1
|
Belalcazar A, Heist EK. Comparison of efficiency of PFA catheter designs by computer modeling. J Cardiovasc Electrophysiol 2024. [PMID: 39377574 DOI: 10.1111/jce.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Various catheter designs are appearing for Pulsed Field Ablation (PFA). It is unclear if they differ in terms of safety and efficiency. PFA studies have reported hemolysis, kidney injury, high troponin, among other side effects. METHODS Using a CT-derived computer model, we compared catheter designs using two metrics: (1) efficiency: power delivered to an atrial wall target, expressed as a percent of total generator power; and (2) safety: electric current to achieve 90% transmurality (since more energy causes more collateral effects), as well as the corresponding electrode current density (ECD), a heat and bubble metric. The following catheter designs were compared: penta-spline basket, Nitinol spheres (focal 9 mm and large 1-shot), circular, balloon, and flex-circuit. Target was a 6 × 47 mm circumferential segment of atrial wall at LPV antrum. Transmurality was defined as percent of target having >600 volts per centimeter (V/cm) electric field needed for electroporation. RESULTS Efficiency was 0.9, 1.4, 2.7, 5.9, 10, and 12% for the large 1-shot and 9 mm Nitinol spheres, penta-spline, circular, flex spline, and balloon catheters, respectively. Regarding safety, currents for 90% transmurality were 70, 39,36,12.5, 5.3, and 4 Amps for the same respective catheters, with less being safer. ECD was 124, 25, 74, 83, 41, and 31 A/cm2, respectively. CONCLUSION Computer models demonstrated a remarkable range in efficiency among catheters studied. Those having less atrial blood exposure had the highest efficiencies, with factors of up to 13X more efficiency compared to exposed ones. Higher efficiency designs have less collateral current and are safer. Confirmatory in-vivo studies are required.
Collapse
Affiliation(s)
| | - E Kevin Heist
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
van Zyl M, DeSimone CV. The potato model: A root of all pulsed field ablation experimentation? J Interv Card Electrophysiol 2024:10.1007/s10840-024-01924-6. [PMID: 39365542 DOI: 10.1007/s10840-024-01924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Martin van Zyl
- Cardiac Electrophysiology, Royal Jubilee Hospital, Victoria, BC, Canada.
- University of British Columbia, Vancouver, Canada.
- Royal Jubilee Hospital, 1952 Bay St, Victoria, BC, V8R 1J8, Canada.
| | | |
Collapse
|
3
|
Shen C, Bai R, Jia Z, Feng M, Yu Y, Du X, Fu G, Wu T, Jiang Y, Jin H, Yu L, Fang R, Zhuo W, Dai J, Gao F, Wang B, Chen S, Qiu X, Du T, Yu X, Luo C, Lu Y, Ouyang F, Chu H. Unexpected transient atrioventricular block and slow junctional rhythm using pulsed field ablation for slow pathway modification: Excited or cautious for ablators. Heart Rhythm 2024:S1547-5271(24)03319-8. [PMID: 39304002 DOI: 10.1016/j.hrthm.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Data regarding the effects of pulsed field ablation (PFA) on atrioventricular nodal reentrant tachycardia (AVNRT) are limited. OBJECTIVE This study was undertaken to evaluate the outcomes of PFA for AVNRT and its impact on dual-pathway electrophysiology. METHODS A larger cohort of patients with typical AVNRT underwent slow pathway (SP) modification (SPM) using a focal PFA catheter in a biphasic/bipolar manner. The primary endpoints were the efficacy and safety of PFA during the procedure and at 6-month follow-up. RESULTS The acute success of SPM was achieved in all 40 patients. The total ablation time was 7.9 ± 3.8 seconds for 6.4 ± 2.2 ablation sites (ASs). Slow junctional rhythm (SJR) was induced in 32 (80%) patients, lasting 28.9 ± 10.3 seconds in 3.0 ± 1.1 ASs per patient. SP was located 11.1 ± 1.2 mm from the largest His activation (LHA). At 9 ASs, SJR could be reinduced after an increase of contact force (CF) from 1.3 ± 0.5g to 6.4 ± 1.3 g (P < .0001). Transient atrioventricular block (AVB) was recorded in 7 (17.5%) patients (1 second-degree and 6 third-degree AVB) lasting 435.3 ± 227.4 seconds, with a shorter AS-LHA distance than patients without AVB (7.7 ± 0.6 mm vs. 11.3 ± 1 mm; P < .0001). PFA-related delayed atrial-His (n = 6) and His-atrial (n = 1) conduction preceded transient AVB with a constant His-ventricular interval. Normal PR interval was restored within 24 hours. All patients maintained sinus rhythm without any significant adverse events during 6-month follow-up. CONCLUSION Despite the high efficiency of PFA for SPM, the notable incidence of transient AVB warranted caution when applying it near the His bundle. SJR frequently occurred during SPM and was dependent on moderate CF.
Collapse
Affiliation(s)
- Caijie Shen
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Rong Bai
- The University of Arizona College of Medicine-Phoenix, Banner University Medical Center Phoenix, Phoenix, AZ.
| | - Zhenyu Jia
- Health Science Center, Ningbo University, Ningbo, China
| | - Mingjun Feng
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yibo Yu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xianfeng Du
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guohua Fu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Tao Wu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongxing Jiang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - He Jin
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lipu Yu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Renyuan Fang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weidong Zhuo
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiating Dai
- Health Science Center, Ningbo University, Ningbo, China
| | - Fang Gao
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Binhao Wang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Si Chen
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinhui Qiu
- The University of Arizona College of Medicine-Phoenix, Banner University Medical Center Phoenix, Phoenix, AZ
| | - Tingsha Du
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinzhi Yu
- Health Science Center, Ningbo University, Ningbo, China
| | - Chenxu Luo
- Health Science Center, Ningbo University, Ningbo, China
| | - Yiqi Lu
- Health Science Center, Ningbo University, Ningbo, China
| | - Feifan Ouyang
- Department of Cardiology, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany.
| | - Huimin Chu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Narkar A, Kaboudian A, Ardershirpour Y, Casciola M, Feaster TK, Blinova K. In Vitro Assay Development to Study Pulse Field Ablation Outcome Using Solanum Tuberosum. Int J Mol Sci 2024; 25:8967. [PMID: 39201653 PMCID: PMC11354718 DOI: 10.3390/ijms25168967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Exposing cells to intense and brief electric field pulses can modulate cell permeability, a phenomenon termed electroporation. When applied in medical treatments of diseases like cancer and cardiac arrhythmias, depending on level of cellular destruction, it is also referred to as irreversible electroporation (IRE) or Pulsed Field Ablation (PFA). For ablation device testing, several pulse parameters need to be characterized in a comprehensive manner to assess lesion boundary and efficacy. Overly aggressive voltages and application numbers increase animal burden. The potato tuber is a widely used initial model for the early testing of electroporation. The aim of this study is to characterize and refine bench testing for the ablation outcomes of PFA in this simplistic vegetal model. For in vitro assays, several pulse parameters like voltage, duration, and frequency were modulated to study effects not only on 2D ablation area but also 3D depth and volume. As PFA is a relatively new technology with minimal thermal effects, we also measured temperature changes before, during, and after ablation. Data from experiments were supplemented with in silico modeling to examine E-field distribution. We have estimated the irreversible electroporation threshold in Solanum Tuberosum to be at 240 V/cm. This bench testing platform can screen several pulse recipes at early stages of PFA device development in a rapid and high-throughput manner before proceeding to laborious trials for IRE medical devices.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | | | | | | | | |
Collapse
|
6
|
Squara F, Supple G, Liuba I, Wasiak M, Zado E, Desjardins B, Marchlinski FE. Value of high-output pace-mapping of the right phrenic nerve for enabling safe radiofrequency ablation of atrial fibrillation: insights from three-dimensional computed tomography segmentation. Europace 2024; 26:euae207. [PMID: 39082747 PMCID: PMC11321358 DOI: 10.1093/europace/euae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS Right phrenic nerve (RPN) injury is a disabling but uncommon complication of atrial fibrillation (AF) radiofrequency ablation. Pace-mapping is widely used to infer RPN's course, for limiting the risk of palsy by avoiding ablation at capture sites. However, information is lacking regarding the distance between the endocardial sites of capture and the actual anatomic RPN location. We aimed at determining the distance between endocardial sites of capture and anatomic CT location of the RPN, depending on the capture threshold. METHODS AND RESULTS In consecutive patients undergoing AF radiofrequency ablation, we defined the course of the RPN on the electroanatomical map with high-output pacing at up to 50 mA/2 ms, and assessed RPN capture threshold (RPN-t). The true anatomic course of the RPN was delineated and segmented using CT scan, then merged with the electroanatomical map. The distance between pacing sites and the RPN was assessed. In 45 patients, 1033 pacing sites were analysed. Distances from pacing sites to RPN ranged from 7.5 ± 3.0 mm (min 1) when RPN-t was ≤10 mA to 19.2 ± 6.5 mm (min 9.4) in cases of non-capture at 50 mA. A distance to the phrenic nerve > 10 mm was predicted by RPN-t with a ROC curve area of 0.846 [0.821-0.870] (P < 0.001), with Se = 80.8% and Sp = 77.5% if RPN-t > 20 mA, Se = 68.0% and Sp = 91.6% if RPN-t > 30 mA, and Se = 42.4% and Sp = 97.6% if non-capture at 50 mA. CONCLUSION These data emphasize the utility of high-output pace-mapping of the RPN. Non-capture at 50 mA/2 ms demonstrated very high specificity for predicting a distance to the RPN > 10 mm, ensuring safe radiofrequency delivery.
Collapse
Affiliation(s)
- Fabien Squara
- Department of Cardiology, Pasteur University Hospital, 30 avenue de la Voie Romaine, 06000 Nice, France
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gregory Supple
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ioan Liuba
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Michal Wasiak
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Erica Zado
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Benoit Desjardins
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Francis E Marchlinski
- Department of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
8
|
Shen C, Du X, Dai J, Feng M, Yu Y, Liu J, Fu G, Wang B, Jiang Y, Jin H, Chu H. Outcomes of Focal Pulsed Field Ablation for Paroxysmal Supraventricular Tachycardia. Can J Cardiol 2024; 40:1294-1303. [PMID: 38242530 DOI: 10.1016/j.cjca.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pulsed field ablation (PFA) is primarily used for treatment of atrial fibrillation as it provides better safety and efficacy. However, there are limited data available on the use of PFA for paroxysmal supraventricular tachycardia (PSVT). The study sought to describe the outcomes of PSVT ablation with a novel focal contact force (CF)-sensing PFA. METHODS In this first-in-human pilot study, a focal CF-sensing PFA catheter was used for mapping and ablation navigated with an electroanatomic mapping system (EAMS). Pulsed field energy was delivered as biphasic/bipolar electrical pulse trains with 2000 V/delivery. CF was controlled from 2 g to 10 g during PFA. RESULTS Procedural acute success was achieved without general anaesthesia or conscious sedation in all 10 patients, including 7 patients diagnosed with typical atrioventricular nodal re-entrant tachycardias and 3 patients with orthodromic reciprocating tachycardias. Successful target ablation time was 2.0 ± 0.5 seconds per patient, and the acute procedural success at the first single site was achieved in 5 patients. The mean skin-to-skin procedure time was 79.4 ± 15 minutes, PFA catheter dwell time was 50.1 ± 14 minutes, and fluoroscopy time was 6.2 ± 7 minutes. Maintenance of sinus rhythm was observed in all patients within 6-month follow-up. No serious adverse events occurred in any subjects during PFA or during the 6-month follow-up. CONCLUSIONS A focal CF-sensing PFA catheter could effectively, rapidly, and safely ablate PSVT in conscious patients. CLINICAL TRIAL REGISTRATION NCT05770921.
Collapse
Affiliation(s)
- Caijie Shen
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xianfeng Du
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiating Dai
- Health Science Center, Ningbo University, Ningbo, China
| | - Mingjun Feng
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yibo Yu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jing Liu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guohua Fu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Binhao Wang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongxing Jiang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - He Jin
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Huimin Chu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
9
|
Wang Z, Liang M, Sun J, Zhang J, Han Y. A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology. J Cardiovasc Dev Dis 2024; 11:175. [PMID: 38921675 PMCID: PMC11204042 DOI: 10.3390/jcdd11060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, the prevalence of and mortality associated with cardiovascular diseases have been rising in most countries and regions. AF is the most common arrhythmic condition, and there are several treatment options for AF. Pulmonary vein isolation is an effective treatment for AF and is the cornerstone of current ablation techniques, which have one major limitation: even when diagnosed and treated at a facility that specializes in ablation, patients have a greater chance of recurrence. Therefore, there is a need to develop better ablation techniques for the treatment of AF. This article first compares the current cryoablation (CBA) and radiofrequency ablation (RFA) techniques for the treatment of AF and discusses the utility and advantages of the development of pulsed-field ablation (PFA) technology. The current research on PFA is summarized from three perspectives, namely, simulation experiments, animal experiments, and clinical studies. The results of different stages of experiments are summarized, especially during animal studies, where pulmonary vein isolation was carried out effectively without causing injury to the phrenic nerve, esophagus, and pulmonary veins, with higher safety and shorter incision times. This paper focuses on a review of various a priori and clinical studies of this new technique for the treatment of AF.
Collapse
Affiliation(s)
- Zhen Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China;
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Ming Liang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Shenyang 110016, China
| | - Jingyang Sun
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Jie Zhang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Shenyang 110016, China
| |
Collapse
|
10
|
Sanders P, Healy S, Emami M, Kotschet E, Miller A, Kalman JM. Initial clinical experience with the balloon-in-basket pulsed field ablation system: acute results of the VOLT CE mark feasibility study. Europace 2024; 26:euae118. [PMID: 38701222 PMCID: PMC11098042 DOI: 10.1093/europace/euae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
AIMS Pulsed field ablation (PFA) for the treatment of atrial fibrillation (AF) potentially offers improved safety and procedural efficiencies compared with thermal ablation. Opportunities remain to improve effective circumferential lesion delivery, safety, and workflow of first-generation PFA systems. In this study, we aim to evaluate the initial clinical experience with a balloon-in-basket, 3D integrated PFA system with a purpose-built form factor for pulmonary vein (PV) isolation. METHODS AND RESULTS The VOLT CE Mark Study is a pre-market, prospective, multi-centre, single-arm study to evaluate the safety and effectiveness of the Volt™ PFA system for the treatment of paroxysmal (PAF) or persistent AF (PersAF). Feasibility sub-study subjects underwent phrenic nerve evaluation, endoscopy, chest computed tomography, and cerebral magnetic resonance imaging. Study endpoints were the rate of primary serious adverse event within 7 days and acute procedural effectiveness. A total of 32 subjects (age 61.6 ± 9.6 years, 65.6% male, 84.4% PAF) were enrolled and treated in the feasibility sub-study and completed a 30-day follow-up. Acute effectiveness was achieved in 99.2% (127/128) of treated PVs (96.9% of subjects, 31/32) with 23.8 ± 4.2 PFA applications/subject. Procedure, fluoroscopy, LA dwell, and transpired ablation times were 124.6 ± 28.1, 19.8 ± 8.9, 53.0 ± 21.0, and 48.0 ± 19.9 min, respectively. Systematic assessments of initial safety revealed no phrenic nerve injury, pulmonary vein stenosis, or oesophageal lesions causally related to the PFA system and three subjects with silent cerebral lesions (9.4%). There were no primary serious adverse events. CONCLUSION The initial clinical use of the Volt PFA System demonstrates acute safety and effectiveness in the treatment of symptomatic, drug refractory AF.
Collapse
Affiliation(s)
- Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, 1 Port Road, Adelaide, South Australia 5000, Australia
| | - Stewart Healy
- Department of Cardiology, Victorian Heart Hospital, Clayton, Victoria, Australia
| | - Mehrdad Emami
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, 1 Port Road, Adelaide, South Australia 5000, Australia
| | - Emily Kotschet
- Department of Cardiology, Victorian Heart Hospital, Clayton, Victoria, Australia
| | | | - Jonathan M Kalman
- Department of Cardiology, University of Melbourne, Royal Melbourne Hospital and Baker Institute, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Mohanty S, Casella M, Compagnucci P, Torlapati PG, Della Rocca DG, La Fazia VM, Gianni C, Chierchia GB, MacDonald B, Mayedo A, Khan UN, Allison J, Bassiouny M, Gallinghouse GJ, Burkhardt JD, Horton R, Al-Ahmad A, Di Biase L, de Asmundis C, Russo AD, Natale A. Acute Kidney Injury Resulting From Hemoglobinuria After Pulsed-Field Ablation in Atrial Fibrillation: Is it Preventable? JACC Clin Electrophysiol 2024; 10:709-715. [PMID: 38310489 DOI: 10.1016/j.jacep.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND High-voltage pulses can cause hemolysis. OBJECTIVES The authors evaluated the occurrence of hemoglobinuria after pulsed-field ablation (PFA) and its impact on renal function in patients with atrial fibrillation (AF). METHODS A consecutive series of patients with AF undergoing PFA were included in this analysis. The initial patients who did not receive postablation hydration immediately after the procedure were classified as group 1 (n = 28), and the rest of the study patients who received planned fluid infusion (0.9% sodium chloride ≥2 L) after the procedure were categorized as group 2 (n = 75). RESULTS Of the 28 patients in group 1, 21 (75%) experienced hemoglobinuria during the 24 hours after catheter ablation. The mean postablation serum creatinine (S-Cr) was significantly higher than the baseline value in those 21 patients (1.46 ± 0.28 mg/dL vs 0.86 ± 0.24 mg/dL, P < 0.001). Of those 21 patients, 4 (19%) had S-Cr. >2.5 mg/dL (mean: 2.95 ± 0.21 mg/dL). The mean number of PF applications was significantly higher in those 4 patients than in the other 17 patients experiencing hemoglobinuria (94.63 ± 3.20 vs 46.75 ± 9.10, P < 0.001). In group 2 patients, no significant changes in S-Cr were noted. The group 2 patients received significantly higher amounts of fluid infusion after catheter ablation than did those in group 1 (2,082.50 ± 258.08 mL vs 494.01 ± 71.65 mL, P < 0.001). In multivariable analysis, both hydration (R2 = 0.63, P < 0.01) and number of PFA applications (R2 = 0.33, P < 0.01) were independent predictors of postprocedure acute kidney injury. CONCLUSIONS On the basis of our findings, both the number of PFA applications and postablation hydration were independent predictors of renal insult that could be prevented using planned fluid infusion immediately after the procedure.
Collapse
Affiliation(s)
- Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Michela Casella
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Paolo Compagnucci
- Department of Electrophysiology, Ospedali Riuniti Hospital, Ancona, Italy
| | - Prem Geeta Torlapati
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | | | | | - Carola Gianni
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | | | - Bryan MacDonald
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Angel Mayedo
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Umer N Khan
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - John Allison
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Mohamed Bassiouny
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | | | - John D Burkhardt
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Rodney Horton
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Amin Al-Ahmad
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA
| | - Luigi Di Biase
- Department of Electrophysiology, Albert Einstein College of Medicine at Montefiore Hospital, New York, New York, USA
| | | | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA; Department of Electrophysiology, Albert Einstein College of Medicine at Montefiore Hospital, New York, New York, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, California, USA; Department of Internal Medicine, Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
12
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
13
|
Farnir FIP, Luermans JGLM, Farnir FPFJDJ, Chaldoupi SM, Linz D. Impedance drop during focal monopolar pulsed field ablation in the atrium. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01793-z. [PMID: 38499824 DOI: 10.1007/s10840-024-01793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Florent I P Farnir
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Justin G L M Luermans
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | | | - Sevasti-Maria Chaldoupi
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands.
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Maastricht Heart+Vascular Center, Maastricht UMC+, 6202 AZ, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Terricabras M, Martins RP, Peinado R, Derejko P, Mont L, Ernst S, Herranz D, Bailleul C, Verma A. Cardiac Pulsed Field Ablation Lesion Durability Assessed by Polarization-Sensitive Optical Coherence Reflectometry. Circ Arrhythm Electrophysiol 2024; 17:e012255. [PMID: 38318720 PMCID: PMC10949975 DOI: 10.1161/circep.123.012255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Pulsed field ablation uses electrical fields to cause nonthermal cell death over several hours. Polarization-sensitive optical coherence reflectometry is an optical imaging technique that can detect changes in the tissue ultrastructure in real time, which occurs when muscular tissue is damaged. The objective of this study was to evaluate the ability of a polarization-sensitive optical coherence reflectometry system to predict the development of chronic lesions based on acute changes in tissue birefringence during pulsed field ablation. METHODS Superior vena cava isolation was performed in 30 swine using a biphasic, bipolar pulsed field ablation system delivered with a nonirrigated focal tip catheter. Acute changes in tissue birefringence and voltage abatement were analyzed for each individual lesion. A high-resolution electroanatomical map was performed at baseline and 4 to 12 weeks after ablation to locate electrical gaps in the ablated area. RESULTS A total of 141 lesions were delivered and included in the analysis. Acute electrical isolation based on the electroanatomical map was achieved in 96% of the animals, but chronic isolation was only seen in 14 animals (46%). The mean voltage abatement of lesions that showed recovery was 82.8%±14.6% versus 84.4%±17.4% for those that showed fibrosis (P=0.7). The mean acute reduction in tissue birefringence in points demonstrating fibrosis was 63.8%±11.3% versus 9.1%±0.1% in the points that resulted in electrical gaps. A threshold of acute reduction of birefringence of ≥20% could predict chronic lesion formation with a sensitivity of 96% and a specificity of 83%. CONCLUSIONS Acute tissue birefringence changes assessed with polarization-sensitive optical coherence reflectometry during pulsed field ablation can predict chronic lesion formation and guide the ablation procedure although limited by the tissue thickness.
Collapse
Affiliation(s)
- Maria Terricabras
- Sunnybrook Research Institute, University of Toronto, ON, Canada (M.T.)
| | - Raphael P. Martins
- Centre Hospitalier Universitaire de Rennes, Centres d’Investigation Clinique - Innovation Technologique (CIC-IT), Laboratoire Traitement du Signal et de l’Image Institut National de la Santé et de la Recherche Médicale (LTSI INSERM) 1099, University of Rennes, France (R.P.M.)
| | - Rafael Peinado
- University Hospital La Paz, Autonomous University of Madrid, Spain (R.P.)
| | | | - Lluís Mont
- Hospital Clínic, Universitat de Barcelona, Spain (L.M.)
- Instituto de Investigaciones Biomèdicas August Pi i Sunyer, Barcelona, Spain (L.M.)
- Centro de Investigación en Red Cardiovascular, Madrid, Spain (L.M.)
| | - Sabine Ernst
- Royal Brompton Hospital, Imperial College London, United Kingdom (S.E.)
| | | | | | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, QC, Canada (A.V.)
| |
Collapse
|
15
|
Chinyere IR, Mori S, Hutchinson MD. Cardiac blood vessels and irreversible electroporation: findings from pulsed field ablation. VESSEL PLUS 2024; 8:7. [PMID: 38646143 PMCID: PMC11027649 DOI: 10.20517/2574-1209.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The clinical use of irreversible electroporation in invasive cardiac laboratories, termed pulsed field ablation (PFA), is gaining early enthusiasm among electrophysiologists for the management of both atrial and ventricular arrhythmogenic substrates. Though electroporation is regularly employed in other branches of science and medicine, concerns regarding the acute and permanent vascular effects of PFA remain. This comprehensive review aims to summarize the preclinical and adult clinical data published to date on PFA's effects on pulmonary veins and coronary arteries. These data will be contrasted with the incidences of iatrogenic pulmonary vein stenosis and coronary artery injury secondary to thermal cardiac ablation modalities, namely radiofrequency energy, laser energy, and liquid nitrogen-based cryoablation.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Mathew D. Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| |
Collapse
|
16
|
Pu S, Liu F, Chen Y, Luo C, Li P, Chen Y, Fu L, Liu H, Ye X, Wu S, Xue Y, Lin W. 'Single-shot' pulmonary vein isolation using a novel lotos pulsed field ablation catheter: a pre-clinical evaluation of feasibility, safety, and 30-day efficacy. Europace 2023; 26:euad362. [PMID: 38109928 PMCID: PMC10757452 DOI: 10.1093/europace/euad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
AIMS Pulsed field ablation (PFA) is emerging as a non-thermal, tissue-specific technique for pulmonary vein isolation (PVI) in atrial fibrillation therapy. This pre-clinical study aims to investigate the feasibility and safety of PVI using a novel PFA system including a nanosecond-scale PFA generator, a novel lotos PFA catheter, and a customized 12 Fr steerable sheath. METHODS AND RESULTS A total of 11 Yorkshire swine were included in this study, with 4 in the acute cohort and 7 in the chronic cohort. Under general anaesthesia, transseptal puncture and pulmonary vein (PV) angiography was initially performed. The PFA catheter was navigated to position at the right and left PV antrum after the electroanatomic reconstruction of the left atrium. Biphasic PFA applications were performed on PVs in both the spindle-shaped and the lotos-shaped poses. Pulmonary vein isolation and PFA-associated safety were assessed 30 min after ablation in both cohorts and 30 days later in the chronic cohort. Detailed necropsy and histopathology were performed. Additional intracardiac echocardiography and coronary angiogram were evaluated for safety. All target PVs (n = 20) were successfully isolated on the first attempt. No spasm of coronary artery or microbubble was seen during the procedure. Eleven of 12 PVs (91.6%) remained in isolation at the 30-day invasive study. No evidence of PV stenosis was observed in any targets. However, transient diaphragm capture occurred in 17.6%. Histopathological examinations showed no evidence of collateral injury. CONCLUSION This study provides scientific evidence demonstrating the safety and efficacy of the novel PFA catheter and system for single-shot PVI, which shows great potential.
Collapse
Affiliation(s)
- Sijia Pu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Fangzhou Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Yuhan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Cihua Luo
- Insight Medtech Co., Ltd, Shenzhen, China
| | - Peng Li
- Insight Medtech Co., Ltd, Shenzhen, China
| | - Yanlin Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Lu Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Huiyi Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Xingdong Ye
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Yumei Xue
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| | - Weidong Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| |
Collapse
|
17
|
Kaszala K, Ellenbogen KA. Is it good to be cool before you PFA? J Cardiovasc Electrophysiol 2023; 34:2134-2135. [PMID: 36218018 DOI: 10.1111/jce.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Karoly Kaszala
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
18
|
Kueffer T, Seiler J, Madaffari A, Mühl A, Asatryan B, Stettler R, Haeberlin A, Noti F, Servatius H, Tanner H, Baldinger SH, Reichlin T, Roten L. Pulsed-field ablation for the treatment of left atrial reentry tachycardia. J Interv Card Electrophysiol 2023; 66:1431-1440. [PMID: 36496543 PMCID: PMC10457215 DOI: 10.1007/s10840-022-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We describe our initial experience using a multipolar pulsed-field ablation catheter for the treatment of left atrial (LA) reentry tachycardia. METHODS We included all patients with LA reentry tachycardia treated with PFA at our institution between September 2021 and March 2022. The tachycardia mechanism was identified using 3D electro-anatomical mapping (3D-EAM). Subsequently, a roof line, anterior line, or mitral isthmus line was ablated as appropriate. Roof line ablation was always combined with LA posterior wall (LAPW) ablation. Positioning of the PFA catheter was guided by a 3D-EAM system and by fluoroscopy. Bidirectional block across lines was verified using standard criteria. Additional radiofrequency ablation (RFA) was used to achieve bidirectional block as necessary. RESULTS Among 22 patients (median age 70 (59-75) years; 9 females), we identified 27 LA reentry tachycardia: seven roof dependent macro-reentries, one posterior-wall micro-reentry, twelve peri-mitral macro-reentries, and seven anterior-wall micro-reentries. We ablated a total of 20 roof lines, 13 anterior lines, and 6 mitral isthmus lines. Additional RFA was necessary for two anterior lines (15%) and three mitral isthmus lines (50%). Bidirectional block was achieved across all roof lines, 92% of anterior lines, and 83% of mitral isthmus lines. We observed no acute procedural complications. CONCLUSION Ablation of a roof line and of the LAPW is feasible, effective, and safe using this multipolar PFA catheter. However, the catheter is less suited for ablation of the mitral isthmus and the anterior line. A focal pulsed-field ablation catheter may be more effective for ablation of these lines. This study shows the feasibility to ablate linear lesions with a multipolar pulsed-field ablation catheter. 27 left atrial reentry tachycardia were treated in 22 patients.
Collapse
Affiliation(s)
- Thomas Kueffer
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Jens Seiler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Antonio Madaffari
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Aline Mühl
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Robin Stettler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
- ARTORG Center, University of Bern, Bern, Switzerland
| | - Fabian Noti
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Helge Servatius
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Hildegard Tanner
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Samuel H Baldinger
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland
| | - Laurent Roten
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010, Bern, Switzerland.
| |
Collapse
|
19
|
Tabaja C, Younis A, Hussein AA, Taigen TL, Nakagawa H, Saliba WI, Sroubek J, Santangeli P, Wazni OM. Catheter-Based Electroporation: A Novel Technique for Catheter Ablation of Cardiac Arrhythmias. JACC Clin Electrophysiol 2023; 9:2008-2023. [PMID: 37354168 DOI: 10.1016/j.jacep.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 06/26/2023]
Abstract
Catheter ablation of arrhythmias is now standard of care in invasive electrophysiology. Current ablation strategies are based on the use of thermal energy. With continuous efforts to optimize thermal energy delivery, effectiveness has greatly improved; however, safety concerns persist. This review focuses on a novel ablation technology, irreversible electroporation (IRE), also known as pulsed-field ablation which may be a safer alternative for arrhythmia management. Pulsed-field ablation is thought to be a nonthermal ablation that applies short-duration high-voltage electrical fields to ablate myocardial tissue with high selectivity and durability while sparing important neighboring structures such as the esophagus and phrenic nerves. There are multiple ongoing studies investigating the potential superior outcomes of IRE compared to radiofrequency ablation in treating patients with atrial and ventricular arrhythmias. In this review, we describe the current evidence of preclinical and clinical trials that have shown promising results of catheter-based IRE.
Collapse
Affiliation(s)
- Chadi Tabaja
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arwa Younis
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ayman A Hussein
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tyler L Taigen
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hiroshi Nakagawa
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Walid I Saliba
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jakub Sroubek
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pasquale Santangeli
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oussama M Wazni
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
20
|
Jeon HJ, Choi HS, Lee JM, Kim ES, Keum B, Jeen YT, Lee HS, Chun HJ, Jeong S, Kim HB, Kim JH. Assessment of efficacy and safety of advanced endoscopic irreversible electroporation catheter in the esophagus. Sci Rep 2023; 13:7917. [PMID: 37193702 PMCID: PMC10188560 DOI: 10.1038/s41598-023-33635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/16/2023] [Indexed: 05/18/2023] Open
Abstract
Nonthermal irreversible electroporation (NTIRE) is emerging as a promising tissue ablation technique. However, maintaining irreversible electroporation (IRE) electrodes against displacement during strong esophageal spasms remains an obstacle. The present study aimed to evaluate the efficacy and safety of newly designed balloon-type endoscopic IRE catheters. Six pigs were randomly allocated to each catheter group, and each pig was subjected to four ablations at alternating voltages of 1500 V and 2000 V. Esophagogastroscopy was performed during the IRE. The ability of balloon-type catheters to execute complete IRE with 40 pulses was assessed. The success rate was higher for the balloon-type catheter than that for the basket-type (12/12 [100%] vs. 2/12 [16.7%], p < 0.001). Following gross inspection and histologic analysis of the 1500-V vs. 2000-V balloon-type catheter revealed a larger mucosal damage area (105.3 mm2 vs. 140.8 mm2, p = 0.004) and greater damage depth (476 μm vs. 900 μm, p = 0.02). Histopathology of the ablated tissue revealed separated epithelium, inflamed lamina propria, congested muscularis mucosa, necrotized submucosa, and disorganized muscularis propria. Balloon-type catheters demonstrated efficacy, achieving full electrical pulse sequences under NTIRE conditions, and a safe histological profile below 2000 V (1274 V/cm). Optimal electrical conditions and electrode arrays pose ongoing challenges.
Collapse
Affiliation(s)
- Han Jo Jeon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jae Min Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yoon Tae Jeen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hong Sik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Jeong
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hyuk Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Mattison L, Verma A, Tarakji KG, Reichlin T, Hindricks G, Sack KL, Önal B, Schmidt MM, Miklavčič D, Sigg DC. Effect of contact force on pulsed field ablation lesions in porcine cardiac tissue. J Cardiovasc Electrophysiol 2023; 34:693-699. [PMID: 36640426 DOI: 10.1111/jce.15813] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Contact force has been used to titrate lesion formation for radiofrequency ablation. Pulsed field ablation (PFA) is a field-based ablation technology for which limited evidence on the impact of contact force on lesion size is available. METHODS Porcine hearts (n = 6) were perfused using a modified Langendorff set-up. A prototype focal PFA catheter attached to a force gauge was held perpendicular to the epicardium and lowered until contact was made. Contact force was recorded during each PFA delivery. Matured lesions were cross-sectioned, stained, and the lesion dimensions measured. RESULTS A total of 82 lesions were evaluated with contact forces between 1.3 and 48.6 g. Mean lesion depth was 4.8 ± 0.9 mm (standard deviation), mean lesion width was 9.1 ± 1.3 mm, and mean lesion volume was 217.0 ± 96.6 mm3 . Linear regression curves showed an increase of only 0.01 mm in depth (depth = 0.01 × contact force + 4.41, R2 = 0.05), 0.03 mm in width (width = 0.03 × contact force + 8.26, R2 = 0.13) for each additional gram of contact force, and 2.20 mm3 in volume (volume = 2.20 × contact force + 162, R2 = 0.10). CONCLUSION Increasing contact force using a bipolar, biphasic focal PFA system has minimal effects on acute lesion dimensions in an isolated porcine heart model and achieving tissue contact is more important than the force with which that contact is made.
Collapse
Affiliation(s)
| | - Atul Verma
- McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | - Tobias Reichlin
- Department of Cardiology, Inselspital-University Hospital Bern, University of Bern, Bern, Switzerland
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | | | | | | | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
22
|
Savona SJ, Hummel J. Pulsed-field ablation: A little force to be reckoned with. J Cardiovasc Electrophysiol 2023; 34:1320-1321. [PMID: 36807629 DOI: 10.1111/jce.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Affiliation(s)
- Salvatore J Savona
- Division of Electrophysiology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John Hummel
- Division of Electrophysiology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|