies using ozone, hematopoietic stem cell transplantation, antifungal medications, erythropoietin etc. Herein we try to present a holistic picture of the different patho-physiological mechanisms, and nutritional strategies adopted.
Collapse
Affiliation(s)
- Shahida A Khan
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Ashraf Ali
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Sarah A Khan
- National Brain Research Center, Manesar, Gurgaon, 122051 India
| | - Aziz Khan
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Ahmed Bakillah
- Department of Medicine, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, New York 11203 United State of America (USA)
| | - Samy Marouf
- Department of Hematology, King Fahd Hospital of the Armed forces, Jeddah, Kingdom of Saudi Arabia ; Department of Medical Laboratory, King Fahd Hospital of the Armed forces, Jeddah, Kingdom of Saudi Arabia
| | - Ghazi Al Harbi
- Department of Hematology, Soliman Fakeeh Hospital Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Saeed H Halawani
- Department of Hematology, Umm Al Qura University, Faculty of Medicine, Makkah, Kingdom of Saudi Arabia
| | - Ahmad Makki
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Bakshi N, Morris CR. The role of the arginine metabolome in pain: implications for sickle cell disease. J Pain Res 2016; 9:167-75. [PMID: 27099528 PMCID: PMC4821376 DOI: 10.2147/jpr.s55571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is the most common hemoglobinopathy in the US, affecting approximately 100,000 individuals in the US and millions worldwide. Pain is the hallmark of SCD, and a subset of patients experience pain virtually all of the time. Of interest, the arginine metabolome is associated with several pain mechanisms highlighted in this review. Since SCD is an arginine deficiency syndrome, the contribution of the arginine metabolome to acute and chronic pain in SCD is a topic in need of further attention. Normal arginine metabolism is impaired in SCD through various mechanisms that contribute to endothelial dysfunction, vaso-occlusion, pulmonary complications, risk of leg ulcers, and early mortality. Arginine is a semiessential amino acid that serves as a substrate for protein synthesis and is the precursor to nitric oxide (NO), polyamines, proline, glutamate, creatine, and agmatine. Since arginine is involved in multiple metabolic processes, a deficiency of this amino acid has the potential to disrupt many cellular and organ functions. NO is a potent vasodilator that is depleted in SCD and may contribute to vaso-occlusive pain. As the obligate substrate for NO production, arginine also plays a mechanistic role in SCD-related pain, although its contribution to pain pathways likely extends beyond NO. Low global arginine bioavailability is associated with pain severity in both adults and children with SCD as well as other non-SCD pain syndromes. Preliminary clinical studies of arginine therapy in SCD demonstrate efficacy in treating acute vaso-occlusive pain, as well as leg ulcers and pulmonary hypertension. Restoration of arginine bioavailability through exogenous supplementation of arginine is, therefore, a promising therapeutic target. Phase II clinical trials of arginine therapy for sickle-related pain are underway and a Phase III randomized controlled trial is anticipated in the near future.
Collapse
Affiliation(s)
- Nitya Bakshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Claudia R Morris
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA; Pediatric Emergency Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
37
|
Goodman SR, Pace BS, Hansen KC, D'alessandro A, Xia Y, Daescu O, Glatt SJ. Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine. Exp Biol Med (Maywood) 2016; 241:772-81. [PMID: 27022133 DOI: 10.1177/1535370216640150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we provide a description of those candidate biomarkers which have been demonstrated by multiple-omics approaches to vary in correlation with specific clinical manifestations of sickle cell severity. We believe that future clinical analyses of severity phenotype will require a multiomic analysis, or an omics stack approach, which includes integrated interactomics. It will also require the analysis of big data sets. These candidate biomarkers, whether they are individual or panels of functionally linked markers, will require future validation in large prospective and retrospective clinical studies. Once validated, the hope is that informative biomarkers will be used for the identification of individuals most likely to experience severe complications, and thereby be applied for the design of patient-specific therapeutic approaches and response to treatment. This would be the beginning of precision medicine for sickle cell disease.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics and Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Kirk C Hansen
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Angelo D'alessandro
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Yang Xia
- Biochemistry and Molecular Biology Department, University of Texas at Houston, TX 77030, USA
| | - Ovidiu Daescu
- University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
38
|
Archer N, Galacteros F, Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am J Hematol 2015; 90:934-50. [PMID: 26178236 PMCID: PMC5752136 DOI: 10.1002/ajh.24116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 02/02/2023]
Abstract
Polymerization of HbS and cell sickling are the prime pathophysiological events in sickle cell disease (SCD). Over the last 30 years, a substantial understanding at the molecular level has been acquired on how a single amino acid change in the structure of the beta chain of hemoglobin leads to the explosive growth of the HbS polymer and the associated changes in red cell morphology. O2 tension and intracellular HbS concentration are the primary molecular drivers of this process, and are obvious targets for developing new therapies. However, polymerization and sickling are driving a complex network of associated cellular changes inside and outside of the erythrocyte, which become essential components of the inflammatory vasculopathy and result in a large range of potential acute and chronic organ damages. In these areas, a multitude of new targets for therapeutic developments have emerged, with several ongoing or planned new therapeutic interventions. This review outlines the key points of SCD pathophysiology as they relate to the development of new therapies, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Natasha Archer
- Pediatric Hematology/Oncology Dana-Farber/Children’s Hospital Blood Disorders and Cancer Center, Boston, Massachusetts
| | - Frédéric Galacteros
- Centre De Référence Des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, UPEC, Creteil, France
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
39
|
Morris CR, Kim HY, Klings ES, Wood J, Porter JB, Trachtenberg F, Sweeters N, Olivieri NF, Kwiatkowski JL, Virzi L, Hassell K, Taher A, Neufeld EJ, Thompson AA, Larkin S, Suh JH, Vichinsky EP, Kuypers FA. Dysregulated arginine metabolism and cardiopulmonary dysfunction in patients with thalassaemia. Br J Haematol 2015; 169:887-98. [PMID: 25907665 DOI: 10.1111/bjh.13452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/07/2015] [Indexed: 01/19/2023]
Abstract
Pulmonary hypertension (PH) commonly develops in thalassaemia syndromes, but is poorly characterized. The goal of this study was to provide a comprehensive description of the cardiopulmonary and biological profile of patients with thalassaemia at risk for PH. A case-control study of thalassaemia patients at high versus low PH-risk was performed. A single cross-sectional measurement for variables reflecting cardiopulmonary status and biological pathophysiology were obtained, including Doppler-echocardiography, 6-min-walk-test, Borg Dyspnoea Score, New York Heart Association functional class, cardiac magnetic resonance imaging (MRI), chest-computerized tomography, pulmonary function testing and laboratory analyses targeting mechanisms of coagulation, inflammation, haemolysis, adhesion and the arginine-nitric oxide pathway. Twenty-seven thalassaemia patients were evaluated, 14 with an elevated tricuspid-regurgitant-jet-velocity (TRV) ≥ 2·5 m/s. Patients with increased TRV had a higher frequency of splenectomy, and significantly larger right atrial size, left atrial volume and left septal-wall thickness on echocardiography and/or MRI, with elevated biomarkers of abnormal coagulation, lactate dehydrogenase (LDH) levels and arginase concentration, and lower arginine-bioavailability compared to low-risk patients. Arginase concentration correlated significantly to several echocardiography/MRI parameters of cardiovascular function in addition to global-arginine-bioavailability and biomarkers of haemolytic rate, including LDH, haemoglobin and bilirubin. Thalassaemia patients with a TRV ≥ 2·5 m/s have additional echocardiography and cardiac-MRI parameters suggestive of right and left-sided cardiac dysfunction. In addition, low arginine bioavailability may contribute to cardiopulmonary dysfunction in β-thalassaemia.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Pediatrics, Division of Emergency Medicine, Emory University School of Medicine, Emory Children's Centre for Cystic Fibrosis and Airways Disease Research, Atlanta, GA, USA
| | - Hae-Young Kim
- New England Research Institutes Watertown, Watertown, MA, USA
| | - Elizabeth S Klings
- The Pulmonary Centre, Boston University School of Medicine, Boston, MA, USA
| | - John Wood
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | | | - Nancy Sweeters
- Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | | | - Lisa Virzi
- New England Research Institutes Watertown, Watertown, MA, USA
| | - Kathryn Hassell
- Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ali Taher
- American University of Beirut, Beirut, Lebanon
| | | | - Alexis A Thompson
- Haematology, Oncology & Stem Cell Transplant, Children's Memorial Hospital, Chicago, IL, USA
| | - Sandra Larkin
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Jung H Suh
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Elliott P Vichinsky
- Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | |
Collapse
|
40
|
Martí-Carvajal AJ, Simancas-Racines D. Interventions for treating intrahepatic cholestasis in people with sickle cell disease. Cochrane Database Syst Rev 2015:CD010985. [PMID: 25769029 DOI: 10.1002/14651858.cd010985.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sickle cell disease is the most common hemoglobinopathy occurring worldwide and sickle cell intrahepatic cholestasis is a complication long recognized in this population. Cholestatic liver diseases are characterized by impaired formation or excretion (or both) of bile from the liver. There is a need to assess the clinical benefits and harms of the interventions used to treat intrahepatic cholestasis in people with sickle cell disease. OBJECTIVES To assess the benefits and harms of the interventions for treating intrahepatic cholestasis in people with sickle cell disease. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, which comprises references identified from comprehensive electronic database searches and handsearching of relevant journals and abstract books of conference proceedings. We also searched the LILACS database (1982 to 7 July 2014) and the WHO International Clinical Trials Registry Platform Search Portal (7 July 2014).Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 10 October 2014. SELECTION CRITERIA We searched for published or unpublished randomised controlled trials. DATA COLLECTION AND ANALYSIS Each author intended to independently extract data and assess the risk of bias of the trials by standard Cochrane Collaboration methodologies; however, no trials were included in the review. MAIN RESULTS There were no randomised controlled trials identified. AUTHORS' CONCLUSIONS This Cochrane Review did not identify any randomised controlled trials assessing interventions for treating intrahepatic cholestasis in people with sickle cell disease. Randomised controlled trials are needed to establish the optimum treatment for this condition.
Collapse
|