1
|
Xu F, Zhang C, Zhang M, Zhu X, Cheng S, Cheng Z, Zeng C, Jiang S. Evaluation of the significance of complement-related genes mutations in atypical postinfectious glomerulonephritis: a pilot study. Int Urol Nephrol 2024; 56:1475-1485. [PMID: 37845399 PMCID: PMC10924015 DOI: 10.1007/s11255-023-03831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Postinfectious glomerulonephritis with C3-dominant glomerular deposition (C3-PIGN) involves C3-dominant glomerular deposition without immunoglobulin. Atypical C3-PIGN involves persistent hypocomplementemia. We investigated the clinical features and explored complement-related gene mutations in atypical PIGN patients. METHODS We enrolled atypical C3-PIGN patients and collected data regarding the clinical presentation and pathological characteristics and follow-up data. We measured the levels of complement associated antibodies and performed whole-exome sequencing (WES) to detect mutations in complement-related genes. RESULTS The analysis included six atypical C3-PIGN patients. All patients were antistreptolysin-O (ASO) positive. All patients had varying degrees of hematuria, and four patients had proteinuria. None of the patients were positive for complement-related antibodies. All patients possessed mutations of genes related to the complement pathway, including alternative complement pathway genes-CFI, CFH, CFHR3, CFHR5; the lectin pathway gene-MASP2; and the common complement pathway gene-C8A. The rare variant of CFHR3 has been reported in C3 glomerulonephritis. During 56-73 months of follow-up, the levels of urine markers in three patients recovered within 6 months, and the remaining patients had abnormal urine test results over 12 months. Patients who received glucocorticoid therapy recovered faster. CONCLUSIONS Our study suggested that complement-related gene mutations may be an important cause of persistent hypocomplementemia in atypical C3-PIGN patients. In addition to variations in alternate pathway-related genes, we also found variations in lectin pathway-related genes, especially MASP2 genes. Although the overall prognosis was good, atypical C3-PIGN patients exhibited a longer period for recovery. Our results suggested that atypical C3-PIGN patients should receive more medical attention and need testing for mutations in complement-related genes.
Collapse
Affiliation(s)
- Feng Xu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Changming Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Xiaodong Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Shuiqin Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Zhen Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Song Jiang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China.
| |
Collapse
|
2
|
Sharma S, Kumari B, Ali A, Patel PK, Sharma AK, Nair R, Singh PK, Hajela K. Mannose-binding lectin gene 2 variant DD (rs 5030737) is associated with susceptibility to COVID-19 infection in the urban population of Patna City (India). Mol Genet Genomics 2023; 298:955-963. [PMID: 37204457 PMCID: PMC10196310 DOI: 10.1007/s00438-023-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The study aimed to measure plasma levels of Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) and their polymorphisms in COVID-19 patients and controls to detect association. As MBL is a protein of immunological importance, it may contribute to the first-line host defence against SARS-CoV-2. MBL initiates the lectin pathway of complement activation with help of MASP-1 and MASP-2. Hence, appropriate serum levels of MBL and MASPs are crucial in getting protection from the disease. The polymorphisms of MBL and MASP genes affect their plasma levels, impacting their protective function and thus may manifest susceptibility, extreme variability in the clinical symptoms and progression of COVID-19 disease. The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively.The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively. Our results indicate that median serum levels of MBL and MASP-2 were significantly low in diseased cases but attained normal levels on recovery. Only genotype DD was found to be associated with COVID-19 cases in the urban population of Patna city.
Collapse
Affiliation(s)
- Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India.
| | - Bandana Kumari
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Pankaj Kumar Patel
- Department of Botany, SBN Government PG College, Barwani, 451551, MP, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Rathish Nair
- College of Nursing, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | | | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, 452014, MP, India
| |
Collapse
|
3
|
Aghamohammadi A, Rafatpanah H, Maghsoodlu M, Tohidi N, Mollahosseini F, Shahabi M. Mannose Binding Lectin-Associated Serine Protease 2 (MASP2) Gene Polymorphism and susceptibility to Human T-lymphotropic virus type 1 (HTLV-1) Infection in Blood Donors of Mashhad, Iran. Microbiol Immunol 2022; 66:460-464. [PMID: 35924689 DOI: 10.1111/1348-0421.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Mannose binding lectin-associated serine protease 2 (MASP2) is the effector part of mannose binding lectin (MBL) that activates the complement system in an antibody-independent manner. We aimed to investigate the role of genetic polymorphisms in the MASP2 gene and susceptibility to HTLV-1 infection. A total of 172 HTLV-1 infected individuals and 170 healthy blood donors were analyzed in this case-control study. Nine single nucleotide polymorphisms (SNPs) encompassing different regions of the MASP2 gene were genotyped with a PCR-SSP assay. The relation between SNPs genotype and susceptibility to HTLV-1 infection was investigated with a chi-squared test considering p<0.05 as statistically significant. Two out of nine tested SNPs were associated with the risk of HTLV-1 infection. The genotype TT at rs17409276 decreased the risk of HTLV-1 (p=0.005, OR=0.301, 95% CI=0.124-0.728). The genotypes CC and CT at rs2273346 were also associated with a higher risk of HTLV-1 acquisition (p=0.004, OR=2.225, 95% CI=1.277-3.877). These findings highlight the importance of MASP2 genetic polymorphisms in the lectin pathway of complement activation and susceptibility to HTLV-1 infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Akram Aghamohammadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Maghsoodlu
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Nastaran Tohidi
- Department of Infectious Diseases and Tropical Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Majid Shahabi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
4
|
Damoah CE, Snir O, Hindberg K, Garred P, Ludviksen JK, Brækkan SK, Morelli VM, Eirik Mollnes T, Hansen JB. High Levels of Complement Activating Enzyme MASP-2 Are Associated With the Risk of Future Incident Venous Thromboembolism. Arterioscler Thromb Vasc Biol 2022; 42:1186-1197. [PMID: 35861070 DOI: 10.1161/atvbaha.122.317746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. METHODS We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. RESULTS Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06-2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23-2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01-1.05] P=0.0011). CONCLUSIONS Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE.
Collapse
Affiliation(s)
- Christabel Esi Damoah
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Kristian Hindberg
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark (P.G.)
| | | | - Sigrid K Brækkan
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Vânia M Morelli
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Research Laboratory, Nordland Hospital, Bodø, Norway (J.K.L., T.E.M.).,Department of Immunology, Oslo University Hospital and University of Oslo, Norway (T.E.M.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.)
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | | |
Collapse
|
5
|
Kretzschmar GC, Oliveira LC, Nisihara RM, Velavan TP, Stinghen ST, Stahlke ERS, Petzl-Erler ML, de Messias-Reason IJT, Boldt ABW. Complement receptor 1 (CR1, CD35) association with susceptibility to leprosy. PLoS Negl Trop Dis 2018; 12:e0006705. [PMID: 30092084 PMCID: PMC6103516 DOI: 10.1371/journal.pntd.0006705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/21/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background Pathophysiological mechanisms are still incompletely understood for leprosy, an urgent public health issue in Brazil. Complement receptor 1 (CR1) binds complement fragments C3b/C4b deposited on mycobacteria, mediating its entrance in macrophages. We investigated CR1 polymorphisms, gene expression and soluble CR1 levels in a case-control study with Brazilian leprosy patients, aiming to understand the role of this receptor in differential susceptibility to the disease. Methodology Nine polymorphisms were haplotyped by multiplex PCR-SSP in 213 leprosy patients (47% multibacillary) and 297 controls. mRNA levels were measured by qPCR and sCR1 by ELISA, in up to 80 samples. Principal findings Individuals with the most common recombinant haplotype harboring rs3849266*T in intron 21 and rs3737002*T in exon 26 (encoding p.1408Met of the York Yka+ antigen), presented twice higher susceptibility to leprosy (OR = 2.43, p = 0.017). Paucibacillary patients with these variants presented lower sCR1 levels, thus reducing the anti-inflammatory response (p = 0.040 and p = 0.046, respectively). Furthermore, the most ancient haplotype increased susceptibility to the multibacillary clinical form (OR = 3.04, p = 0.01) and presented the intronic rs12034383*G allele, which was associated with higher gene expression (p = 0.043), probably increasing internalization of the parasite. Furthermore, there was an inverse correlation between the levels of sCR1 and mannose-binding lectin (initiator molecule of the lectin pathway of complement, recognized by CR1) (R = -0.52, p = 0.007). Conclusions The results lead us to suggest a regulatory role for CR1 polymorphisms on mRNA and sCR1 levels, with haplotype-specific effects increasing susceptibility to leprosy, probably by enhancing parasite phagocytosis and inflammation. The reasons for which some individuals resist Mycobacteria leprae infection, whereas others contract leprosy and only a subgroup of them become severely affected, are still poorly understood. The complement receptor 1 (CR1) serves as a gate for bacterial entry in macrophages, but its importance in the spread of infection and emergence of symptoms is unknown. Despite having many common structural and regulatory variants, the CR1 gene was investigated only once in a leprosy association study in Malawi. In order to fill in this gap, we investigated if CR1 polymorphisms are co-responsible for differential disease susceptibility in 213 leprosy patients and 297 controls, also measuring mRNA and soluble CR1 levels. Associations were dependent on specific combinations of variants in regulatory and coding regions, which were also associated with gene and protein expression. Thus, this study corroborates the importance of the CR1 receptor in the susceptibility to leprosy and is the first to bring information about CR1 polymorphisms in the Brazilian population, as well as to show the relationship between genotypes and mRNA and sCR1 levels.
Collapse
Affiliation(s)
| | - Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renato Mitsunori Nisihara
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Department of Human Parasitology, University of Tübingen, Tübingen, Germany
- Vietnamese- German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Sérvio Túlio Stinghen
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Iara José T. de Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| |
Collapse
|
6
|
Silva AA, Catarino SJ, Boldt ABW, Pedroso MLA, Beltrame MH, Messias-Reason IJ. Effects of MASP2 haplotypes and MASP-2 levels in hepatitis C-infected patients. Int J Immunogenet 2018; 45:118-127. [PMID: 29675993 DOI: 10.1111/iji.12371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Abstract
Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) are components of the lectin pathway, which activate the complement system after binding to the HCV structural proteins E1 and E2. We haplotyped 11 MASP2 polymorphisms in 103 HCV patients and 205 controls and measured MASP-2 levels in 67 HCV patients and 77 controls to better understand the role of MASP-2 in hepatitis C susceptibility and disease severity according to viral genotype and fibrosis levels. The haplotype block MASP2*ARDP was associated with protection against HCV infection (OR = 0.49, p = .044) and lower MASP-2 levels in controls (p = .021), while haplotype block AGTDVRC was significantly increased in patients (OR = 7.58, p = .003). MASP-2 levels were lower in patients than in controls (p < .001) and in patients with viral genotype 1 or 4 (poor responders to treatment) than genotype 3 (p = .022) and correlated inversely with the levels of alkaline phosphatase, especially in individuals with fibrosis 3 or 4 (R = -.7, p = .005). MASP2 gene polymorphisms modulate basal gene expression, which may influence the quality of complement response against HCV. MASP-2 levels decrease during chronic disease, independently of MASP2 genotypes, most probably due to consumption and attenuation mechanisms of viral origin and by the reduced liver function, the site of MASP-2 production.
Collapse
Affiliation(s)
- Amanda A Silva
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sandra J Catarino
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Angelica B W Boldt
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Lucia A Pedroso
- Departamento de Clínica Médica, Hospital de Clínicas, Serviço de Hepatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcia H Beltrame
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Iara J Messias-Reason
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Michielsen LA, van Zuilen AD, Muskens IS, Verhaar MC, Otten HG. Complement Polymorphisms in Kidney Transplantation: Critical in Graft Rejection? Am J Transplant 2017; 17:2000-2007. [PMID: 28097805 DOI: 10.1111/ajt.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023]
Abstract
The complement system, as part of the innate immune system, plays an important role in renal transplantation. Complement is involved in the protection against foreign organisms and clearance of apoptotic cells but can also cause injury to the renal allograft, for instance, via antibody binding or in ischemia-reperfusion injury. Numerous polymorphisms in complement factors have been identified thus far; some of them result in different functionalities or alter complement levels. In this review, we provide an overview of the literature on the role of complement polymorphisms in renal transplantation. Furthermore, we discuss functional complement polymorphisms that have not yet been investigated in kidney transplantation. By investigating multiple polymorphisms both in donor and recipient at the same time, a complotype can be constructed. Because the combination of multiple polymorphisms is likely to have a greater impact than a single one, this could provide valuable prognostic information.
Collapse
Affiliation(s)
- L A Michielsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I S Muskens
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Tsakanova G, Stepanyan A, Nahapetyan K, Sim RB, Arakelyan A, Boyajyan A. Serine proteases of the complement lectin pathway and their genetic variations in ischaemic stroke. J Clin Pathol 2017; 71:141-147. [PMID: 28720568 DOI: 10.1136/jclinpath-2017-204403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
AIMS The aim of the current study was to assess the proteolytic activities of collectin-bound MASP-1 and MASP-2 in the blood of patients with ischaemic stroke, as well as the association of their six genetic polymorphisms (rs3203210, rs28945070, rs28945073 in MASP1 gene and rs2273343, rs12711521, rs147270785 in MASP2 gene) with this pathology. METHODS In total, 250 patients and 300 healthy subjects were involved in this study. MBL-associated serine protease (MASP)-1 and MASP-2 activities were measured using in-house developed immunofluorescent and enzyme-linked immunosorbent assays, respectively. Sequence specific primer PCR was used to study the association of MASP1 and MASP2 genetic polymorphisms with ischaemic stroke. RESULTS The results obtained demonstrate that the activities of collectin-bound MASP-1 and MASP-2 in patients with ischaemic stroke are significantly higher than those in healthy subjects (p<0.001). According to the data obtained for genotyping, the rs3203210 polymorphism in the MASP1 gene and the rs147270785 polymorphism in the MASP2 gene are associated with ischaemic stroke (p<0.0001). CONCLUSIONS In conclusion we suggest that the complement lectin pathway serine proteases, MASP-1 and MASP-2, can be associated with ischaemic stroke development risk and may participate in pathological events leading to post-ischaemic brain damage. Moreover rs3203210 and rs147270785 single nucleotide polymorphisms in the MASP1 and MASP2 genes, respectively, are strongly associated with ischaemic stroke, and the minor rs3203210*C and rs147270785*A alleles of these polymorphisms may be considered as protective factors for ischameic stroke, at least in the Armenian population.
Collapse
Affiliation(s)
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Karen Nahapetyan
- Department of Neurosurgery, 'Armenia' Republican Medical Center, Yerevan, Armenia
| | - Robert B Sim
- Department of Pharmacology, Oxford University, Oxford, UK.,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Anna Boyajyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
9
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
10
|
Boldt ABW, Beltrame MH, Catarino SJ, Meissner CG, Tizzot R, Messias-Reason IJ. A dual role for Mannan-binding lectin-associated serine protease 2 (MASP-2) in HIV infection. Mol Immunol 2016; 78:48-56. [PMID: 27588826 DOI: 10.1016/j.molimm.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mannan-binding lectin (MBL) - associated serine protease 2 (MASP-2) co-activates the lectin pathway of complement in response to several viral infections. The quality of this response partly depends on MASP2 gene polymorphisms, which modulate MASP-2 function and serum levels. In this study we investigated a possible role of MASP2 polymorphisms, MASP-2 serum levels and MBL-mediated complement activation in the susceptibility to HIV/AIDS and HBV/HCV coinfection. METHODS A total of 178 HIV patients, 89 (50%) coinfected with HBV/HCV, 51.7% female, average age 40 (12-73) years, and 385 controls were evaluated. MASP-2 levels and MBL-driven complement activation were evaluated by enzyme-linked immunosorbent assay and 11 MASP2 polymorphisms from the promoter to the last exon were haplotyped using multiplex sequence-specific PCR. RESULTS Genotype distribution was in Hardy-Weinberg equilibrium and differed between HIV+ patients and controls (P=0.030), irrespective of HBV or HCV coinfection. The p.126L variant, which was associated with MASP-2 levels <200ng/mL (OR=5.0 [95%CI=1.3-19.2] P=0.019), increased the susceptibility to HIV infection (OR=5.67 [95%CI=1.75-18.33], P=0.004) and to HIV+HBV+ status (OR=6.44 [95%CI=1.69-24.53, P=0.006). A similar association occurred with the ancient haplotype harboring this variant, AGCDV (OR=2.35 [95%CI=1.31-4.23], P=0.004). On the other hand, p.126L in addition to other variants associated with low MASP-2 levels-p.120G, p.377A and p.439H, presented a protective effect against AIDS (OR=0.25 [95%CI=0.08-0.80], P=0.020), independently of age, sex, hepatic function and viral load. MASP-2 serum levels were lower in HIV+ and HIV+HBV+ patients than in controls (P=0.0004). Among patients, MASP-2 levels were higher in patients with opportunistic diseases (P=0.001) and AIDS (P=0.004). MASP-2 levels correlated positively with MBL/MASP2-mediated C4 deposition (r=0.29, P=0.0002) and negatively with CD4+ cell counts (r=-0.21, P=0.018), being related to decreased CD4+ cell counts (OR=5.8 [95%CI=1.23-27.5, P=0.026). CONCLUSIONS Genetically determined MASP-2 levels seem to have a two-edge effect in HIV and probably HCV/HBV coinfection, whereas low levels increase the susceptibility to infection, but on the other side protects against AIDS.
Collapse
Affiliation(s)
- Angelica Beate Winter Boldt
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil; Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Márcia Holsbach Beltrame
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sandra Jeremias Catarino
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Caroline Grisbach Meissner
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Regina Tizzot
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Iara Jose Messias-Reason
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
11
|
Bjarnadottir H, Arnardottir M, Ludviksson BR. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics 2016; 68:315-25. [PMID: 26795763 PMCID: PMC4842218 DOI: 10.1007/s00251-016-0903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
The six types of pattern recognition molecules (PRMs) that initiate complement via the lectin pathway (LP) comprise collectins and ficolins. The importance of having various PRMs to initiate the LP is currently unclear. Mannan-binding lectin (MBL) is a collectin member of the LP PRMs. MBL deficiency is common with mild clinical consequence. Thus, the lack of MBL may be compensated for by the other PRMs. We hypothesized that variants FCN2 + 6424 and FCN3 + 1637delC that cause gene-dose-dependent reduction in ficolin-2 and ficolin-3 levels, respectively, may be rare in MBL-deficient individuals due to the importance of compensation within the LP. The aim of this study was to investigate the distribution and frequency of these variants among MBL2 genotypes in healthy subjects. The allele frequency of FCN2 + 6424 and FCN3 + 1637delC was 0.099 and 0.015, respectively, in the cohort (n = 498). The frequency of FCN2 + 6424 tended to be lower among MBL-deficient subjects (n = 53) than among MBL-sufficient subjects (n = 445) (0.047 versus 0.106, P = 0.057). In addition, individuals who were homozygous for FCN2 + 6424 were sufficient MBL producers. The frequency of FCN3 + 1637delC did not differ between the groups. The frequency of FCN2 + 6424 was similar in FCN3 + 1637delC carriers (n = 15) versus wild type (n = 498). Furthermore, subjects that were heterozygote carriers of both FCN2 + 6424 and FCN3 + 1637delC were sufficient MBL producers. In conclusion, FCN2 + 6424 carriers with MBL deficiency tend to be rare among healthy individuals. MBL-deficient individuals with additional LP PRM defects may be at risk to morbidity.
Collapse
Affiliation(s)
- Helga Bjarnadottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland.
| | - Margret Arnardottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjorn Runar Ludviksson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
12
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Goeldner I, Skare T, Boldt ABW, Nass FR, Messias-Reason IJ, Utiyama SR. Association of MASP-2 levels and MASP2 gene polymorphisms with rheumatoid arthritis in patients and their relatives. PLoS One 2014; 9:e90979. [PMID: 24632598 PMCID: PMC3954616 DOI: 10.1371/journal.pone.0090979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
Background Mannan-binding lectin-associated serine protease 2 (MASP-2) is a key protein of the lectin pathway of complement. MASP-2 levels have been associated with different polymorphisms within MASP2 gene as well as with the risk for inflammatory disorders and infections. Despite its clinical importance, MASP-2 remains poorly investigated in rheumatoid arthritis (RA). Methods In this case-control study, we measured MASP-2 serum levels in 156 RA patients, 44 patient relatives, and 100 controls from Southern Brazil, associating the results with nine MASP2 polymorphisms in all patients, 111 relatives, and 230 controls genotyped with multiplex SSP-PCR. Results MASP-2 levels were lower in patients than in controls and relatives (medians 181 vs. 340 or 285 ng/ml, respectively, P<0.0001). Conversely, high MASP-2 levels were associated with lower susceptibility to RA and to articular symptoms independently of age, gender, ethnicity, smoking habit, anti-CCP and rheumatoid factor positivity (OR = 0.05 [95%CI = 0.019–0.13], P<0.0001 between patients and controls; OR = 0.12, [95%CI = 0.03–0.45], P = 0.002 between patients and relatives; OR = 0.06, [95%CI = 0.004–0.73], P = 0.03 between relatives with and without articular symptoms). MASP2 haplotypes *2A1 and *2B1-i were associated with increased susceptibility to RA (OR = 3.32 [95%CI = 1.48–7.45], P = 0.004). Deficiency-causing p.120G and p.439H substitutions were associated with five times increased susceptibility to articular symptoms in relatives (OR = 5.13 [95%CI = 1.36–20.84], P = 0.02). There was no association of MASP-2 levels or MASP2 polymorphisms with autoantibodies, Sjögren's syndrome, nodules and functional class. Conclusions In this study, we found the first evidence that MASP-2 deficiency might play an important role in the development of RA and articular symptoms among relatives of RA patients.
Collapse
Affiliation(s)
- Isabela Goeldner
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Thelma Skare
- Rheumatology Unit, Evangelical University Hospital, Curitiba, Brazil
| | | | - Flavia R. Nass
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Shirley R. Utiyama
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Gytz Ammitzbøll C, Steffensen R, Jørgen Nielsen H, Thiel S, Stengaard-Pedersen K, Bøgsted M, Jensenius JC. Polymorphisms in the MASP1 gene are associated with serum levels of MASP-1, MASP-3, and MAp44. PLoS One 2013; 8:e73317. [PMID: 24023860 PMCID: PMC3759447 DOI: 10.1371/journal.pone.0073317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION MASP-1 is the first protein in the activation of the lectin pathway and MASP-1 is, like its isoforms MASP-3 and MAp44, encoded by the MASP1 gene. Our aim was to explore associations between polymorphisms in MASP1 and corresponding concentrations of MASP-1, MASP-3, and MAp44 in plasma as well as the genetic contribution to the equilibrium between the three proteins. METHODS Fifteen SNPs were genotyped in the MASP1 gene in 350 blood donors. Corresponding plasma concentrations of MASP-1, MASP-3, and MAp44 were measured. RESULTS A total of 10 different SNPs showed associations with the concentration of one or some of the three proteins (rs113938200, rs190590338, rs35089177, rs3774275, rs67143992, rs698090, rs72549154, rs72549254, rs75284004, rs7625133), and several of these were in strong linkage. SNPs located in the mutually exclusive splice region had opposite effects on the protein concentrations. Being e.g. homozygote for the minor allele of rs3774275 was associated with an increase in median concentration of 13% in MASP-1(P=0.03), 29% in MAp44 (P<0.001), and a decrease in MASP-3 of 26% (P<0.001) compared to homozygosis for the major allele. Heterozygosis of rs113938200 (p.Asn368Asp in MAp44) was associated with a reduced MAp44 concentration of 61% (P=0.005). Rs190590338 located in the promoter region was associated in the heterozygote form with an increased MASP-1 concentration of 35% (P = 0.002). A multivariate linear regression model including sex, age, M- and H-ficolin, MBL, and the 15 SNPs explained 20-48% of the variation in the concentration of the three proteins and the SNPs investigated contributed with the most explanatory power (12-23%). DISCUSSION The present study described 10 SNPs, which were associated with the concentration of one or some of the three proteins originating from the MASP1 gene and in a multivariate model it was shown that the SNPs contributed with the most explanatory power to the protein concentrations.
Collapse
Affiliation(s)
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aarhus, Denmark
- Department of Mathematical Sciences, Aalborg University, Aarhus, Denmark
| | | |
Collapse
|
15
|
Boldt ABW, Goeldner I, Stahlke ERS, Thiel S, Jensenius JC, de Messias-Reason IJT. Leprosy association with low MASP-2 levels generated by MASP2 haplotypes and polymorphisms flanking MAp19 exon 5. PLoS One 2013; 8:e69054. [PMID: 23935922 PMCID: PMC3728295 DOI: 10.1371/journal.pone.0069054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/04/2013] [Indexed: 01/31/2023] Open
Abstract
Background The gene MASP2 (mannan-binding lectin (MBL)-associated serine protease 2) encodes two proteins, MASP-2 and MAp19 (MBL-associated protein of 19 kDa), bound in plasma to MBL and ficolins. The binding of MBL/MASP-2 and ficolin/MASP-2 complexes to microorganisms activates the lectin pathway of complement and may increase the ingestion of intracellular pathogens such as Mycobacterium leprae. Methods We haplotyped 11 MASP2 polymorphisms with multiplex sequence-specific PCR in 219 Brazilian leprosy patients (131 lepromatous, 29 borderline, 21 tuberculoid, 14 undetermined, 24 unspecified), 405 healthy Brazilians and 291 Danish blood donors with previously determined MASP-2 and MAp19 levels. We also evaluated MASP-2 levels in further 46 leprosy patients and 69 Brazilian controls. Results Two polymorphisms flanking exon 5 of MASP2 were associated with a dominant effect on high MASP-2 levels and an additive effect on low MAp19 levels. Patients presented lower MASP-2 levels (P = 0.0012) than controls. The frequency of the p.126L variant, associated with low MASP-2 levels (below 200 ng/mL), was higher in the patients (P = 0.0002, OR = 4.92), as was the frequency of genotypes with p.126L (P = 0.00006, OR = 5.96). The *1C2-l [AG] haplotype, which harbors p.126L and the deficiency-causing p.439H variant, has a dominant effect on the susceptibility to the disease (P = 0.007, OR = 4.15). Genotypes composed of the *2B1-i and/or *2B2A-i haplotypes, both associated with intermediate MASP-2 levels (200–600 ng/mL), were found to be protective against the disease (P = 0.0014, OR = 0.6). Low MASP-2 levels (P = 0.022), as well as corresponding genotypes with *1C2-l and/or *2A2-l but without *1B1-h or *1B2-h, were more frequent in the lepromatous than in other patients (P = 0.008, OR = 8.8). Conclusions In contrast with MBL, low MASP-2 levels increase the susceptibility to leprosy in general and to lepromatous leprosy in particular. MASP2 genotypes and MASP-2 levels might thus be of prognostic value for leprosy progression.
Collapse
Affiliation(s)
- Angelica Beate Winter Boldt
- Laboratório de Imunopatologia Molecular - Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, BR.
| | | | | | | | | | | |
Collapse
|
16
|
Boldt ABW, Sanchez MIN, Stahlke ERS, Steffensen R, Thiel S, Jensenius JC, Prevedello FC, Mira MT, Kun JFJ, Messias-Reason IJT. Susceptibility to leprosy is associated with M-ficolin polymorphisms. J Clin Immunol 2013; 33:210-9. [PMID: 22941510 DOI: 10.1007/s10875-012-9770-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE Mycobacterium leprae exploits complement activation and opsonophagocytosis to infect phagocytes. M-ficolin is encoded by the FCN1 gene and initiates the lectin pathway on monocyte surfaces. We investigated FCN1 promoter polymorphisms that could be responsible for the high interindividual variability of M-ficolin levels and for modulating leprosy susceptibility. METHODS We genotyped rs2989727 (-1981 G > A), rs28909068 (-791 G > A), rs10120023 (-542 G > A), rs17039495 (-399 G > A), rs28909976 (-271IndelT), rs10117466 (-144C > A) and rs10858293 (+33 T > G) in 400 controls and 315 leprosy patients from Southern Brazil, and in 296 Danish healthy individuals with known M-ficolin levels. RESULTS Ten haplotypes were identified with sequence-specific PCR and/or haplotype-specific sequencing. We found evidence for a protective codominant additive effect of FCN1*-542A-144C with leprosy in Euro-Brazilians (P=0.003, PBf =0.021, OR=0.243 [CI95% =0.083-0.71]), which was independent of age, ethnic group and gender effects (P=0.029). There was a trend for a positive association of the -399A variant in Afro-Brazilians (P=0.022, PBf =0.154, OR=4.151 [CI95% =1.115-15.454], as well as for a negative association of the FCN1*3A haplotype with lepromatous leprosy, compared with less severe forms of the disease (P=0.016, PBf =0.112, OR=0.324 [CI95% =0.123-0.858]). Danish individuals with this haplotype presented M-ficolin levels higher than the population average of circa 1,000 ng/ml, and -542A-144C, which is able to modify the recognition of transcription factors in silico, occurred in individuals with levels under the 25 percentil (P=0.031). CONCLUSIONS Our data provide the first evidence that FCN1 polymorphisms are associated with leprosy. M-ficolin may represent a novel key to understand the immunopathogenesis of M. leprae infection.
Collapse
Affiliation(s)
- Angelica B W Boldt
- Laboratório de Imunopatologia Molecular - Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ammitzbøll CG, Kjær TR, Steffensen R, Stengaard-Pedersen K, Nielsen HJ, Thiel S, Bøgsted M, Jensenius JC. Non-synonymous polymorphisms in the FCN1 gene determine ligand-binding ability and serum levels of M-ficolin. PLoS One 2012; 7:e50585. [PMID: 23209787 PMCID: PMC3509001 DOI: 10.1371/journal.pone.0050585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the lectin pathway. The lectin pathway is multifaceted with activities spanning from complement activation to coagulation, autoimmunity, ischemia-reperfusion injury and embryogenesis. Our aim was to explore associations between SNPs in FCN1, encoding M-ficolin and corresponding protein concentrations, and the impact of non-synonymous SNPs on protein function. PRINCIPAL FINDINGS We genotyped 26 polymorphisms in the FCN1 gene and found 8 of these to be associated with M-ficolin levels in a cohort of 346 blood donors. Four of those polymorphisms were located in the promoter region and exon 1 and were in high linkage disequilibrium (r(2)≥0.91). The most significant of those were the AA genotype of -144C>A (rs10117466), which was associated with an increase in M-ficolin concentration of 26% compared to the CC genotype. We created recombinant proteins corresponding to the five non-synonymous mutations encountered and found that the Ser268Pro (rs150625869) mutation lead to loss of M-ficolin production. This was backed up by clinical observations, indicating that an individual homozygote of Ser268Pro would be completely M-ficolin deficient. Furthermore, the Ala218Thr (rs148649884) and Asn289Ser (rs138055828) were both associated with low M-ficolin levels, and the mutations crippled the ligand-binding capability of the recombinant M-ficolin, as indicated by the low binding to Group B Streptococcus. SIGNIFICANCE Overall, our study interlinks the genotype and phenotype relationship concerning polymorphisms in FCN1 and corresponding concentrations and biological functions of M-ficolin. The elucidations of these associations provide information for future genetic studies in the lectin pathway and complement system.
Collapse
|
18
|
Factors of the lectin pathway of complement activation and their clinical associations in neonates. J Biomed Biotechnol 2012; 2012:363246. [PMID: 22619494 PMCID: PMC3348535 DOI: 10.1155/2012/363246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 12/30/2011] [Indexed: 11/18/2022] Open
Abstract
This paper summarizes the data concerning soluble defense lectins (mannan-binding lectin, M-ficolin, L-ficolin, and H-ficolin) with the unique ability to activate complement and their associated serine proteases (MASPs) in neonates. The clinical importance of deficiencies of these immune factors is presented in aspects of perinatal mortality, premature births, and low birthweight. Prenatal serum concentrations of L-ficolin, H-ficolin, and MASP-2 (and probably M-ficolin) correlate with gestational age and birthweight. The relationship of serum MBL to gestational age is controversial. The MBL2 genotypes XA/O and O/O (associated with low-serum MBL) are associated with perinatal infections, whereas the high serum MBL-conferring A/A genotypes may be associated with prematurity. Low-serum L-ficolin concentrations, but not low-serum H-ficolin concentrations, are also associated with perinatal infections. Much of the literature is inconsistent, and the relationships reported so far require independent confirmation at both gene and protein levels. Our preliminary conclusion is that these soluble defense lectins play a protective role in the neonate, and that insufficiency of such factors contributes to the adverse consequences of prematurity and low birthweight.
Collapse
|