1
|
Paasche A, Wiedmann F, Kraft M, Seibertz F, Herlt V, Blochberger PL, Jávorszky N, Beck M, Weirauch L, Seeger T, Blank A, Haefeli WE, Arif R, Meyer AL, Warnecke G, Karck M, Voigt N, Frey N, Schmidt C. Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers the excitability of atrial cardiomyocytes. Basic Res Cardiol 2024; 119:93-112. [PMID: 38170280 PMCID: PMC10837223 DOI: 10.1007/s00395-023-01022-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity. The inhibitory effects were reproduced in human induced pluripotent stem cell-derived cardiomyocytes, and were more pronounced in atrial compared to ventricular cells. Hypothesizing that dapagliflozin directly affects the depolarization phase of atrial action potentials, we examined fast inward sodium currents in human atrial cardiomyocytes and found a significant decrease of peak sodium current densities by dapagliflozin, accompanied by a moderate inhibition of the transient outward potassium current. Translating these findings into a porcine large animal model, acute elevated-dose dapagliflozin treatment caused an atrial-dominant reduction of myocardial conduction velocity in vivo. This could be utilized for both, acute cardioversion of paroxysmal atrial fibrillation episodes and rhythm control of persistent atrial fibrillation. In this study, we show that dapagliflozin alters the excitability of atrial cardiomyocytes by direct inhibition of peak sodium currents. In vivo, dapagliflozin exerts antiarrhythmic effects, revealing a potential new additional role of SGLT2 inhibitors in the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
- Amelie Paasche
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Valerie Herlt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Pablo L Blochberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Natasa Jávorszky
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Moritz Beck
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Leo Weirauch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anna L Meyer
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Chapotte-Baldacci CA, Pierre M, Djemai M, Pouliot V, Chahine M. Biophysical properties of Na V1.5 channels from atrial-like and ventricular-like cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2023; 13:20685. [PMID: 38001331 PMCID: PMC10673932 DOI: 10.1038/s41598-023-47310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Generating atrial-like cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) is crucial for modeling and treating atrial-related diseases, such as atrial arrythmias including atrial fibrillations. However, it is essential to obtain a comprehensive understanding of the electrophysiological properties of these cells. The objective of the present study was to investigate the molecular, electrical, and biophysical properties of several ion channels, especially NaV1.5 channels, in atrial hiPSC cardiomyocytes. Atrial cardiomyocytes were obtained by the differentiation of hiPSCs treated with retinoic acid (RA). The quality of the atrial specification was assessed by qPCR, immunocytofluorescence, and western blotting. The electrophysiological properties of action potentials (APs), Ca2+ dynamics, K+ and Na+ currents were investigated using patch-clamp and optical mapping approaches. We evaluated mRNA transcript and protein expressions to show that atrial cardiomyocytes expressed higher atrial- and sinoatrial-specific markers (MYL7, CACNA1D) and lower ventricular-specific markers (MYL2, CACNA1C, GJA1) than ventricular cardiomyocytes. The amplitude, duration, and steady-state phase of APs in atrial cardiomyocytes decreased, and had a shape similar to that of mature atrial cardiomyocytes. Interestingly, NaV1.5 channels in atrial cardiomyocytes exhibited lower mRNA transcripts and protein expression, which could explain the lower current densities recorded by patch-clamp. Moreover, Na+ currents exhibited differences in activation and inactivation parameters. These differences could be explained by an increase in SCN2B regulatory subunit expression and a decrease in SCN1B and SCN4B regulatory subunit expressions. Our results show that a RA treatment made it possible to obtain atrial cardiomyocytes and investigate differences in NaV1.5 channel properties between ventricular- and atrial-like cells.
Collapse
Affiliation(s)
- Charles-Albert Chapotte-Baldacci
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Marion Pierre
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohammed Djemai
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
3
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
4
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
5
|
Delayed Ventricular Repolarization and Sodium Channel Current Modification in a Mouse Model of Rett Syndrome. Int J Mol Sci 2022; 23:ijms23105735. [PMID: 35628543 PMCID: PMC9147596 DOI: 10.3390/ijms23105735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe developmental disorder that is strongly linked to mutations in the MECP2 gene. RTT has been associated with sudden unexplained death and ECG QT interval prolongation. There are mixed reports regarding QT prolongation in mouse models of RTT, with some evidence that loss of Mecp2 function enhances cardiac late Na current, INa,Late. The present study was undertaken in order to investigate both ECG and ventricular AP characteristics in the Mecp2Null/Y male murine RTT model and to interrogate both fast INa and INa,Late in myocytes from the model. ECG recordings from 8-10-week-old Mecp2Null/Y male mice revealed prolongation of the QT and rate corrected QT (QTc) intervals and QRS widening compared to wild-type (WT) controls. Action potentials (APs) from Mecp2Null/Y myocytes exhibited longer APD75 and APD90 values, increased triangulation and instability. INa,Late was also significantly larger in Mecp2Null/Y than WT myocytes and was insensitive to the Nav1.8 inhibitor A-803467. Selective recordings of fast INa revealed a decrease in peak current amplitude without significant voltage shifts in activation or inactivation V0.5. Fast INa 'window current' was reduced in RTT myocytes; small but significant alterations of inactivation and reactivation time-courses were detected. Effects of two INa,Late inhibitors, ranolazine and GS-6615 (eleclazine), were investigated. Treatment with 30 µM ranolazine produced similar levels of inhibition of INa,Late in WT and Mecp2Null/Y myocytes, but produced ventricular AP prolongation not abbreviation. In contrast, 10 µM GS-6615 both inhibited INa,Late and shortened ventricular AP duration. The observed changes in INa and INa,Late can account for the corresponding ECG changes in this RTT model. GS-6615 merits further investigation as a potential treatment for QT prolongation in RTT.
Collapse
|
6
|
O' Brien S, Holmes AP, Johnson DM, Kabir SN, O' Shea C, O' Reilly M, Avezzu A, Reyat JS, Hall AW, Apicella C, Ellinor PT, Niederer S, Tucker NR, Fabritz L, Kirchhof P, Pavlovic D. Increased atrial effectiveness of flecainide conferred by altered biophysical properties of sodium channels. J Mol Cell Cardiol 2022; 166:23-35. [PMID: 35114252 PMCID: PMC7616974 DOI: 10.1016/j.yjmcc.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
Atrial fibrillation (AF) affects over 1% of the population and is a leading cause of stroke and heart failure in the elderly. A feared side effect of sodium channel blocker therapy, ventricular pro-arrhythmia, appears to be relatively rare in patients with AF. The biophysical reasons for this relative safety of sodium blockers are not known. Our data demonstrates intrinsic differences between atrial and ventricular cardiac voltage-gated sodium currents (INa), leading to reduced maximum upstroke velocity of action potential and slower conduction, in left atria compared to ventricle. Reduced atrial INa is only detected at physiological membrane potentials and is driven by alterations in sodium channel biophysical properties and not by NaV1.5 protein expression. Flecainide displayed greater inhibition of atrial INa, greater reduction of maximum upstroke velocity of action potential, and slowed conduction in atrial cells and tissue. Our work highlights differences in biophysical properties of sodium channels in left atria and ventricles and their response to flecainide. These differences can explain the relative safety of sodium channel blocker therapy in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Sian O' Brien
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK; School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Daniel M Johnson
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK; School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Christopher O' Shea
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Molly O' Reilly
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Adelisa Avezzu
- School of Biomedical Engineering & Imaging Sciences, Kings' College London, London, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Amelia W Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clara Apicella
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven Niederer
- School of Biomedical Engineering & Imaging Sciences, Kings' College London, London, UK
| | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK; University Center of Cardiovascular Science, University Heart and Vascular Center UKE, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Paulus Kirchhof
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK; Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Davor Pavlovic
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals (Basel) 2021; 15:ph15010031. [PMID: 35056088 PMCID: PMC8777683 DOI: 10.3390/ph15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a significant public health problem with high mortality and morbidity. Extensive scientific investigations from basic sciences to clinics revealed multilevel alterations from metabolic imbalance, altered electrophysiology, and defective Ca2+/Na+ homeostasis leading to lethal arrhythmias. Despite the recent identification of numerous molecular targets with potential therapeutic interest, a pragmatic observation on the current pharmacological R&D output confirms the lack of new therapeutic offers to patients. By contrast, from recent trials, molecules initially developed for other fields of application have shown cardiovascular benefits, as illustrated with some anti-diabetic agents, regardless of the presence or absence of diabetes, emphasizing the clear advantage of “old” drug repositioning. Ranolazine is approved as an antianginal agent and has a favorable overall safety profile. This drug, developed initially as a metabolic modulator, was also identified as an inhibitor of the cardiac late Na+ current, although it also blocks other ionic currents, including the hERG/Ikr K+ current. The latter actions have been involved in this drug’s antiarrhythmic effects, both on supraventricular and ventricular arrhythmias (VA). However, despite initial enthusiasm and promising development in the cardiovascular field, ranolazine is only authorized as a second-line treatment in patients with chronic angina pectoris, notwithstanding its antiarrhythmic properties. A plausible reason for this is the apparent difficulty in linking the clinical benefits to the multiple molecular actions of this drug. Here, we review ranolazine’s experimental and clinical knowledge on cardiac metabolism and arrhythmias. We also highlight advances in understanding novel effects on neurons, the vascular system, skeletal muscles, blood sugar control, and cancer, which may open the way to reposition this “old” drug alone or in combination with other medications.
Collapse
|
8
|
Caves RE, Carpenter A, Choisy SC, Clennell B, Cheng H, McNiff C, Mann B, Milnes JT, Hancox JC, James AF. Inhibition of voltage-gated Na + currents by eleclazine in rat atrial and ventricular myocytes. Heart Rhythm O2 2020; 1:206-214. [PMID: 32864638 PMCID: PMC7442036 DOI: 10.1016/j.hroo.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Atrial-ventricular differences in voltage-gated Na+ currents might be exploited for atrial-selective antiarrhythmic drug action for the suppression of atrial fibrillation without risk of ventricular tachyarrhythmia. Eleclazine (GS-6615) is a putative antiarrhythmic drug with properties similar to the prototypical atrial-selective Na+ channel blocker ranolazine that has been shown to be safe and well tolerated in patients. Objective The present study investigated atrial-ventricular differences in the biophysical properties and inhibition by eleclazine of voltage-gated Na+ currents. Methods The fast and late components of whole-cell voltage-gated Na+ currents (respectively, INa and INaL) were recorded at room temperature (∼22°C) from rat isolated atrial and ventricular myocytes. Results Atrial INa activated at command potentials ∼5.5 mV more negative and inactivated at conditioning potentials ∼7 mV more negative than ventricular INa. There was no difference between atrial and ventricular myocytes in the eleclazine inhibition of INaL activated by 3 nM ATX-II (IC50s ∼200 nM). Eleclazine (10 μM) inhibited INa in atrial and ventricular myocytes in a use-dependent manner consistent with preferential activated state block. Eleclazine produced voltage-dependent instantaneous inhibition in atrial and ventricular myocytes; it caused a negative shift in voltage of half-maximal inactivation and slowed the recovery of INa from inactivation in both cell types. Conclusions Differences exist between rat atrial and ventricular myocytes in the biophysical properties of INa. The more negative voltage dependence of INa activation/inactivation in atrial myocytes underlies differences between the 2 cell types in the voltage dependence of instantaneous inhibition by eleclazine. Eleclazine warrants further investigation as an atrial-selective antiarrhythmic drug.
Collapse
Affiliation(s)
- Rachel E Caves
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alexander Carpenter
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Stéphanie C Choisy
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ben Clennell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hongwei Cheng
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Cameron McNiff
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Brendan Mann
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Del-Canto I, Gómez-Cid L, Hernández-Romero I, Guillem MS, Fernández-Santos ME, Atienza F, Such L, Fernández-Avilés F, Chorro FJ, Climent AM. Ranolazine-Mediated Attenuation of Mechanoelectric Feedback in Atrial Myocyte Monolayers. Front Physiol 2020; 11:922. [PMID: 32848863 PMCID: PMC7417656 DOI: 10.3389/fphys.2020.00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mechanical stretch increases Na+ inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H+ exchanger activation, involving Ca2+ increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of INaL current and Ca2+ overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of in vitro fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, p < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm2, p < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, p < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, p < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, p < 0.01) and maintaining activation complexity—both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, p < 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.
Collapse
Affiliation(s)
- Irene Del-Canto
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | | | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Luis Such
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Physiology, Universitat de València Estudi General, Valencia, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco J Chorro
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Cardiology, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Andreu M Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain.,ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
10
|
Tribulova N, Kurahara LH, Hlivak P, Hirano K, Szeiffova Bacova B. Pro-Arrhythmic Signaling of Thyroid Hormones and Its Relevance in Subclinical Hyperthyroidism. Int J Mol Sci 2020; 21:E2844. [PMID: 32325836 PMCID: PMC7215427 DOI: 10.3390/ijms21082844] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.
Collapse
Affiliation(s)
- Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| |
Collapse
|
11
|
Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front Pharmacol 2019; 10:1367. [PMID: 32038227 PMCID: PMC6988797 DOI: 10.3389/fphar.2019.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Collapse
Affiliation(s)
- Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Ghosh GC, Ghosh RK, Bandyopadhyay D, Chatterjee K, Aneja A. Ranolazine: Multifaceted Role beyond Coronary Artery Disease, a Recent Perspective. Heart Views 2019; 19:88-98. [PMID: 31007857 PMCID: PMC6448470 DOI: 10.4103/heartviews.heartviews_18_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is a piperazine derivative approved as an antianginal. Primarily used as a second-line antianginal in stable coronary artery disease. Ranolazine blocks the late Na + current and prevents the rise of cytosolic calcium. It decreases myocardial wall tension and improves coronary blood flow. Ranolazine is effective in atrial fibrillation (AF) as an adjunct to electrical or pharmacological cardioversion. It can be used in combination with amiodarone or dronedarone. It has also been used in AF arising after coronary artery bypass grafting surgery. Role of ranolazine is also being evaluated in pulmonary arterial hypertension, diastolic dysfunction, and chemotherapy-induced cardiotoxicity. Ranolazine has some anti-glycemic effect and has shown a reduction of hemoglobin A1c in multiple trials. The antianginal effect of ranolazine has also been seen to be more in patients with diabetes compared to those without diabetes. Ranolazine is being evaluated in patients with the peripheral arterial disease with intermittent claudication and hypertrophic cardiomyopathy. Pilot studies have shown that ranolazine may be beneficial in neurological conditions with myotonia. The evidence-base on the use of ranolazine in various conditions is rapidly increasing with results of further trials eagerly awaited. Accumulating evidence may see ranolazine in routine clinical use for many conditions beyond its traditional role as an antianginal.
Collapse
Affiliation(s)
- Gopal Chandra Ghosh
- Department of Cardiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Raktim Kumar Ghosh
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| | | | - Krishnarpan Chatterjee
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashish Aneja
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| |
Collapse
|
13
|
Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Front Physiol 2017; 8:946. [PMID: 29218016 PMCID: PMC5703742 DOI: 10.3389/fphys.2017.00946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Dominic G Whittaker
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wei Wang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanjiv M Narayan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Henggui Zhang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|