1
|
Dai B, Liu H, Juan D, Wu K, Cao R. The role of miRNA-29b1 on the hypoxia-induced apoptosis in mammalian cardiomyocytes. Eur J Histochem 2024; 68:4021. [PMID: 38934067 PMCID: PMC11228570 DOI: 10.4081/ejh.2024.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocyte apoptosis is a complex biological process involving the interaction of many factors and signaling pathways. In hypoxic environment, cardiomyocytes may trigger apoptosis due to insufficient energy supply, increased production of oxygen free radicals, and disturbance of intracellular calcium ion balance. The present research aimed to investigate the role of microRNA-29b1 (miR-29b1) in hypoxia-treated cardiomyocytes and its potential mechanism involved. We established an in vitro ischemia model using AC16 and H9C2 cardiomyocytes through hypoxia treatment (1% O2, 48 h). Cell apoptosis was evaluated by flow cytometry using Annexin V FITC-PI staining assay. Moreover, we used Western blot and immunofluorescence analysis to determine the expression of Bcl-2, Bax caspase-3 and Cx43 proteins. We found that miR-29b1 protected AC16 and H9C2 cells from hypoxia-induced injury as evidence that miR-29b1 attenuated the effects of hypoxia treatment on AC16 and H9C2 cell apoptosis after hypoxia treatment. In conclusion, our findings suggest that miR-29b1 may have potential cardiovascular protective effects during ischemia-related myocardial injury.
Collapse
Affiliation(s)
- Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Hailin Liu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Dingmin Juan
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Kaize Wu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Ruhao Cao
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| |
Collapse
|
2
|
Mohammed D, Tavangar SM, Khodadoostan A, Mousavi SE, Dehpour AR, Jazaeri F. Effects of Gap 26, a Connexin 43 Inhibitor, on Cirrhotic Cardiomyopathy in Rats. Cureus 2024; 16:e59053. [PMID: 38680825 PMCID: PMC11055623 DOI: 10.7759/cureus.59053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Cirrhotic cardiomyopathy (CCM) is recognized by impaired cardiac responsiveness to stress, prolonged QT interval, and systolic and diastolic dysfunctions. Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Connexin 43 (Cx43) inhibition showed cardio-protective effects. Peptide drug Cx43 inhibitor, Gap 26, could inhibit gap junction 43. This study was designed to evaluate the effects of a connexin mimetic peptide, Gap 26, in the CCM model in rats. Methods The cirrhosis was induced through carbon tetrachloride (CCl4). On day 56, electrocardiography (ECG) was recorded, spleen weight was measured, and tissue and serum samples were collected. Further, Cx43 mRNA expression in heart tissue was checked. Results The chronotropic responses decreased in the CCl4/saline and increased in the CCl4/Gap. The spleen weight, QTc interval, and brain natriuretic peptide (BNP), tumor necrosis factor-alpha (TNF-α), aspartate aminotransferase (AST), alanine transaminase (ALT), and malondialdehyde (MDA) levels elevated in the CCl4/saline, and the spleen weight, QTc interval, and MDA and ALT levels were reduced by Gap 26 treatment. The level of nuclear factor (erythroid-derived 2) factor 2 (Nrf2) decreased in the CCl4/saline. The Cx43 expression was downregulated in the CCl4/saline and upregulated with the Gap 26 treatment. Conclusion Gap 26 not only alleviated the chronotropic hyporesponsiveness and the severity of liver damage and upregulated the atrial Cx43 expression, but it also had an antioxidant effect on the heart.
Collapse
Affiliation(s)
- Dlshad Mohammed
- Pharmacology, Tehran University of Medical Sciences, Tehran, IRN
| | | | - Arash Khodadoostan
- Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, IRN
| | | | | | - Farahnaz Jazaeri
- Pharmacology, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
3
|
Szeiffova Bacova B, Andelova K, Sykora M, T EB, Kurahara LH, Slezak J, Tribulova N. Distinct Cardiac Connexin-43 Expression in Hypertrophied and Atrophied Myocardium May Impact the Vulnerability of the Heart to Malignant Arrhythmias. A Pilot Study. Physiol Res 2023; 72:S37-S45. [PMID: 37294117 DOI: 10.33549/physiolres.935025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Our and other studies suggest that myocardial hypertrophy in response to hypertension and hyperthyroidism increases propensity of the heart to malignant arrhythmias, while these are rare in conditions of hypothyroidism or type-1 diabetes mellitus associated with myocardial atrophy. One of the crucial factors impacting the susceptibility of the heart to life-threatening arrhythmias is gap junction channel protein connexin-43 (Cx43), which ensure cell-to-cell coupling for electrical signal propagation. Therefore, we aimed to explore Cx43 protein abundance and its topology in hypertrophic and hypotrophic cardiac phenotype. Analysis were performed in left ventricular tissue of adult male spontaneously hypertensive rat (SHR), Wistar Kyoto rats treated for 8-weeks with L-thyroxine, methimazol or strepotozotocin to induce hyperthyroid, hypothyroid and type-1 diabetic status as well as non-treated animals. Results showed that comparing to healthy rats there was a decrease of total myocardial Cx43 and its variant phosphorylated at serine368 in SHR and hyperthyroid rats. Besides, enhanced localization of Cx43 was demonstrated on lateral sides of hypertrophied cardiomyocytes. In contrast, total Cx43 protein and its serine368 variant were increased in atrophied left ventricle of hypothyroid and type-1 diabetic rats. It was associated with less pronounced alterations in Cx43 topology. In parallel, the abundance of PKCepsilon, which phosphorylates Cx43 at serine368 that stabilize Cx43 function and distribution was reduced in hypertrophied heart while enhanced in atrophied once. Findings suggest that differences in the abundance of cardiac Cx43, its variant phosphorylated at serine368 and Cx43 topology may explain, in part, distinct propensity of hypertrophied and atrophied heart to malignant arrhythmias.
Collapse
Affiliation(s)
- B Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
4
|
Kwek XY, Hall AR, Lim WW, Katwadi K, Soong PL, Grishina E, Lin KH, Crespo-Avilan G, Yap EP, Ismail NI, Chinda K, Chung YY, Wei H, Shim W, Montaigne D, Tinker A, Ong SB, Hausenloy DJ. Role of cardiac mitofusins in cardiac conduction following simulated ischemia-reperfusion. Sci Rep 2022; 12:21049. [PMID: 36473917 PMCID: PMC9727036 DOI: 10.1038/s41598-022-25625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.
Collapse
Affiliation(s)
- Xiu-Yi Kwek
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Andrew R. Hall
- grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Wei-Wen Lim
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Khairunnisa Katwadi
- grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Poh Loong Soong
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Cardiovascular Translational Program, Cardiovascular Research Institute (CVRI), National University of Singapore, Singapore, Singapore ,grid.412106.00000 0004 0621 9599Department of Medicine, National University Hospital of Singapore (NUHS), Singapore, Singapore ,Ternion Biosciences, Singapore, Singapore
| | | | | | - Gustavo Crespo-Avilan
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.8664.c0000 0001 2165 8627Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - En Ping Yap
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Nur Izzah Ismail
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China
| | - Kroekkiat Chinda
- grid.412029.c0000 0000 9211 2704Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ,grid.412029.c0000 0000 9211 2704Integrative Cardiovascular Research Unit, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ying Ying Chung
- grid.428397.30000 0004 0385 0924Centre for Vision Research, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Heming Wei
- grid.414963.d0000 0000 8958 3388Research Laboratory, KK Women’s & Children’s Hospital, Singapore, Singapore
| | - Winston Shim
- grid.486188.b0000 0004 1790 4399Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - David Montaigne
- grid.503422.20000 0001 2242 6780Inserm, CHU Lille, Institut Pasteur Lille, U1011-European Genomic Institute for Diabetes (EGID), University of Lille, 59000 Lille, France
| | - Andrew Tinker
- grid.4868.20000 0001 2171 1133Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Sang-Bing Ong
- grid.10784.3a0000 0004 1937 0482Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, SAR China ,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong, SAR China ,grid.9227.e0000000119573309Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK), Chinese Academy of Sciences, Kunming, Yunnan China ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute (SZRI), Chinese University of Hong Kong (CUHK), Shenzhen, China
| | - Derek J. Hausenloy
- grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore ,grid.83440.3b0000000121901201The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK ,grid.428397.30000 0004 0385 0924Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
6
|
Xu L, Khoshknab M, Berger RD, Chrispin J, Dixit S, Santangeli P, Callans D, Marchlinski FE, Zimmerman SL, Han Y, Trayanova N, Desjardins B, Nazarian S. Lipomatous Metaplasia Enables Ventricular Tachycardia by Reducing Current Loss Within the Protected Corridor. JACC Clin Electrophysiol 2022; 8:1274-1285. [PMID: 36266004 PMCID: PMC11148646 DOI: 10.1016/j.jacep.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Post-myocardial infarction ventricular tachycardia (VT) is due to re-entry through surviving conductive myocardial corridors across infarcted tissue. However, not all conductive corridors participate in re-entry. OBJECTIVES This study sought to test the hypothesis that critical VT corridors are more likely to traverse near lipomatous metaplasia (LM) and that current loss is reduced during impulse propagation through such corridors. METHODS Among 30 patients in the Prospective 2-center INFINITY (Intra-Myocardial Fat Deposition and Ventricular Tachycardia in Cardiomyopathy) study, potential VT-viable corridors within myocardial scar or LM were computed from late gadolinium enhancement cardiac magnetic resonance images. Because late gadolinium enhancement highlights both scar and LM, LM was distinguished from scar by using computed tomography. The SD of the current along each corridor was measured. RESULTS Scar exhibited lower impedance than LM (median Z-score -0.22 [IQR: -0.84 to 0.35] vs -0.07 [IQR: -0.67 to 0.54]; P < 0.001). Among all 381 corridors, 84 were proven to participate in VT re-entry circuits, 83 (99%) of which traversed or were adjacent to LM. In comparison, only 13 (4%) non-VT corridors were adjacent to LM. Critical corridors adjacent to LM displayed lower SD of current compared with noncritical corridors through scar but distant from LM (2.0 [IQR: 1.0 to 3.4] μA vs 8.4 [IQR: 5.5 to 12.8] μA; P < 0.001). CONCLUSIONS Corridors critical to VT circuitry traverse infarcted tissue through or near LM. This association is likely mediated by increased regional resistance and reduced current loss as impulses traverse corridors adjacent to LM.
Collapse
Affiliation(s)
- Lingyu Xu
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mirmilad Khoshknab
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald D Berger
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cardiology, Johns Hopkins University, Baltimore Maryland, USA
| | - Jonathan Chrispin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cardiology, Johns Hopkins University, Baltimore Maryland, USA
| | - Sanjay Dixit
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pasquale Santangeli
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Callans
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Francis E Marchlinski
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stefan L Zimmerman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore Maryland, USA
| | - Yuchi Han
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benoit Desjardins
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Saman Nazarian
- Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Greiner J, Sankarankutty AC, Seidel T, Sachse FB. Confocal microscopy-based estimation of intracellular conductivities in myocardium for modeling of the normal and infarcted heart. Comput Biol Med 2022; 146:105579. [PMID: 35588677 DOI: 10.1016/j.compbiomed.2022.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
Ventricular arrhythmias are the leading cause of mortality in patients with ischemic heart diseases, such as myocardial infarction (MI). Computational simulation of cardiac electrophysiology provides insights into these arrhythmias and their treatment. However, only sparse information is available on crucial model parameters, for instance, the anisotropic intracellular electrical conductivities. Here, we introduced an approach to estimate these conductivities in normal and MI hearts. We processed and analyzed images from confocal microscopy of left ventricular tissue of a rabbit MI model to generate 3D reconstructions. We derived tissue features including the volume fraction of myocytes (Vmyo), gap junctions-containing voxels (Vgj), and fibrosis (Vfibrosis). We generated models of the intracellular space and intercellular coupling. Applying numerical methods for solving Poisson's equation for stationary electrical currents, we calculated normal (σmyo,n), longitudinal (σmyo,l), and transverse (σmyo,t) intracellular conductivities. Using linear regression analysis, we assessed relationships of conductivities to tissue features. Vgj and Vmyo were reduced in MI vs. control, but Vfibrosis was increased. Both σmyo,l and σmyo,n were lower in MI than in control. Differences of σmyo,t between control and MI were not significant. We found strong positive relationships of σmyo,l with Vmyo and Vgj, and a strong negative relationship with Vfibrosis. The relationships of σmyo,n with these tissue features were similar but less pronounced. Our study provides quantitative insights into the intracellular conductivities in the normal and MI heart. We suggest that our study establishes a framework for the estimation of intracellular electrical conductivities of myocardium with various pathologies.
Collapse
Affiliation(s)
- Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg·Bad Krozingen, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Aparna C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, USA
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
8
|
Zhong C, Zhao H, Xie X, Qi Z, Li Y, Jia L, Zhang J, Lu Y. Protein Kinase C-Mediated Hyperphosphorylation and Lateralization of Connexin 43 Are Involved in Autoimmune Myocarditis-Induced Prolongation of QRS Complex. Front Physiol 2022; 13:815301. [PMID: 35418879 PMCID: PMC9000987 DOI: 10.3389/fphys.2022.815301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Myocarditis is a serious and potentially life-threatening disease, which leads to cardiac dysfunction and sudden cardiac death. An increasing number of evidence suggests that myocarditis is also a malignant complication of coronavirus pneumonia, associated with heart failure and sudden cardiac death. Prolonged QRS complexes that are related to malignant arrhythmias caused by myocarditis significantly increase the risk of sudden cardiac death in patients. However, the molecular mechanisms are not fully known at present. In this study, we identify protein kinase C (PKC) as a new regulator of the QRS complex. In isolated hearts of normal rats, the PKC agonist, phorbol-12-myristate-13-acetate (PMA), induced prolongation of the QRS complex. Mechanistically, hyperphosphorylation and lateralization of connexin 43 (Cx43) by PKC induced depolymerization and internalization of Cx43 gap junction channels and prolongation of the QRS duration. Conversely, administration of the PKC inhibitor, Ro-32-0432, in experimental autoimmune myocarditis (EAM) rats after the most severe inflammation period still significantly rescued the stability of the Cx43 gap junction and alleviated prolongation of the QRS complex. Ro-32-0432 reduced phosphorylation and blocked translocation of Cx43 in EAM rat heart but did not regulate the mRNA expression level of ventricular ion channels and the other regulatory proteins, which indicates that the inhibition of PKC might have no protective effect on ion channels that generate ventricular action potential in EAM rats. These results suggest that the pharmacological inhibition of PKC ameliorates the prolongation of the QRS complex via suppression of Cx43 hyperphosphorylation, lateralization, and depolymerization of Cx43 gap junction channels in EAM rats, which provides a potential therapeutic strategy for myocarditis-induced arrhythmias.
Collapse
Affiliation(s)
- Chunlian Zhong
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xinwen Xie
- Liancheng County General Hospital, Longyan, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lee Jia
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- *Correspondence: Lee Jia, ,
| | - Jinwei Zhang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Jinwei Zhang,
| | - Yusheng Lu
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- Yusheng Lu, ,
| |
Collapse
|
9
|
Halfar R, Lawson BAJ, dos Santos RW, Burrage K. Machine Learning Identification of Pro-arrhythmic Structures in Cardiac Fibrosis. Front Physiol 2021; 12:709485. [PMID: 34483962 PMCID: PMC8415115 DOI: 10.3389/fphys.2021.709485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical signalling in the heart, however, the connection between different arrangements of blockage and various arrhythmic consequences remains poorly understood. Where a mechanism defies traditional understanding, machine learning can be invaluable for enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in terms of predictor variables (such as the arrangement or pattern of obstructive scarring). In this study, we simulate the propagation of the action potential (AP) in tissue affected by fibrotic changes and hence detect sites that initiate re-entrant activation patterns. By separately considering multiple different stimulus regimes, we directly observe and quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region. Then, by extracting the fibrotic structures around locations that both do and do not initiate re-entries, we use neural networks to determine to what extent re-entry initiation is predictable, and over what spatial scale conduction heterogeneities appear to act to produce this effect. We find that structural information within about 0.5 mm of a given point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.
Collapse
Affiliation(s)
- Radek Halfar
- IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Brodie A. J. Lawson
- Centre for Data Science, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rodrigo Weber dos Santos
- Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Hyland C, Mfarej M, Hiotis G, Lancaster S, Novak N, Iovine MK, Falk MM. Impaired Cx43 gap junction endocytosis causes morphological and functional defects in zebrafish. Mol Biol Cell 2021; 32:ar13. [PMID: 34379446 PMCID: PMC8684743 DOI: 10.1091/mbc.e20-12-0797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of connexins of only 1-5 hours, resulting in constant endocytosis and biosynthetic replacement of gap junction channels has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256-289), a region known to encode key residues regulating gap junction turnover is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication (GJIC). Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that Cx43 gap junction endocytosis is an essential aspect of gap junction function and when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Caitlin Hyland
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Michael Mfarej
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Giorgos Hiotis
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Sabrina Lancaster
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Noelle Novak
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| |
Collapse
|
11
|
Role of Cdkn2a in the Emery-Dreifuss Muscular Dystrophy Cardiac Phenotype. Biomolecules 2021; 11:biom11040538. [PMID: 33917623 PMCID: PMC8103514 DOI: 10.3390/biom11040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
The Cdkn2a locus is one of the most studied tumor suppressor loci in the context of several cancer types. However, in the last years, its expression has also been linked to terminal differentiation and the activation of the senescence program in different cellular subtypes. Knock-out (KO) of the entire locus enhances the capability of stem cells to proliferate in some tissues and respond to severe physiological and non-physiological damages in different organs, including the heart. Emery-Dreifuss muscular dystrophy (EDMD) is characterized by severe contractures and muscle loss at the level of skeletal muscles of the elbows, ankles and neck, and by dilated cardiomyopathy. We have recently demonstrated, using the LMNA Δ8-11 murine model of Emery-Dreifuss muscular dystrophy (EDMD), that dystrophic muscle stem cells prematurely express non-lineage-specific genes early on during postnatal growth, leading to rapid exhaustion of the muscle stem cell pool. Knock-out of the Cdkn2a locus in EDMD dystrophic mice partially restores muscle stem cell properties. In the present study, we describe the cardiac phenotype of the LMNA Δ8-11 mouse model and functionally characterize the effects of KO of the Cdkn2a locus on heart functions and life expectancy.
Collapse
|
12
|
Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, Liu Y, Maru Y, Hasumi E, Kojima T, Seno H, Asano K, Ishijima A, Tomii N, Yamazaki M, Kudo F, Sakuma I, Nagai R, Manabe I, Komuro I. Cardiac macrophages prevent sudden death during heart stress. Nat Commun 2021; 12:1910. [PMID: 33771995 PMCID: PMC7997915 DOI: 10.1038/s41467-021-22178-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiac arrhythmias are a primary contributor to sudden cardiac death, a major unmet medical need. Because right ventricular (RV) dysfunction increases the risk for sudden cardiac death, we examined responses to RV stress in mice. Among immune cells accumulated in the RV after pressure overload-induced by pulmonary artery banding, interfering with macrophages caused sudden death from severe arrhythmias. We show that cardiac macrophages crucially maintain cardiac impulse conduction by facilitating myocardial intercellular communication through gap junctions. Amphiregulin (AREG) produced by cardiac macrophages is a key mediator that controls connexin 43 phosphorylation and translocation in cardiomyocytes. Deletion of Areg from macrophages led to disorganization of gap junctions and, in turn, lethal arrhythmias during acute stresses, including RV pressure overload and β-adrenergic receptor stimulation. These results suggest that AREG from cardiac resident macrophages is a critical regulator of cardiac impulse conduction and may be a useful therapeutic target for the prevention of sudden death.
Collapse
MESH Headings
- Amphiregulin/metabolism
- Amphiregulin/physiology
- Animals
- Animals, Newborn
- Arrhythmias, Cardiac/complications
- Cells, Cultured
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Female
- Gap Junctions/physiology
- HeLa Cells
- Humans
- Macrophages/metabolism
- Macrophages/physiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Receptors, Adrenergic, beta/metabolism
- Mice
Collapse
Affiliation(s)
- Junichi Sugita
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Advanced Cardiology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takumi Matsubara
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Matsuda
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tsukasa Oshima
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuxiang Liu
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yujin Maru
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eriko Hasumi
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiya Kojima
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Seno
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Keisuke Asano
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ayumu Ishijima
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoki Tomii
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masatoshi Yamazaki
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fujimi Kudo
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Ichiro Sakuma
- Medical Device Development and Regulation Research Center, Department of Bioengineering/Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryozo Nagai
- Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, Tochigi, 329-0498, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
14
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
15
|
Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021; 13:379-392. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gap-junction channels formed by two connexin hemichannels play diverse and pivotal roles in intercellular communication and regulation. Normally hemichannels at the plasma membrane participate in autocrine and paracrine signaling, but abnormal increase in their activity can lead or contribute to various diseases. Selective inhibitors toward connexin hemichannels are of great interest. Among more than 20 identified isoforms of connexins, connexin 43 (Cx43) attracts the most interest due to its prevalence and link to cell damage in many disorders or diseases. Traditional antibacterial kanamycin decorated with hydrophobic groups yields amphiphilic kanamycins that show low cytotoxicity and prominent inhibitory effect against Cx43. This review focuses on the development of amphiphilic kanamycins as connexin hemichannel inhibitors and their future perspective.
Collapse
|
16
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
17
|
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish. PLoS One 2020; 15:e0240129. [PMID: 33048975 PMCID: PMC7553298 DOI: 10.1371/journal.pone.0240129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 11/19/2022] Open
Abstract
Aims GJB4 encodes a transmembrane connexin protein (Cx30.3) that is a component of gap junctions. This study investigated whether GJB4 plays an important role in human heart disease and function. Methods and results We examined a patient and her older brother who both presented with complicated severe hypertrophic cardiomyopathy (HCM) and whose parents are healthy married cousins. The gene exome analysis showed 340 single nucleotide polymorphisms (SNPs) that caused amino acid changes for which the patient was homozygous and both parents were heterozygous. After excluding all known common (>10%) SNP gene mutations, the gene for GJB4 was the only identified gene that is possibly associated with cardiac muscle. The resultant E204A substitution exists in the 4th transmembrane domain. GJB4-E204A impaired the binding with gap junction protein A1 (GJA1) compared with GJB4-WT. The expression of GJB4 was induced in rat disease models of left and right ventricle hypertrophy and mouse disease models of adriamycin-induced cardiomyopathy and myocardial infarction, while it was not detected at all in control. An immunohistochemical study was performed for autopsied human hearts and the explanted heart of the patient. GJB4 was expressed and colocalized with GJA1 in intercalated discs in human diseased hearts, which was extensively enhanced in the explanted heart of the patient. The abnormal expression and localization of GJB4 were observed in beating spheres of patient’s induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). We generated knockout zebrafish of GJB4 by CRISPR/Cas9 and the endodiastolic volume and the ventricular ejection fraction were significantly lower in GJB4-deficient than in wild-type zebrafish at five days post-fertilization. Conclusions These results indicate both that GJB4 is defined as a new connexin in diseased hearts, of which mutation can cause a familial form of HCM, and that GJB4 may be a new target for the treatment of cardiac hypertrophy and dysfunction.
Collapse
|
18
|
Chen M, Li X, Wang S, Yu L, Tang J, Zhou S. The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias. Front Physiol 2020; 11:1113. [PMID: 33071805 PMCID: PMC7540080 DOI: 10.3389/fphys.2020.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In the heart, cardiac macrophages have widespread biological functions, including roles in antigen presentation, phagocytosis, and immunoregulation, through the formation of diverse cytokines and growth factors; thus, these cells play an active role in tissue repair after heart injury. Recent clinical studies have indicated that macrophages or elevated inflammatory cytokines secreted by macrophages are closely related to ventricular arrhythmias (VAs). This review describes the role of macrophages and macrophage-secreted inflammatory cytokines in ventricular arrhythmogenesis.
Collapse
Affiliation(s)
- Mingxian Chen
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuping Li
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianjun Tang
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Macquart C, Jüttner R, Morales Rodriguez B, Le Dour C, Lefebvre F, Chatzifrangkeskou M, Schmitt A, Gotthardt M, Bonne G, Muchir A. Microtubule cytoskeleton regulates Connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene. Hum Mol Genet 2020; 28:4043-4052. [PMID: 29893868 DOI: 10.1093/hmg/ddy227] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course owing to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.
Collapse
Affiliation(s)
- Coline Macquart
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Rene Jüttner
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Caroline Le Dour
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Florence Lefebvre
- Signaling and Cardiovascular Pathophysiology, UMRS 1180, Université Paris-Sud, INSERM, Chatenay-Malabry 92216, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Michael Gotthardt
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| |
Collapse
|
20
|
Kaiser E, Tian Q, Wagner M, Barth M, Xian W, Schröder L, Ruppenthal S, Kaestner L, Boehm U, Wartenberg P, Lu H, McMillin SM, Bone DBJ, Wess J, Lipp P. DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovasc Res 2020; 115:1052-1066. [PMID: 30321287 DOI: 10.1093/cvr/cvy251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/02/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
AIMS Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. METHODS AND RESULTS We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. CONCLUSION Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes' Ca2+ handling but also directly alters the heart's electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Michael Wagner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Barth
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Wenying Xian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Laura Schröder
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Sandra Ruppenthal
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sara M McMillin
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Derek B J Bone
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Wang W, Ye S, Zhang L, Jiang Q, Chen J, Chen X, Zhang F, Wu H. Granulocyte colony-stimulating factor attenuates myocardial remodeling and ventricular arrhythmia susceptibility via the JAK2-STAT3 pathway in a rabbit model of coronary microembolization. BMC Cardiovasc Disord 2020; 20:85. [PMID: 32066388 PMCID: PMC7026986 DOI: 10.1186/s12872-020-01385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Coronary microembolization (CME) has a poor prognosis, with ventricular arrhythmia being the most serious consequence. Understanding the underlying mechanisms could improve its management. We investigated the effects of granulocyte colony-stimulating factor (G-CSF) on connexin-43 (Cx43) expression and ventricular arrhythmia susceptibility after CME. Methods Forty male rabbits were randomized into four groups (n = 10 each): Sham, CME, G-CSF, and AG490 (a JAK2 selective inhibitor). Rabbits in the CME, G-CSF, and AG490 groups underwent left anterior descending (LAD) artery catheterization and CME. Animals in the G-CSF and AG490 groups received intraperitoneal injection of G-CSF and G-CSF + AG490, respectively. The ventricular structure was assessed by echocardiography. Ventricular electrical properties were analyzed using cardiac electrophysiology. The myocardial interstitial collagen content and morphologic characteristics were evaluated using Masson and hematoxylin-eosin staining, respectively. Results Western blot and immunohistochemistry were employed to analyze the expressions of Cx43, G-CSF receptor (G-CSFR), JAK2, and STAT3. The ventricular effective refractory period (VERP), VERP dispersion, and inducibility and lethality of ventricular tachycardia/fibrillation were lower in the G-CSF than in the CME group (P < 0.01), indicating less severe myocardial damage and arrhythmias. The G-CSF group showed higher phosphorylated-Cx43 expression (P < 0.01 vs. CME). Those G-CSF-induced changes were reversed by A490, indicating the involvement of JAK2. G-CSFR, phosphorylated-JAK2, and phosphorylated-STAT3 protein levels were higher in the G-CSF group than in the AG490 (P < 0.01) and Sham (P < 0.05) groups. Conclusion G-CSF might attenuate myocardial remodeling via JAK2-STAT3 signaling and thereby reduce ventricular arrhythmia susceptibility after CME.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shuhua Ye
- Department of Cardiology, Fujian Provincial People's Hospital, Fuzhou, 350004, China
| | - Lutao Zhang
- Department of Cardiology, People's Hospital of Wuqing District, Tianjin, 301700, China
| | - Qiong Jiang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jianhua Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xuehai Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Feilong Zhang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Hangzhou Wu
- Fujian Medical University Union clinical medical college, Fuzhou, 350001, China.
| |
Collapse
|
22
|
Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res 2019; 4:223-240. [PMID: 31489388 PMCID: PMC6713129 DOI: 10.1080/20961790.2019.1633761] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
Ventricular hypertrophy is a common pathological finding at autopsy that can act as a substrate for arrhythmogenesis. Pathologists grapple with the significance of ventricular hypertrophy when assessing the sudden and unexpected deaths of young people and what it could mean for surviving family members. The pathological spectrum of left ventricular hypertrophy (LVH) is reviewed herein. This article is oriented to the practicing autopsy pathologist to help make sense of various patterns of increased heart muscle, particularly those that are not clearly cardiomyopathic, yet present in the setting of sudden cardiac death. The article also reviews factors influencing arrhythmogenesis as well as genetic mutations most commonly associated with ventricular hypertrophy, especially those associated with hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Kristopher S. Cunningham
- Department of Laboratory Medicine and Pathobiology, Ontario Forensic Pathology Service, University of Toronto, Toronto, Canada
| | - Danna A. Spears
- University Health Network, Division of Cardiology – Electrophysiology, University of Toronto, Toronto, Canada
| | - Melanie Care
- Fred A. Litwin Family Centre in Genetic Medicine and Inherited Arrhythmia Clinic, University Health Network & Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. Int J Mol Sci 2019; 20:ijms20153758. [PMID: 31374823 PMCID: PMC6696036 DOI: 10.3390/ijms20153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor β1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.
Collapse
|
24
|
Sykora M, Kamocsaiova L, Egan Benova T, Frimmel K, Ujhazy E, Mach M, Barancik M, Tribulova N, Szeiffova Bacova B. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study 1. Can J Physiol Pharmacol 2019; 97:829-836. [PMID: 30908945 DOI: 10.1139/cjpp-2018-0740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.
Collapse
Affiliation(s)
- Matus Sykora
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Lucia Kamocsaiova
- Faculty of Natural Sciences of Comenius University, Bratislava, Slovakia
| | | | - Karel Frimmel
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Eduard Ujhazy
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mojmir Mach
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | | | | | | |
Collapse
|
25
|
Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death. Heart Vessels 2019; 34:1052-1063. [DOI: 10.1007/s00380-018-01323-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
26
|
Li X, Yu L, Gao J, Bi X, Zhang J, Xu S, Wang M, Chen M, Qiu F, Fu G. Apelin Ameliorates High Glucose-Induced Downregulation of Connexin 43 via AMPK-Dependent Pathway in Neonatal Rat Cardiomyocytes. Aging Dis 2018; 9:66-76. [PMID: 29392082 PMCID: PMC5772859 DOI: 10.14336/ad.2017.0426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Diabetes Mellitus is a common disorder, with increasing risk of cardiac arrhythmias. Studies have shown that altered connexin expression and gap junction remodeling under hyperglycemia contribute to the high prevalence of cardiac arrhythmias and even sudden death. Connexin 43 (Cx43), a major protein that assembles to form cardiac gap junctions, has been found to be downregulated under high glucose conditions, along with inhibition of gap junctional intercellular communication (GJIC). While, apelin, a beneficial adipokine, increases Cx43 protein expression in mouse and human embryonic stem cells during cardiac differentiation. However, it remains unknown whether apelin influences GJIC capacity in cardiomyocytes. Here, using Western blotting and dye transfer assays, we found that Cx43 protein expression was reduced and GJIC was impaired after treatment with high glucose, which, however, could be abrogated after apelin treatment for 48 h. We also found that apelin increased Cx43 expression under normal glucose. Real-time PCR showed that the Cx43 mRNA was not significantly affected under high glucose conditions in the presence of apelin or high glucose and apelin. High glucose decreased the phosphorylation of AMPKα; however, apelin activated AMPKα. Interestingly, we found that Cx43 expression was increased after treatment with AICAR, an activator of AMPK signaling. AMPKα inhibition mediated with transfection of siRNA-AMPKα1 and siRNA-AMPKα2 abolished the protective effect of apelin on Cx43 expression. Our data suggest that apelin attenuates high glucose-induced Cx43 downregulation and improves the loss of functional gap junctions partly through the AMPK pathway.
Collapse
Affiliation(s)
- Xiaoting Li
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Yu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Gao
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xukun Bi
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juhong Zhang
- 2Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiming Xu
- 3Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- 4Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Chen
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Elucidation of the dynamic nature of interactome networks: A practical tutorial. J Proteomics 2018; 171:116-126. [DOI: 10.1016/j.jprot.2017.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023]
|
28
|
Crassous PA, Shu P, Huang C, Gordan R, Brouckaert P, Lampe PD, Xie LH, Beuve A. Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 2017; 6:e006397. [PMID: 29269353 PMCID: PMC5778997 DOI: 10.1161/jaha.117.006397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Guanylyl cyclase, a heme-containing α1β1 heterodimer (GC1), produces cGMP in response to Nitric oxide (NO) stimulation. The NO-GC1-cGMP pathway negatively regulates cardiomyocyte contractility and protects against cardiac hypertrophy-related remodeling. We recently reported that the β1 subunit of GC1 is detected at the intercalated disc with connexin 43 (Cx43). Cx43 forms gap junctions (GJs) at the intercalated disc that are responsible for electrical propagation. We sought to determine whether there is a functional association between GC1 and Cx43 and its role in cardiac homeostasis. METHODS AND RESULTS GC1 and Cx43 immunostaining at the intercalated disc and coimmunoprecipitation from membrane fraction indicate that GC1 and Cx43 are associated. Mice lacking the α subunit of GC1 (GCα1 knockout mice) displayed a significant decrease in GJ function (dye-spread assay) and Cx43 membrane lateralization. In a cardiac-hypertrophic model, angiotensin II treatment disrupted the GC1-Cx43 association and induced significant Cx43 membrane lateralization, which was exacerbated in GCα1 knockout mice. Cx43 lateralization correlated with decreased Cx43-containing GJs at the intercalated disc, predictors of electrical dysfunction. Accordingly, an ECG revealed that angiotensin II-treated GCα1 knockout mice had impaired ventricular electrical propagation. The phosphorylation level of Cx43 at serine 365, a protein-kinase A upregulated site involved in trafficking/assembly of GJs, was decreased in these models. CONCLUSIONS GC1 modulates ventricular Cx43 location, hence GJ function, and partially protects from electrical dysfunction in an angiotensin II hypertrophy model. Disruption of the NO-cGMP pathway is associated with cardiac electrical disturbance and abnormal Cx43 phosphorylation. This previously unknown NO/Cx43 signaling could be a protective mechanism against stress-induced arrhythmia.
Collapse
Affiliation(s)
- Pierre-Antoine Crassous
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| |
Collapse
|
29
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
30
|
Krishnan S, Fiori MC, Cuello LG, Altenberg GA. A Cell-Based Assay to Assess Hemichannel Function. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:87-95. [PMID: 28356896 PMCID: PMC5369048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Luis G. Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
31
|
Belardinelli L, Maleckar MM, Giles WR. Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na +: Is There a Need for Flipped Learning? Circ Arrhythm Electrophysiol 2017; 10:e004955. [PMID: 28213509 DOI: 10.1161/circep.117.004955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luiz Belardinelli
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Mary M Maleckar
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Wayne R Giles
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after γ-Irradiation, Neuregulin-1β, and Trastuzumab Application. Int J Mol Sci 2017; 18:ijms18020362. [PMID: 28208769 PMCID: PMC5343897 DOI: 10.3390/ijms18020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/28/2022] Open
Abstract
In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.
Collapse
|
33
|
Pereira IR, Vilar-Pereira G, Silva AAD, Lannes-Vieira J. Severity of chronic experimental Chagas' heart disease parallels tumour necrosis factor and nitric oxide levels in the serum: models of mild and severe disease. Mem Inst Oswaldo Cruz 2016; 109:289-98. [PMID: 24937048 PMCID: PMC4131780 DOI: 10.1590/0074-0276140033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/01/2014] [Indexed: 01/03/2023] Open
Abstract
Heart tissue inflammation, progressive fibrosis and electrocardiographic alterations
occur in approximately 30% of patients infected by Trypanosoma
cruzi, 10-30 years after infection. Further, plasma levels of tumour
necrosis factor (TNF) and nitric oxide (NO) are associated with the degree of heart
dysfunction in chronic chagasic cardiomyopathy (CCC). Thus, our aim was to establish
experimental models that mimic a range of parasitological, pathological and cardiac
alterations described in patients with chronic Chagas’ heart disease and evaluate
whether heart disease severity was associated with increased TNF and NO levels in the
serum. Our results show that C3H/He mice chronically infected with the Colombian
T. cruzi strain have more severe cardiac parasitism and
inflammation than C57BL/6 mice. In addition, connexin 43 disorganisation and
fibronectin deposition in the heart tissue, increased levels of creatine kinase
cardiac MB isoenzyme activity in the serum and more severe electrical abnormalities
were observed in T. cruzi-infected C3H/He mice compared to C57BL/6
mice. Therefore, T. cruzi-infected C3H/He and C57BL/6 mice represent
severe and mild models of CCC, respectively. Moreover, the CCC severity paralleled
the TNF and NO levels in the serum. Therefore, these models are appropriate for
studying the pathophysiology and biomarkers of CCC progression, as well as for
testing therapeutic agents for patients with Chagas’ heart disease.
Collapse
Affiliation(s)
- Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
34
|
Oncogenic extracellular HSP70 disrupts the gap-junctional coupling between capillary cells. Oncotarget 2016; 6:10267-83. [PMID: 25868858 PMCID: PMC4496354 DOI: 10.18632/oncotarget.3522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022] Open
Abstract
High levels of circulating heat shock protein 70 (HSP70) are detected in many cancers. In order to explore the effects of extracellular HSP70 on human microvascular endothelial cells (HMEC), we initially used gap-FRAP technique. Extracellular human HSP70 (rhHSP70), but not rhHSP27, blocks the gap-junction intercellular communication (GJIC) between HMEC, disrupts the structural integrity of HMEC junction plaques, and decreases connexin43 (Cx43) expression, which correlates with the phosphorylation of Cx43 serine residues. Further exploration of these effects identified a rapid transactivation of the Epidermal Growth Factor Receptor in a Toll-Like Receptor 4-dependent manner, preceding its internalization. In turn, cytosolic Ca2+ oscillations are generated. Both GJIC blockade and Ca2+ mobilization partially depend on ATP release through Cx43 and pannexin (Panx-1) channels, as demonstrated by blocking activity or expression of channels, and inactivating extracellular ATP. By monitoring dye-spreading into adjacent cells, we show that HSP70 released from human monocytes in response to macrophage colony-stimulating factor, prevents the formation of GJIC between monocytes and HMEC. Therapeutic manipulation of this pathway could be of interest in inflammatory and tumor growth.
Collapse
|
35
|
Entz M, George SA, Zeitz MJ, Raisch T, Smyth JW, Poelzing S. Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs. Front Physiol 2016; 7:16. [PMID: 26869934 PMCID: PMC4735342 DOI: 10.3389/fphys.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background: Recent studies suggested that cardiac conduction in murine hearts with narrow perinexi and 50% reduced connexin43 (Cx43) expression is more sensitive to relatively physiological changes of extracellular potassium ([K+]o) and sodium ([Na+]o). Purpose: Determine whether similar [K+]o and [Na+]o changes alter conduction velocity (CV) sensitivity to pharmacologic gap junction (GJ) uncoupling in guinea pigs. Methods: [K+]o and [Na+]o were varied in Langendorff perfused guinea pig ventricles (Solution A: [K+]o = 4.56 and [Na+]o = 153.3 mM. Solution B: [K+]o = 6.95 and [Na+]o = 145.5 mM). Gap junctions were inhibited with carbenoxolone (CBX) (15 and 30 μM). Epicardial CV was quantified by optical mapping. Perinexal width was measured with transmission electron microscopy. Total and phosphorylated Cx43 were evaluated by western blotting. Results: Solution composition did not alter CV under control conditions or with 15μM CBX. Decreasing the basic cycle length (BCL) of pacing from 300 to 160 ms decreased CV uniformly with both solutions. At 30 μM CBX, a change in solution did not alter CV either longitudinally or transversely at BCL = 300 ms. However, reducing BCL to 160 ms caused CV to decrease more in hearts perfused with Solution B than A. Solution composition did not alter perinexal width, nor did it change total or phosphorylated serine 368 Cx43 expression. These data suggest that the solution dependent CV changes were independent of altered perinexal width or GJ coupling. Action potential duration was always shorter in hearts perfused with Solution B than A, independent of pacing rate and/or CBX concentration. Conclusions: Increased heart rate and GJ uncoupling can unmask small CV differences caused by changing [K+]o and [Na+]o. These data suggest that modulating extracellular ionic composition may be a novel anti-arrhythmic target in diseases with abnormal GJ coupling, particularly when heart rate cannot be controlled.
Collapse
Affiliation(s)
- Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA
| | - Michael J Zeitz
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State University Roanoke, VA, USA
| | - Tristan Raisch
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA; Virginia Tech Carilion Research Institute and Center for Heart and Regenerative Medicine, Virginia Polytechnic Institute and State UniversityRoanoke, VA, USA; Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
36
|
Cogliati B, Maes M, Pereira IVA, Willebrords J, Da Silva TC, Crespo Yanguas S, Vinken M. Immunohisto- and Cytochemistry Analysis of Connexins. Methods Mol Biol 2016; 1437:55-70. [PMID: 27207286 DOI: 10.1007/978-1-4939-3664-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunohistochemistry (IHC) is a ubiquitous used technique to identify and analyze protein expression in the context of tissue and cell morphology. In the connexin research field, IHC is applied to identify the subcellular location of connexin proteins, as this can be directly linked to their functionality. The present chapter describes a protocol for fluorescent IHC to detect connexin proteins in tissues slices and cells, with slight modifications depending on the nature of biological sample, histological processing, and/or protein expression level. Basically, fluorescent IHC is a short, simple, and cost-effective technique, which allows the visualization of proteins based on fluorescent-labeled antibody-antigen recognition.
Collapse
Affiliation(s)
- Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, SP, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, SP, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, SP, Brazil
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| |
Collapse
|
37
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
38
|
Martins-Marques T, Anjo SI, Pereira P, Manadas B, Girão H. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart. Mol Cell Proteomics 2015; 14:3040-55. [PMID: 26316108 DOI: 10.1074/mcp.m115.052894] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Sandra Isabel Anjo
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ¶Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Paulo Pereira
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Bruno Manadas
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ‖Biocant - Biotechnology Innovation Center, 3060-197, Cantanhede, Portugal
| | - Henrique Girão
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal;
| |
Collapse
|
39
|
Abstract
The main function of the heart is to pump blood to the different parts of the organism, a task that is efficiently accomplished through proper electric and metabolic coupling between cardiac cells, ensured by gap junctions (GJ). Cardiomyocytes are the major cell population in the heart, and as cells with low mitotic activity, are highly dependent upon mechanisms of protein degradation. In the heart, both the ubiquitin-proteasome system (UPS) and autophagy participate in the fine-tune regulation of cardiac remodelling and function, either in physiological or pathological conditions. Indeed, besides controlling cardiac signalling pathways, UPS and autophagy have been implicated in the turnover of several myocardial proteins. Degradation of Cx43, the major ventricular GJ protein, has been associated to up-regulation of autophagy at the onset of heart ischemia and ischemia/reperfusion (I/R), which can have profound implications upon cardiac function. In this review, we present recent studies devoted to the involvement of autophagy and UPS in heart homoeostasis, with a particular focus on GJ.
Collapse
|
40
|
Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie 2015; 112:196-201. [DOI: 10.1016/j.biochi.2015.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
|
41
|
Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes. Biochem J 2015; 467:231-45. [DOI: 10.1042/bj20141370] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GJIC (gap junction intercellular communication) between cardiomyocytes is essential for synchronous heart contraction and relies on Cx (connexin)-containing channels. Increased breakdown of Cx43 has been often associated with various cardiac diseases. However, the mechanisms whereby Cx43 is degraded in ischaemic heart remain unknown. The results obtained in the present study, using both HL-1 cells and organotypic heart cultures, show that simulated ischaemia induces degradation of Cx43 that can be prevented by chemical or genetic inhibitors of autophagy. Additionally, ischaemia-induced degradation of Cx43 results in GJIC impairment in HL-1 cells, which can be restored by autophagy inhibition. In cardiomyocytes, ubiquitin signals Cx43 for autophagic degradation, through the recruitment of the ubiquitin-binding proteins Eps15 (epidermal growth factor receptor substrate 15) and p62, that assist in Cx43 internalization and targeting to autophagic vesicles, via LC3 (light chain 3). Moreover, we establish that degradation of Cx43 in ischaemia or I/R (ischaemia/reperfusion) relies upon different molecular players. Indeed, degradation of Cx43 during early periods of ischaemia depends on AMPK (AMP-activated protein kinase), whereas in late periods of ischaemia and I/R Beclin 1 is required. In the Langendorff-perfused heart, Cx43 is dephosphorylated in ischaemia and degraded during I/R, where Cx43 degradation correlates with autophagy activation. In summary, the results of the present study provide new evidence regarding the molecular mechanisms whereby Cx43 is degraded in ischaemia, which may contribute to the development of new strategies that aim to preserve GJIC and cardiac function in ischaemic heart.
Collapse
|
42
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
43
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
44
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
45
|
Veeraraghavan R, Gourdie RG, Poelzing S. Mechanisms of cardiac conduction: a history of revisions. Am J Physiol Heart Circ Physiol 2014; 306:H619-27. [PMID: 24414064 DOI: 10.1152/ajpheart.00760.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, Virginia; and
| | | | | |
Collapse
|
46
|
Nguyen TP, Qu Z, Weiss JN. Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 2013; 70:83-91. [PMID: 24184999 DOI: 10.1016/j.yjmcc.2013.10.018] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/12/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023]
Abstract
In the healthy heart, cardiac myocytes form an electrical syncytium embedded in a supportive fibroblast-rich extracellular matrix designed to optimize the electromechanical coupling for maximal contractile efficiency of the heart. In the injured heart, however, fibroblasts are activated and differentiate into myofibroblasts that proliferate and generate fibrosis as a component of the wound-healing response. This review discusses how fibroblasts and fibrosis, while essential for maintaining the structural integrity of the heart wall after injury, have undesirable electrophysiological effects by disrupting the normal electrical connectivity of cardiac tissue to increase the vulnerability to arrhythmias. We emphasize the dual contribution of fibrosis in altering source-sink relationships to create a vulnerable substrate while simultaneously facilitating the emergence of triggers such as afterdepolarization-induced premature ventricular complexes-both factors combining synergistically to promote initiation of reentry. We also discuss the potential role of fibroblasts and myofibroblasts in directly altering myocyte electrophysiology in a pro-arrhythmic fashion. Insight into these processes may open up novel therapeutic strategies for preventing and treating arrhythmias in the setting of heart disease as well as avoiding potential arrhythmogenic consequences of cell-based cardiac regeneration therapy. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signaling in Myocardium."
Collapse
Affiliation(s)
- Thao P Nguyen
- UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Division of Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Zhilin Qu
- UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Division of Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Division of Cardiology) and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Verheule S, Kaese S. Connexin diversity in the heart: insights from transgenic mouse models. Front Pharmacol 2013; 4:81. [PMID: 23818881 PMCID: PMC3694209 DOI: 10.3389/fphar.2013.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/04/2013] [Indexed: 11/13/2022] Open
Abstract
Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders.
Collapse
Affiliation(s)
- Sander Verheule
- Department of Physiology, Faculty of Medicine, Maastricht University Maastricht, Netherlands
| | | |
Collapse
|
48
|
Sakurai T, Tsuchida M, Lampe PD, Murakami M. Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance. Exp Cell Res 2013; 319:2152-65. [PMID: 23742896 DOI: 10.1016/j.yexcr.2013.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023]
Abstract
Cardiac remodeling resulting from impairment of myocardial integrity leads to heart failure, through still incompletely understood mechanisms. The fibroblast growth factor (FGF) system has been implicated in tissue maintenance, but its role in the adult heart is not well defined. We hypothesized that the FGF system plays a role in the maintenance of cardiac homeostasis, and the impairment of cardiomyocyte FGF signaling leads to pathological cardiac remodeling. We showed that FGF signaling is required for connexin 43 (Cx43) localization at cell-cell contacts in isolated cardiomyocytes and COS7 cells. Lack of FGF signaling led to decreased Cx43 phosphorylation at serines 325/328/330 (S325/328/330), sites known to be important for assembly of gap junctions. Cx43 instability induced by FGF inhibition was restored by the Cx43 S325/328/330 phospho-mimetic mutant, suggesting FGF-dependent phosphorylation of these sites. Consistent with these in vitro findings, cardiomyocyte-specific inhibition of FGF signaling in adult mice demonstrated mislocalization of Cx43 at intercalated discs, whereas localization of N-cadherin and desmoplakin was not affected. This led to premature death resulting from impaired cardiac remodeling. We conclude that cardiomyocyte FGF signaling is essential for cardiomyocyte homeostasis through phosphorylation of Cx43 at S325/328/330 residues which are important for the maintenance of gap junction.
Collapse
Affiliation(s)
- Takashi Sakurai
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
49
|
SCHEINMAN MELVIN. Enhanced AV Nodal Conduction and Brenchenmacher Tracts. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 36:135-6. [DOI: 10.1111/pace.12025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022]
Affiliation(s)
- MELVIN SCHEINMAN
- University of California San Fransisco; Cardiac EP Service; San Fransisco; California
| |
Collapse
|