1
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
2
|
Wei J, Guo W, Wang R, Paul Estillore J, Belke D, Chen YX, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. RyR2 Serine-2030 PKA Site Governs Ca 2+ Release Termination and Ca 2+ Alternans. Circ Res 2023; 132:e59-e77. [PMID: 36583384 DOI: 10.1161/circresaha.122.321177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND PKA (protein kinase A)-mediated phosphorylation of cardiac RyR2 (ryanodine receptor 2) has been extensively studied for decades, but the physiological significance of PKA phosphorylation of RyR2 remains poorly understood. Recent determination of high-resolution 3-dimensional structure of RyR2 in complex with CaM (calmodulin) reveals that the major PKA phosphorylation site in RyR2, serine-2030 (S2030), is located within a structural pathway of CaM-dependent inactivation of RyR2. This novel structural insight points to a possible role of PKA phosphorylation of RyR2 in CaM-dependent inactivation of RyR2, which underlies the termination of Ca2+ release and induction of cardiac Ca2+ alternans. METHODS We performed single-cell endoplasmic reticulum Ca2+ imaging to assess the impact of S2030 mutations on Ca2+ release termination in human embryonic kidney 293 cells. Here we determined the role of the PKA site RyR2-S2030 in a physiological setting, we generated a novel mouse model harboring the S2030L mutation and carried out confocal Ca2+ imaging. RESULTS We found that mutations, S2030D, S2030G, S2030L, S2030V, and S2030W reduced the endoplasmic reticulum luminal Ca2+ level at which Ca2+ release terminates (the termination threshold), whereas S2030P and S2030R increased the termination threshold. S2030A and S2030T had no significant impact on release termination. Furthermore, CaM-wild-type increased, whereas Ca2+ binding deficient CaM mutant (CaM-M [a loss-of-function CaM mutation with all 4 EF-hand motifs mutated]), PKA, and Ca2+/CaMKII (CaM-dependent protein kinase II) reduced the termination threshold. The S2030L mutation abolished the actions of CaM-wild-type, CaM-M, and PKA, but not CaMKII, in Ca2+ release termination. Moreover, we showed that isoproterenol and CaM-M suppressed pacing-induced Ca2+ alternans and accelerated Ca2+ transient recovery in intact working hearts, whereas CaM-wild-type exerted an opposite effect. The impact of isoproterenol was partially and fully reversed by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide and the CaMKII inhibitor N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide individually and together, respectively. S2030L abolished the impact of CaM-wild-type, CaM-M, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide-sensitive component, but not the N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide-sensitive component, of isoproterenol.
Collapse
Affiliation(s)
- Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.).,School of Medicine, Northwest University, Xi 'an, China (J.W.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | - Yong-Xiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| | | | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (A.V., R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona IIBB-CSIC, IIB Sant Pau and CIBERCV, Hospital de Sant Pau, 08025, Barcelona, Spain (L.H.-M.)
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Alberta T2N 4N1, Canada (J.W., W.G., R.W., J.P.E., D.B., Y.-X.C., S.R.W.C.)
| |
Collapse
|
3
|
Jian K, Li C, Hancox JC, Zhang H. Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling. Front Physiol 2022; 13:877428. [PMID: 35547576 PMCID: PMC9081695 DOI: 10.3389/fphys.2022.877428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure is associated with electrical remodeling of the electrical properties and kinetics of the ion channels and transporters that are responsible for cardiac action potentials. However, it is still unclear whether heart failure-induced ionic remodeling can affect the conduction of excitation waves at the Purkinje fiber-ventricle junction contributing to pro-arrhythmic effects of heart failure, as the complexity of the heart impedes a detailed experimental analysis. The aim of this study was to employ computational models to investigate the pro-arrhythmic effects of heart failure-induced ionic remodeling on the cardiac action potentials and excitation wave conduction at the Purkinje fiber-ventricle junction. Single cell models of canine Purkinje fiber and ventricular myocytes were developed for control and heart failure. These single cell models were then incorporated into one-dimensional strand and three-dimensional wedge models to investigate the effects of heart failure-induced remodeling on propagation of action potentials in Purkinje fiber and ventricular tissue and at the Purkinje fiber-ventricle junction. This revealed that heart failure-induced ionic remodeling of Purkinje fiber and ventricular tissue reduced conduction safety and increased tissue vulnerability to the genesis of the unidirectional conduction block. This was marked at the Purkinje fiber-ventricle junction, forming a potential substrate for the genesis of conduction failure that led to re-entry. This study provides new insights into proarrhythmic consequences of heart failure-induced ionic remodeling.
Collapse
Affiliation(s)
- Kun Jian
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Chen Li
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Uzelac I, Crowley CJ, Iravanian S, Kim TY, Cho HC, Fenton FH. Methodology for Cross-Talk Elimination in Simultaneous Voltage and Calcium Optical Mapping Measurements With Semasbestic Wavelengths. Front Physiol 2022; 13:812968. [PMID: 35222080 PMCID: PMC8874316 DOI: 10.3389/fphys.2022.812968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, United States
- The Sibley Heart Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
5
|
Kolesnik E, Scherr D, Rohrer U, Benedikt M, Manninger M, Sourij H, von Lewinski D. SGLT2 Inhibitors and Their Antiarrhythmic Properties. Int J Mol Sci 2022; 23:1678. [PMID: 35163599 PMCID: PMC8835896 DOI: 10.3390/ijms23031678] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are gaining ground as standard therapy for heart failure with a class-I recommendation in the recently updated heart failure guidelines from the European Society of Cardiology. Different gliflozins have shown impressive beneficial effects in patients with and without diabetes mellitus type 2, especially in reducing the rates for hospitalization for heart failure, yet little is known on their antiarrhythmic properties. Atrial and ventricular arrhythmias were reported by clinical outcome trials with SGLT2 inhibitors as adverse events, and SGLT2 inhibitors seemed to reduce the rate of arrhythmias compared to placebo treatment in those trials. Mechanistical links are mainly unrevealed, since hardly any experiments investigated their impact on arrhythmias. Prospective trials are currently ongoing, but no results have been published so far. Arrhythmias are common in the heart failure population, therefore the understanding of possible interactions with SGLT2 inhibitors is crucial. This review summarizes evidence from clinical data as well as the sparse experimental data of SGLT2 inhibitors and their effects on arrhythmias.
Collapse
Affiliation(s)
- Ewald Kolesnik
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Daniel Scherr
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Ursula Rohrer
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Martin Benedikt
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Martin Manninger
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Harald Sourij
- Department of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Dirk von Lewinski
- Department of Cardiology, University Heart Centre Graz, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
6
|
Wu B, You S, Qian H, Wu S, Lu S, Zhang Y, Sun Y, Zhang N. The role of SIRT2 in vascular-related and heart-related diseases: A review. J Cell Mol Med 2021; 25:6470-6478. [PMID: 34028177 PMCID: PMC8278089 DOI: 10.1111/jcmm.16618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
At present, cardiovascular disease is one of the important factors of human death, and there are many kinds of proteins involved. Sirtuins family proteins are involved in various physiological and pathological activities of the human body. Among them, there are more and more studies on the relationship between sirtuin2 (SIRT2) protein and cardiovascular diseases. SIRT2 can effectively inhibit pathological cardiac hypertrophy. The effect of SIRT2 on ischaemia‐reperfusion injury has different effects under different conditions. SIRT2 can reduce the level of reactive oxygen species (ROS), which may help to reduce the severity of diabetic cardiomyopathy. SIRT2 can affect a variety of cardiovascular diseases, energy metabolism and the ageing of cardiomyocytes, thereby affecting heart failure. SIRT2 also plays an important role in vascular disease. For endothelial cell damage used by oxidative stress, the role of SIRT2 is bidirectional, which is related to the degree of oxidative stress stimulation. When the degree of stimulation is small, SIRT2 plays a protective role, and when the degree of stimulation increases to a certain level, SIRT2 plays a negative role. In addition, SIRT2 is also involved in the remodelling of blood vessels and the repair of skin damage.
Collapse
Affiliation(s)
- Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Hao Qian
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Dashwood A, Cheesman E, Beard N, Haqqani H, Wong YW, Molenaar P. Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure. ACS Pharmacol Transl Sci 2020; 3:563-582. [PMID: 32832863 DOI: 10.1021/acsptsci.0c00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global pandemic with significant mortality and morbidity. Despite current medications, 50% of individuals die within 5 years of diagnosis. Of these deaths, 30-50% will be a result of sudden cardiac death from ventricular arrhythmias. This review discusses two stress-induced mechanisms, phosphorylation from chronic β-adrenoceptor (β-AR) stimulation and thiol modifications from oxidative stress, and how they modulate the cardiac ryanodine receptor type 2 (RyR2) and foster an arrhythmogenic phenotype. Calcium (Ca2+) is the ubiquitous secondary messenger of excitation-contraction coupling and provides a common pathway for contractile dysfunction and arrhythmia genesis. In a healthy heart, Ca2+ is released from the sarcoplasmic reticulum (SR) by RyR2. The open probability of RyR2 is under the dynamic influence of co-proteins, ions, and kinases that are in strict balance to ensure normal physiological functioning. In HF, chronic β-AR activity and production of reactive oxygen species and reactive nitrogen species provide two stress-induced mechanisms uncoupling RyR2 control, resulting in pathological diastolic SR Ca2+ leak. This increased cytosolic [Ca2+] promotes Ca2+ extrusion via the local Na+/Ca2+ exchanger, resulting in net sarcolemmal depolarization, delayed after depolarization and ventricular arrhythmia. Experimental models researching oxidative stress and phosphorylation have aimed to identify how post-translational modifications to the RyR2 macromolecular complex, and the associated Na+/Ca2+ cycling proteins, result in pathological Ca2+ handling and diastolic leak. However, the causative molecular changes remain controversial and undefined. Through understanding the molecular mechanisms that produce an arrhythmic phenotype, novel therapeutic targets to treat HF and prevent its malignant course can be identified.
Collapse
Affiliation(s)
- Alexander Dashwood
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Griffith University, Southport, Queensland 4215, Australia
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Nicole Beard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.,Faculty of Science and Technology, University of Canberra, Bruce, Australian Capital Territory 2617, Australia
| | - Haris Haqqani
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Yee Weng Wong
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
8
|
Calloe K. Doctoral Dissertation: The transient outward potassium current in healthy and diseased hearts. Acta Physiol (Oxf) 2019; 225 Suppl 717:e13225. [PMID: 30628199 DOI: 10.1111/apha.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kirstine Calloe
- Section for Anatomy; Biochemistry and Physiology; Department for Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
9
|
Aistrup GL, Arora R, Grubb S, Yoo S, Toren B, Kumar M, Kunamalla A, Marszalec W, Motiwala T, Tai S, Yamakawa S, Yerrabolu S, Alvarado FJ, Valdivia HH, Cordeiro JM, Shiferaw Y, Wasserstrom JA. Triggered intracellular calcium waves in dog and human left atrial myocytes from normal and failing hearts. Cardiovasc Res 2018; 113:1688-1699. [PMID: 29016724 DOI: 10.1093/cvr/cvx167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Aims Abnormal intracellular Ca2+ cycling contributes to triggered activity and arrhythmias in the heart. We investigated the properties and underlying mechanisms for systolic triggered Ca2+ waves in left atria from normal and failing dog hearts. Methods and results Intracellular Ca2+ cycling was studied using confocal microscopy during rapid pacing of atrial myocytes (36 °C) isolated from normal and failing canine hearts (ventricular tachypacing model). In normal atrial myocytes (NAMs), Ca2+ waves developed during rapid pacing at rates ≥ 3.3 Hz and immediately disappeared upon cessation of pacing despite high sarcoplasmic reticulum (SR) load. In heart failure atrial myocytes (HFAMs), triggered Ca2+ waves (TCWs) developed at a higher incidence at slower rates. Because of their timing, TCW development relies upon action potential (AP)-evoked Ca2+ entry. The distribution of Ca2+ wave latencies indicated two populations of waves, with early events representing TCWs and late events representing conventional spontaneous Ca2+ waves. Latency analysis also demonstrated that TCWs arise after junctional Ca2+ release has occurred and spread to non-junctional (cell core) SR. TCWs also occurred in intact dog atrium and in myocytes from humans and pigs. β-adrenergic stimulation increased Ca2+ release and abolished TCWs in NAMs but was ineffective in HFAMs making this a potentially effective adaptive mechanism in normals but potentially arrhythmogenic in HF. Block of Ca-calmodulin kinase II also abolished TCWs, suggesting a role in TCW formation. Pharmacological manoeuvres that increased Ca2+ release suppressed TCWs as did interventions that decreased Ca2+ release but these also severely reduced excitation-contraction coupling. Conclusion TCWs develop during the atrial AP and thus could affect AP duration, producing repolarization gradients and creating a substrate for reentry, particularly in HF where they develop at slower rates and a higher incidence. TCWs may represent a mechanism for the initiation of atrial fibrillation particularly in HF.
Collapse
Affiliation(s)
- Gary L Aistrup
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rishi Arora
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Søren Grubb
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shin Yoo
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Toren
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Manvinder Kumar
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aaron Kunamalla
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - William Marszalec
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tej Motiwala
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shannon Tai
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sean Yamakawa
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Satya Yerrabolu
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Francisco J Alvarado
- The Center for Arrhythmia Research, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Hector H Valdivia
- The Center for Arrhythmia Research, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | - Yohannes Shiferaw
- Department of Physics, California State University Northridge, Northridge, CA 91330, USA
| | - John Andrew Wasserstrom
- Department of Medicine (Cardiology) and the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Maleckar MM, Edwards AG, Louch WE, Lines GT. Studying dyadic structure-function relationships: a review of current modeling approaches and new insights into Ca 2+ (mis)handling. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698602. [PMID: 28469494 PMCID: PMC5392018 DOI: 10.1177/1179546817698602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Excitation–contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation–contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells’ calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation–contraction coupling have been increasingly employed to probe these structure–function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| | - Andrew G Edwards
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway.,University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Glenn T Lines
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| |
Collapse
|
11
|
Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 2015; 309:C286-95. [PMID: 26063704 PMCID: PMC4556897 DOI: 10.1152/ajpcell.00071.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 01/20/2023]
Abstract
Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
12
|
Walton RD, Jones SA, Rostron KA, Kayani AC, Close GL, McArdle A, Lancaster MK. Interactions of Short-Term and Chronic Treadmill Training With Aging of the Left Ventricle of the Heart. J Gerontol A Biol Sci Med Sci 2015; 71:1005-13. [PMID: 26248561 PMCID: PMC4945880 DOI: 10.1093/gerona/glv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
With aging, there is a decline in cardiac function accompanying increasing risk of arrhythmias. These effects are likely to be mechanistically associated with age-associated changes in calcium regulation within cardiac myocytes. Previous studies suggest that lifelong exercise can potentially reduce age-associated changes in the heart. Although exercise itself is associated with changes in cardiac function, little is known about the interactions of aging and exercise with respect to myocyte calcium regulation. To investigate this, adult (12 months) and old (24 months) C57/Bl6 mice were trained using moderate-intensity treadmill running. In response to 10 weeks’ training, comparable cardiac hypertrophic responses were observed, although aging independently associated with additional cardiac hypertrophy. Old animals also showed increased L- and T-type calcium channels, the sodium–calcium exchange, sarcoendoplasmic reticulum calcium ATPase, and collagen (by 50%, 92%, 66%, 88%, and 113% respectively). Short-term exercise training increased D-type and T-type calcium channels in old animals only, whereas an increase in sodium–calcium exchange was seen only in adult animals. Long-term (12 months) training generally opposed the effects of aging. Significant hypertrophy remained in long-term trained old animals, but levels of sarcoendoplasmic reticulum calcium ATPase, sodium–calcium exchange, and collagen were not significantly different from those found in the adult trained animals.
Collapse
Affiliation(s)
| | | | | | - Anna C Kayani
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Graeme L Close
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Anne McArdle
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | | |
Collapse
|
13
|
Hammer KP, Ljubojevic S, Ripplinger CM, Pieske BM, Bers DM. Cardiac myocyte alternans in intact heart: Influence of cell-cell coupling and β-adrenergic stimulation. J Mol Cell Cardiol 2015; 84:1-9. [PMID: 25828762 DOI: 10.1016/j.yjmcc.2015.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca(2+) transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca(2+) alternans and sarcoplasmic reticulum (SR) Ca(2+) release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in the intact heart remains unknown. OBJECTIVE We assessed the effects of cell-to-cell coupling on local alternans in intact Langendorff-perfused mouse hearts, measuring single myocyte [Ca(2+)] alternans synchronization among neighboring cells, and effects of β-adrenergic receptor (β-AR) activation and reduced GJ coupling. METHODS AND RESULTS Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo8-AM to record cardiac myocyte [Ca(2+)] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 μM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. β-AR stimulation only reduced Ca(2+) alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. CONCLUSIONS Ca(2+) alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca(2+) alternans, and made them more sensitive to reversal by β-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Senka Ljubojevic
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria.
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8010 Graz, Austria; Department of Cardiology, Charité - Medical University Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, GBSF, Davis, CA 95616-8636, USA.
| |
Collapse
|
14
|
Hammer KP, Hohendanner F, Blatter LA, Pieske BM, Heinzel FR. Variations in local calcium signaling in adjacent cardiac myocytes of the intact mouse heart detected with two-dimensional confocal microscopy. Front Physiol 2015; 5:517. [PMID: 25628569 PMCID: PMC4290493 DOI: 10.3389/fphys.2014.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart. Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 μm by 315 μm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length). Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ± 1.3 ms) local CaT in 2D image sets (N = 4 hearts, n = 8 regions). During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities. Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Internal Medicine II, University Hospital Regensburg Regensburg, Germany
| | - Felix Hohendanner
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Lothar A Blatter
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| | - Frank R Heinzel
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| |
Collapse
|
15
|
Reiter MJ, Stromberg KD, Whitman TA, Adamson PB, Benditt DG, Gold MR. Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: insights from the REDUCEhf trial. Circ Arrhythm Electrophysiol 2013; 6:272-8. [PMID: 23515265 DOI: 10.1161/circep.113.000223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The implantation of a combination hemodynamic monitor-cardioverter-defibrillator in the Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients with Chronic Heart Failure (REDUCEhf) study allowed assessment of the relationship between daily intracardiac pressure and occurrence of ventricular arrhythmic (VT/VF) events. METHODS AND RESULTS Median estimated pulmonary artery diastolic pressures (ePAD) were calculated every 24 hours in 378 subjects with New York Heart Association functional class II-III heart failure who had at least 60 days of hemodynamic data. Forty-six subjects experienced 140 VT/VF events on 80 unique study days in which daily median ePAD was available. The incidence of days with VT/VF events was significantly higher when the daily median ePAD for a subject was elevated, defined as >1 SD above that subject's average median ePAD for the whole study: (2.8 episode days per patient-year compared with 1.7 episode days per patient-year; P=0.040). However, the incidence of days with VT/VF events was not significantly different on days when ePAD was >25 mm Hg compared with days when ePAD was <25 mm Hg. For all 378 subjects, the risk of VT/VF increased with average median ePAD calculated over the whole follow-up period (odds ratio, 1.072 for a 1-mm Hg increase; 95% confidence interval, 1.023-1.124; P=0.003). CONCLUSIONS There is significant positive association between average daily median ePAD and risk for VT/VF. Among patients with VT/VF, elevated intracardiac pressures are associated with higher VT/VF risk only when the definition of increased pressure is subject specific.
Collapse
|