1
|
Bozek A, Mućka S, Miodonska M, Zlik A, Mroz-Dybowska M. Effect of sublingual immunotherapy on clinical and laboratory autoimmunity. Immunotherapy 2024; 16:235-241. [PMID: 38214133 PMCID: PMC10844896 DOI: 10.2217/imt-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Background: There still are few data on the long-term safety of sublingual immunotherapy (SLIT). The aim of this study was to assess the appearance of autoimmune diseases in patients before and after SLIT. Materials & methods: New cases of autoimmune diseases were monitored. Patients in the SLIT group (n = 816) were compared with controls (n = 1096). Results: The new incidences of autoimmune diseases in the SLIT group were lower compared with the control group: 18 (2.2%) versus 58 (5.3%); p < 0.05. Systemic lupus erythematosus, psoriasis and Hashimoto appeared much more often in the control group. Conclusion: SLIT had no significant effect on the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Andrzej Bozek
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Szymon Mućka
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Martyna Miodonska
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Anna Zlik
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mroz-Dybowska
- Clinical Department of Internal Diseases, Dermatology & Allergology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
2
|
Privitera G, Williams JJ, De Salvo C. The Importance of Th2 Immune Responses in Mediating the Progression of Gastritis-Associated Metaplasia to Gastric Cancer. Cancers (Basel) 2024; 16:522. [PMID: 38339273 PMCID: PMC10854712 DOI: 10.3390/cancers16030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer is one of the leading causes of cancer deaths worldwide, with chronic gastritis representing the main predisposing factor initiating the cascade of events leading to metaplasia and eventually progressing to cancer. A widely accepted classification distinguishes between autoimmune and environmental atrophic gastritis, mediated, respectively, by T cells promoting the destruction of the oxyntic mucosa, and chronic H. pylori infection, which has also been identified as the major risk factor for gastric cancer. The original dogma posits Th1 immunity as a main causal factor for developing gastritis and metaplasia. Recently, however, it has become evident that Th2 immune responses play a major role in the events causing chronic inflammation leading to tumorigenesis, and in this context, many different cell types and cytokines are involved. In particular, the activity of cytokines, such as IL-33 and IL-13, and cell types, such as mast cells, M2 macrophages and eosinophils, are intertwined in the process, promoting chronic gastritis-dependent and more diffuse metaplasia. Herein, we provide an overview of the critical events driving the pathology of this disease, focusing on the most recent findings regarding the importance of Th2 immunity in gastritis and gastric metaplasia.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy
| | - Joseph J. Williams
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| |
Collapse
|
3
|
Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, Ren B, Yin W, Wu D, Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol 2022; 13:964887. [PMID: 36176778 PMCID: PMC9513450 DOI: 10.3389/fphys.2022.964887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to being associated with allergic diseases, parasites, bacteria, and venoms, a growing body of research indicates that mast cells and their mediators can regulate liver disease progression. When mast cells are activated, they degranulate and release many mediators, such as histamine, tryptase, chymase, transforming growth factor-β1 (TGF-β1), tumor necrosis factor–α(TNF-α), interleukins cytokines, and other substances that mediate the progression of liver disease. This article reviews the role of mast cells and their secretory mediators in developing hepatitis, cirrhosis and hepatocellular carcinoma (HCC) and their essential role in immunotherapy. Targeting MC infiltration may be a novel therapeutic option for improving liver disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dehai Wu
- *Correspondence: Sheng Tai, ; Dehai Wu,
| | - Sheng Tai
- *Correspondence: Sheng Tai, ; Dehai Wu,
| |
Collapse
|
4
|
Patel KK, Sehgal VS, Kashfi K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur J Pharmacol 2022; 922:174906. [PMID: 35321818 PMCID: PMC9007885 DOI: 10.1016/j.ejphar.2022.174906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Statins are a class of drugs widely used worldwide to manage hypercholesterolemia and the prevention of secondary heart attacks. Currently, available statins vary in terms of their pharmacokinetic and pharmacodynamic profiles. Although the primary target of statins is the inhibition of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis, statins exhibit many pleiotropic effects downstream of the mevalonate pathway. These pleiotropic effects include the ability to reduce myocardial fibrosis, pathologic cardiac disease states, hypertension, promote bone differentiation, anti-inflammatory, and antitumor effects through multiple mechanisms. Although these pleiotropic effects of statins may be a cause for enthusiasm, there are many adverse effects that, for the most part, are unappreciated and need to be highlighted. These adverse effects include myopathy, new-onset type 2 diabetes, renal and hepatic dysfunction. Although these adverse effects may be relatively uncommon, considering the number of people worldwide who use statins daily, the actual number of people affected becomes quite large. Also, co-administration of statins with several other medications, herbal agents, and foods, which interact through common enzymatic pathways, can have untoward clinical consequences. In this review, we address these concerns.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Viren S Sehgal
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| |
Collapse
|
5
|
Le Joncour A, Desbois AC, Leroyer AS, Tellier E, Régnier P, Maciejewski-Duval A, Comarmond C, Barete S, Arock M, Bruneval P, Launay JM, Fouret P, Blank U, Rosenzwajg M, Klatzmann D, Jarraya M, Chiche L, Koskas F, Cacoub P, Kaplanski G, Saadoun D. Mast cells drive pathologic vascular lesions in Takayasu arteritis. J Allergy Clin Immunol 2022; 149:292-301.e3. [PMID: 33992671 DOI: 10.1016/j.jaci.2021.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Takayasu arteritis (TAK) is a large vessel vasculitis resulting in artery wall remodeling with segmental stenosis and/or aneurysm formation. Mast cells (MCs) are instrumental in bridging cell injury and inflammatory response. OBJECTIVES This study sought to investigate the contribution of MCs on vessel permeability, angiogenesis, and fibrosis in patients with TAK. METHODS MC activation and their tissue expression were assessed in sera and in aorta from patients with TAK and from healthy donors (HDs). In vivo permeability was assessed using a modified Miles assay. Subconfluent cultured human umbilic vein endothelial cells and fibroblasts were used in vitro to investigate the effects of MC mediators on angiogenesis and fibrogenesis. RESULTS This study found increased levels of MC activation markers (histamine and indoleamine 2,3-dioxygenase) in sera of patients with TAK compared with in sera of HDs. Marked expression of MCs was shown in aortic lesions of patients with TAK compared with in those of noninflammatory aorta controls. Using Miles assay, this study showed that sera of patients with TAK significantly increased vascular permeability in vivo as compared with that of HDs. Vessel permeability was abrogated in MC-deficient mice. MCs stimulated by sera of patients with TAK supported neoangiogenesis (increased human umbilic vein endothelial cell proliferation and branches) and fibrosis by inducing increased production of fibronectin, type 1 collagen, and α-smooth muscle actin by fibroblasts as compared to MCs stimulated by sera of HD. CONCLUSIONS MCs are a key regulator of vascular lesions in patients with TAK and may represent a new therapeutic target in large vessel vasculitis.
Collapse
Affiliation(s)
- Alexandre Le Joncour
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - Anne-Claire Desbois
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - Aurélie S Leroyer
- Centre de Recherche en CardioVasculaire et Nutrition, INSERM U1263, Inrae 1260, Aix-Marseille Université, Marseille, France
| | - Edwige Tellier
- Centre de Recherche en CardioVasculaire et Nutrition, INSERM U1263, Inrae 1260, Aix-Marseille Université, Marseille, France
| | - Paul Régnier
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anna Maciejewski-Duval
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cloé Comarmond
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - Stéphane Barete
- Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France; Department of Dermatology DMU3ID, Unité Fonctionnelle de Dermatologie, Groupe Hospitalier Pitié-Salpêtrière-C. Foix, Paris, France
| | - Michel Arock
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France; Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrick Bruneval
- Laboratoire d'anatomopathologie, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Pierre Fouret
- Laboratoire d'Anatomopathologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ulrich Blank
- Center of Research on Inflammation, INSERM UMR S1149 and Centre National de la Recherche Scientifique Experimental Research Laboratory 8252, Universite de Paris, Sorbonne Paris Cite, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Michelle Rosenzwajg
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - David Klatzmann
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - Mohamed Jarraya
- Banque des Tissus Humains, Hôpital Saint Louis, Paris, France
| | - Laurent Chiche
- Service de Chirurgie Vasculaire, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabien Koskas
- Service de Chirurgie Vasculaire, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Cacoub
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France
| | - Gilles Kaplanski
- Centre de Recherche en CardioVasculaire et Nutrition, INSERM U1263, Inrae 1260, Aix-Marseille Université, Marseille, France; Service de Médecine Interne, Centre Hospitalier Universitaire Conception, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - David Saadoun
- Department of Immunology-Immunopathology-Immunotherapy, Université Pierre-et-Marie-Curie Université de Paris 06, Unite Mixte de Recherche (UMR)S959, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Universités, Paris, France; Department of Biotherapy, Hôpital Pitié-Salpêtrière, Paris, France; Department of Internal Medicine and Clinical Immunology, Centre National de Références Maladies Autoimmunes et Systémiques Rares, Centre National de Références Maladies Autoinflammatoires Rares et Amylose Inflammatoire, Paris, France.
| |
Collapse
|
6
|
Ciriza de Los Ríos C, Castel de Lucas I, Canga Rodríguez-Valcárcel F, Diéguez Pastor MDC, de Las Cuevas Moreno N, Rey Díaz-Rubio E. IRRITABLE BOWEL SYNDROME AND BASAL SERUM TRYPTASE: THE CORRELATION BETWEEN SUBTYPE, SEVERITY AND COMORBIDITIES. A PILOT STUDY. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 114:22-27. [PMID: 33562988 DOI: 10.17235/reed.2021.7697/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Activation of mast cells causes alteration in epithelial and neuromuscular function, and is involved in visceral hypersensitivity and dysmotility in gastrointestinal functional disorders. OBJECTIVES Primary: Evaluate differences in basal serum tryptase (BST) between patients with irritable bowel syndrome (IBS) and healthy controls. Secondary: BST depending on IBS subtype (diarrhea: IBS-D; constipation: IBS-C), comorbidities and correlations with IBS severity and quality of life. MATERIAL AND METHODS Prospective control-case study in IBS patients (Rome IV criteria). BST was determined (ImmunoCAP-Phadia, Sweden®) IBS Severity Score (IBSSS), pain, bloating and flatulence analogue scales, IBS quality of life (IBSQOL) and patient health status (PHQ-9) were performed. BST is the primary variable in achieving the primary end-point. RESULTS Thirty-two patients, 21 (65.6%) IBS-D, 11 (34.4%) IBS-C and 32 controls were included. Mean IBSSSS: 326.6 (± 71.4), IBSQOL: 76 (± 20.3) and PHQ9: 10.2 (± 5.9). BST was 4.8 ± 2.6 in IBS and 4.7± 2.6 in controls (p=0.875). There was no difference in BST between IBS subtypes (4.7 ± 2.9 in IBS-D and 5± 1.8 in IBS-C; p =0.315) or IBS severity (p=0.662). However, BST was higher in patients with IBS and extraintestinal comorbidities compared to other patients and controls (p=0.029). This subgroup also has more severe bloating (p=0.021). There was no correlation between BST, quality of life (p=0.9260) and health status (p=0.3985). CONCLUSION BST does not discriminate between IBS patients and controls. However, BST was higher in patients with IBS with extraintestinal comorbidities which have more severe bloating. This finding is worthy of investigation.
Collapse
Affiliation(s)
- Constanza Ciriza de Los Ríos
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC). , España
| | | | | | | | | | - Enrique Rey Díaz-Rubio
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC), España
| |
Collapse
|
7
|
Abstract
Mast cells and eosinophils are the key effector cells of allergy [1]. In general, allergic reactions are composed of two phases, namely an early phase and a late phase, and after that resolution occurs. If the allergic reactions fail to resolve after the late phase, allergic inflammation (AI) can evolve into a chronic phase mainly involving mast cells and eosinophils that abundantly coexist in the inflamed tissue in the late and chronic phases and cross-talk in a bidirectional manner. We defined these bidirectional interactions between MCs and Eos, as the "allergic effector unit." This cross talk is mediated by both physical cell-cell contacts through cell surface receptors such as CD48, 2B4, and respective ligands and through released mediators such as various specific granular mediators, arachidonic acid metabolites, cytokines, and chemokines [2, 3]. The allergic effector unit can be studied in vitro in a customized co-culture system using mast cells and eosinophils derived from either mouse or human sources.
Collapse
|
8
|
Li X, Zhao J, Kasinath V, Uehara M, Jiang L, Banouni N, McGrath MM, Ichimura T, Fiorina P, Lemos DR, Shin SR, Ware CF, Bromberg JS, Abdi R. Lymph node fibroblastic reticular cells deposit fibrosis-associated collagen following organ transplantation. J Clin Invest 2020; 130:4182-4194. [PMID: 32597832 PMCID: PMC7410068 DOI: 10.1172/jci136618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
Although the immune response within draining lymph nodes (DLNs) has been studied for decades, how their stromal compartment contributes to this process remains to be fully explored. Here, we show that donor mast cells were prominent activators of collagen I deposition by fibroblastic reticular cells (FRCs) in DLNs shortly following transplantation. Serial analysis of the DLN indicated that the LN stroma did not return to its baseline microarchitecture following organ rejection and that the DLN contained significant fibrosis following repetitive organ transplants. Using several FRC conditional-knockout mice, we show that induction of senescence in the FRCs of the DLN resulted in massive production of collagen I and a proinflammatory milieu within the DLN. Stimulation of herpes virus entry mediator (HVEM) on FRCs by its ligand LIGHT contributed chiefly to the induction of senescence in FRCs and overproduction of collagen I. Systemic administration of ex vivo-expanded FRCs to mice decreased DLN fibrosis and strengthened the effect of anti-CD40L in prolonging heart allograft survival. These data demonstrate that the transformation of FRCs into proinflammatory myofibroblasts is critically important for the maintenance of a proinflammatory milieu within a fibrotic DLN.
Collapse
Affiliation(s)
- Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martina M. McGrath
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | | | - Paolo Fiorina
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dario R. Lemos
- Renal Division, Brigham and Women’s Hospital
- Harvard Stem Cell Institute, and
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jonathan S. Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: a Review. Curr Atheroscler Rep 2020; 22:19. [PMID: 32458165 DOI: 10.1007/s11883-020-00837-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the evidence supporting the effects of statins on mast cells (MCs) in atherosclerosis and their molecular mechanism of action. RECENT FINDINGS Statins or HMG-CoA reductase inhibitors are known for their lipid-lowering properties and are widely used in the prevention and treatment of cardiovascular diseases. There is growing evidence that statins have an inhibitory effect on MCs, which contributes to the pleiotropic effect of statins in various diseases. MCs are one of the crucial effectors of the immune system which play an essential role in the pathogenesis of multiple disorders. Recent studies have shown that MCs are involved in the development of atherosclerotic plaques. MCs secrete various inflammatory cytokines (IL-6, IL4, TNF-α, and IFNγ) and inflammatory mediators (histamine, tryptase, proteoglycans) after activation by various stimulants. This, in turn, will exacerbate atherosclerosis. Statins suppress the activation of MCs via IgE inhibition which leads to inhibition of inflammatory mediators and cytokines which are involved in the development and progression of atherosclerosis. In keeping with this evidence presented here, MCs can be considered as one of the therapeutic targets for statins in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of hematology and blood bank, Tabas school of nursing, Birjand University of Medical Science, Birjand, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Olivera A, Rivera J. Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods Mol Biol 2020; 2163:3-31. [PMID: 32766962 DOI: 10.1007/978-1-0716-0696-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter, we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities toward the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Juan Rivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Gross AR, Theoharides TC. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors 2019; 45:49-61. [PMID: 30521103 DOI: 10.1002/biof.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly negatively charged carbohydrate chains present in connective tissues. Chondroitin sulfate (CS) and heparin (Hep) are also found in the numerous secretory granules of mast cells (MC), tissue immune cells involved in allergic and inflammatory reactions. CS and Hep may inhibit secretion of histamine from rat connective tissue MC, but their effect on human MC remains unknown. Human LAD2 MC were pre-incubated with CS, Hep, or dermatan sulfate (DS) before being stimulated by either the peptide substance P (SP, 2 μM) or the cytokine IL-33 (10 ng/mL). Preincubation with CS had no effect on MC degranulation stimulated by SP, but inhibited TNF (60%) and CXCL8 (45%) secretion from LAD2 cells stimulated by IL-33. Fluorescein-conjugated CS (CS-F) was internalized by LAD2 cells only at 37 °C, but not 4 °C, indicating it occurred by endocytosis. DS and Hep inhibited IL-33-stimulated secretion of TNF and CXCL8 to a similar extent as CS. None of the GAGs tested inhibited IL-33-stimulated gene expression of either TNF or CXCL8. There was no effect of CS on ionomycin-stimulated calcium influx. There was also no effect of CS on surface expression of the IL-33 receptor, ST2. Neutralization of the hyaluronan receptor CD44 did not affect the internalization of CS-F. The findings in this article show that CS inhibits secretion of TNF and CXCL8 from human cultured MC stimulated by IL-33. CS could be formulated for systemic or topical treatment of allergic or inflammatory diseases, such as atopic dermatitis, cutaneous mastocytosis, and psoriasis. © 2018 BioFactors, 45(1):49-61, 2019.
Collapse
Affiliation(s)
- Amanda R Gross
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
12
|
Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2 -/- mice and human primary sclerosing cholangitis. J Transl Med 2018; 98:1465-1477. [PMID: 30143751 PMCID: PMC6214746 DOI: 10.1038/s41374-018-0101-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. MCs infiltrate Mdr2-/- mice liver (model of primary sclerosing cholangitis (PSC)). MC-derived histamine increases inflammation, hepatic stellate cell (HSC) activation and fibrosis. The objective was to determine the effects of UDCA treatment on MC infiltration, biliary damage, inflammation and fibrosis in Mdr2-/- mice and human PSC. Wild-type and Mdr2-/- mice were fed bile acid control diet or UDCA (0.5% wt/wt). Human samples were collected from control and PSC patients treated with placebo or UDCA (15 mg/kg/BW). MC infiltration was measured by immunhistochemistry and quantitative polymerase chain reaction (qPCR) for c-Kit, chymase, and tryptase. The HDC/histamine/histamine receptor (HR)-axis was evaluated by EIA and qPCR. Intrahepatic bile duct mass (IBDM) and biliary proliferation was evaluated by CK-19 and Ki-67 staining. Fibrosis was detected by immunostaining and qPCR for fibrotic markers. Inflammatory components were measured by qPCR. HSC activation was measured by SYP-9 staining. Inflammation was detected by qPCR for CD68. In vitro, MCs were treated with UDCA (40 μM) prior to HA secretion evaluation and coculturing with cholangiocytes or HSCs. BrDU incorporation and fibrosis by qPCR was performed. UDCA reduced MC number, the HDC/histamine/HR-axis, IBDM, HSC activation, inflammation, and fibrosis in Mdr2-/- mice and PSC patients. In vitro, UDCA decreases MC-histamine release, which was restored by blocking ASBT and FXRβ. Proliferation and fibrosis decreased after treatment with UDCA-treated MCs. We conclude that UDCA acts on MCs reducing histamine levels and decreases the inflammatory/hyperplastic/fibrotic reaction seen in PSC. Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. Following liver injury like primary sclerosing cholangitis in mice and humans, MCs infiltrate. MC-derived histamine increases biliary damage, fibrosis, and inflammation. UDCA treatment decreases these parameters via reduced MC activation.
Collapse
|
13
|
Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci U S A 2018; 115:E9381-E9390. [PMID: 30232261 DOI: 10.1073/pnas.1810133115] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mast cells are critical for allergic and inflammatory responses in which the peptide substance P (SP) and the cytokine IL-33 are involved. SP (0.01-1 μM) administered together with IL-33 (30 ng/mL) to human cultured LAD2 mast cells stimulates a marked increase (P < 0.0001) in secretion of the proinflammatory cytokine IL-1β. Preincubation of LAD2 (30 min) with the SP receptor (NK-1) antagonists L-733,060 (10 μM) or CP-96345 (10 µM) inhibits (P < 0.001) secretion of IL-1β stimulated by either SP (1 μM) or SP together with IL-33 (30 ng/mL). Surprisingly, secretion of IL-1β stimulated by IL-33 is inhibited (P < 0.001) by each NK-1 antagonist. Preincubation with an antibody against the IL-33 receptor ST2 inhibits (P < 0.0001) secretion of IL-1β stimulated either by IL-33 or together with SP. The combination of SP (1 μM) with IL-33 (30 ng/mL) increases IL-1β gene expression by 90-fold in LAD2 cells and by 200-fold in primary cultured mast cells from human umbilical cord blood. The combination of SP and IL-33 increases intracellular levels of IL-1β in LAD2 by 100-fold and gene expression of IL-1β and procaspase-1 by fivefold and pro-IL-1β by twofold. Active caspase-1 is present even in unstimulated cells and is detected extracellularly. Preincubation of LAD2 cells with the natural flavonoid methoxyluteolin (1-100 mM) inhibits (P < 0.0001) secretion and gene expression of IL-1β, procaspase-1, and pro-IL-1β. Mast cell secretion of IL-1β in response to SP and IL-33 reveals targets for the development of antiinflammatory therapies.
Collapse
|
14
|
Ribatti D, Tamma R, Ruggieri S, Annese T, Marzullo A, Crivellato E. Mast cells and primary systemic vasculitides. Microcirculation 2018; 25:e12498. [DOI: 10.1111/micc.12498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; University of Bari Medical School; Bari Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; University of Bari Medical School; Bari Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; University of Bari Medical School; Bari Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; University of Bari Medical School; Bari Italy
| | - Andrea Marzullo
- Department of Emergency and Organ Transplantation; University of Bari Medical School; Bari Italy
| | - Enrico Crivellato
- Department of Medicine, Human Anatomy Section; University of Udine Medical School; Udine Italy
| |
Collapse
|
15
|
Jiang L, Fang P, Septer S, Apte U, Pritchard MT. Inhibition of Mast Cell Degranulation With Cromolyn Sodium Exhibits Organ-Specific Effects in Polycystic Kidney (PCK) Rats. Int J Toxicol 2018; 37:308-326. [PMID: 29862868 PMCID: PMC6027616 DOI: 10.1177/1091581818777754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a monogenic disease characterized by development of hepatorenal cysts, pericystic fibrosis, and inflammation. Previous studies show that mast cell (MC) mediators such as histamine induce proliferation of cholangiocytes. We observed robust MC accumulation around liver cysts, but not kidney cysts, in polycystic kidney (PCK) rats (an animal model of ARPKD). Therefore, we hypothesized that MCs contribute to hepatic cyst growth in ARPKD. To test this hypothesis, we treated PCK rats with 1 of 2 different MC stabilizers, cromolyn sodium (CS) or ketotifen, or saline. The CS treatment decreased MC degranulation in the liver and reduced serum tryptase (an MC granule component). Interestingly, we observed an increase in liver to body weight ratio after CS treatment paralleled by a significant increase in individual cyst size. Hepatic fibrosis was not affected by CS treatment. The CS treatment increased hepatic cyst wall epithelial cell (CWEC) proliferation and decreased cell death. Ketotifen treatment also increased hepatic cyst size. In vitro, CS treatment did not affect proliferation of isolated hepatic CWECs from PCK rats. In contrast, CS decreased kidney to body weight ratio paralleled by a significant decrease in individual cyst size. The percentage of kidney to body weight ratio was strongly correlated with serum renin (an MC granule component). Ketotifen did not affect kidney cyst growth. Collectively, these data suggest that CS affects hepatic and renal cyst growth differently in PCK rats. Moreover, CS may be beneficial to renal cystic disease but may exacerbate hepatic cyst growth in ARPKD.
Collapse
Affiliation(s)
- Lu Jiang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pingping Fang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- 2 Department of Pediatric Gastroenterology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Udayan Apte
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
16
|
Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis. Cell Death Dis 2018; 9:457. [PMID: 29691371 PMCID: PMC5915443 DOI: 10.1038/s41419-018-0493-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.
Collapse
|
17
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
18
|
Jarido V, Kennedy L, Hargrove L, Demieville J, Thomson J, Stephenson K, Francis H. The emerging role of mast cells in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 313:G89-G101. [PMID: 28473331 PMCID: PMC5582878 DOI: 10.1152/ajpgi.00333.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023]
Abstract
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Collapse
Affiliation(s)
- Veronica Jarido
- Baylor Scott & White Health and Medicine, Temple, Texas; and
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Texas A & M Health Science Center, Temple, Texas
| | | | | | - Joanne Thomson
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | | | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Baylor Scott & White Health and Medicine, Temple, Texas; and
- Texas A & M Health Science Center, Temple, Texas
| |
Collapse
|
19
|
Hargrove L, Kennedy L, Demieville J, Jones H, Meng F, DeMorrow S, Karstens W, Madeka T, Greene J, Francis H. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit W-sh mice. Hepatology 2017; 65:1991-2004. [PMID: 28120369 PMCID: PMC5444972 DOI: 10.1002/hep.29079] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 01/14/2023]
Abstract
UNLABELLED Activated mast cells (MCs) release histamine (HA) and MCs infiltrate the liver following bile duct ligation (BDL), increasing intrahepatic bile duct mass (IBDM) and fibrosis. We evaluated the effects of BDL in MC-deficient (KitW-sh ) mice. Wild-type (WT) and KitW-sh mice were subjected to sham or BDL for up to 7 days and KitW-sh mice were injected with cultured mast cells or 1× phosphate-buffered saline (PBS) before collecting serum, liver, and cholangiocytes. Liver damage was assessed by hematoxylin and eosin and alanine aminotransferase levels. IBDM was detected by cytokeratin-19 expression and proliferation by Ki-67 immunohistochemistry (IHC). Fibrosis was detected by IHC, hydroxyproline content, and by qPCR for fibrotic markers. Hepatic stellate cell (HSC) activation and transforming growth factor-beta 1 (TGF-β1) expression/secretion were evaluated. Histidine decarboxylase (HDC) and histamine receptor (HR) expression were detected by qPCR and HA secretion by enzymatic immunoassay. To evaluate vascular cells, von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-C expression were measured. In vitro, cultured HSCs were stimulated with cholangiocyte supernatants and alpha-smooth muscle actin levels were measured. BDL-induced liver damage was reduced in BDL KitW-sh mice, whereas injection of MCs did not mimic BDL-induced damage. In BDL KitW-sh mice, IBDM, proliferation, HSC activation/fibrosis, and TGF-β1 expression/secretion were decreased. The HDC/HA/HR axis was ablated in sham and BDL KitW-sh mice. vWF and VEGF-C expression decreased in BDL KitW-sh mice. In KitW-sh mice injected with MCs, IBDM, proliferation, fibrosis, and vascular cell activation increased. Stimulation with cholangiocyte supernatants from BDL WT or KitW-sh mice injected with MCs increased HSC activation, which decreased with supernatants from BDL KitW-sh mice. CONCLUSION MCs promote hyperplasia, fibrosis, and vascular cell activation. Knockout of MCs decreases BDL-induced damage. Modulation of MCs may be important in developing therapeutics for cholangiopathies. (Hepatology 2017;65:1991-2004).
Collapse
Affiliation(s)
- Laura Hargrove
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | | | - Hannah Jones
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | - Walker Karstens
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Taronish Madeka
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - John Greene
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| |
Collapse
|
20
|
Isolation and characterization of hepatic mast cells from cholestatic rats. J Transl Med 2016; 96:1198-1210. [PMID: 27548803 PMCID: PMC5079802 DOI: 10.1038/labinvest.2016.89] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells that release histamine and other mediators. MC number increases after bile duct ligation (BDL) and blocking mast cell-derived histamine decreases biliary proliferation. We aimed to isolate and characterize MCs from cholestatic livers. Rats were subjected to BDL starting at 6 h and up to 14 days. MC infiltration was evaluated by toluidine blue. BDL rats were perfused using standard collagenase perfusion. Following enzymatic digestion, tissue was passed through a fine gauge needle. Suspensions were incubated with MAb AA4, washed and incubated with goat anti-mouse-coated Dynal beads. MCs were stained with toluidine blue, and in isolated MCs the expression of FCɛRI and MC proteases was measured. The expression of histidine decarboxylase, histamine receptors, VEGF receptors, and TIE 1 and 2 was evaluated by qPCR. Histamine and VEGF-A secretion was measured in MC supernatants. MC purity was evaluated by CK-19, CK-8, albumin, VAP-1, and α-SMA expression. In vitro, cholangiocytes and HSCs were treated with isolated MC supernatants from BDL rats treated with either NaCl or cromolyn sodium (to block MC histamine release) and biliary proliferation and hepatic fibrosis were measured. MCs infiltrate the liver and surround bile ducts starting at day 2. We isolated a virtually pure preparation of mature, functional MCs. TEM images reveal distinct secretory granules and isolated MCs secrete histamine. MCs express FCɛRI, chymase, tryptase, RMCP-I, and RMCP-II, but were virtually void of other cell markers. Biliary proliferation and fibrosis increased following treatment with MC supernatants from BDL rats+NaCl and these parameters decreased in cells treated with MC supernatants from BDL+cromolyn sodium. In conclusion, we have isolated and characterized MCs from cholestatic livers. MCs regulate cholestatic liver injury and hepatic fibrosis. This tool provides a better understanding of the paracrine influence of mast cells on biliary/liver pathologies.
Collapse
|
21
|
Jones H, Hargrove L, Kennedy L, Meng F, Graf-Eaton A, Owens J, Alpini G, Johnson C, Bernuzzi F, Demieville J, DeMorrow S, Invernizzi P, Francis H. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice. Hepatology 2016; 64:1202-1216. [PMID: 27351144 PMCID: PMC5033697 DOI: 10.1002/hep.28704] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Hepatic fibrosis is marked by activation of hepatic stellate cells (HSCs). Cholestatic injury precedes liver fibrosis, and cholangiocytes interact with HSCs promoting fibrosis. Mast cells (MCs) infiltrate following liver injury and release histamine, increasing biliary proliferation. We evaluated if inhibition of MC-derived histamine decreases biliary proliferation and fibrosis. Wild-type and multidrug resistance 2 knockout mice (9-11 weeks) were treated with cromolyn sodium for 1 week to block MC-derived histamine. Biliary mass and proliferation were evaluated by immunohistochemistry for cytokeratin 19 and Ki-67. Bile flow, bicarbonate excretion, and total bile acids were measured in all mice. Fibrosis was evaluated by sirius red/fast green staining and by quantitative polymerase chain reaction for alpha-smooth muscle actin, fibronectin, collagen type 1a, and transforming growth factor-beta 1. HSC activation was evaluated by quantitative polymerase chain reaction in total liver and immunofluorescent staining in tissues for synaptophysin 9. Histamine serum secretion was measured by enzymatic immunoassay. Mouse liver and human liver samples from control or primary sclerosing cholangitis patients were evaluated for MC markers by quantitative polymerase chain reaction and immunohistochemistry. In vitro, cultured MCs were transfected with histidine decarboxylase short hairpin RNA to decrease histamine secretion and subsequently cocultured with cholangiocytes or HSCs prior to measuring fibrosis markers, proliferation, and transforming growth factor-beta 1 secretion. Treatment with cromolyn sodium decreased biliary proliferation, fibrosis, histamine secretion, and bile flow in multidrug resistance 2 knockout mice. Primary sclerosing cholangitis mice and patients have increased MCs. Knockdown of MC histidine decarboxylase decreased cholangiocyte and HSC proliferation/activation. CONCLUSION MCs are recruited to proliferating cholangiocytes and promote fibrosis. Inhibition of MC-derived histamine decreases fibrosis, and regulation of MC mediators may be therapeutic for primary sclerosing cholangitis. (Hepatology 2016;64:1202-1216).
Collapse
Affiliation(s)
- Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Laura Hargrove
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Allyson Graf-Eaton
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Jennifer Owens
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | | | - Francesca Bernuzzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| |
Collapse
|
22
|
Bozek A, Kołodziejczyk K, Bednarski P. The relationship between autoimmunity and specific immunotherapy for allergic diseases. Hum Vaccin Immunother 2016; 11:2764-8. [PMID: 26431066 DOI: 10.1080/21645515.2015.1087627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The aim of this study was to perform a 20-year post-specific immunotherapy (SIT) observational evaluation for an assessment of any manifestations of autoimmune disease or the appearance of autoantibodies in serum. In total, 1,888 patients (902 women and 986 men) were observed. The mean age of the patients was 34.1 ± 12.4 y at the start of the prospective observation after finishing SIT. New incidences of autoimmune disease and/or the presence of autoantibodies in serum were monitored. The SIT group was compared with control groups consisting of allergic patients who had very received SIT and with non-allergic subjects. There were no significant differences in the autoimmune disease prevalence between the allergic patients with or without SIT. However, significantly higher prevalence of 4 different autoimmune diseases (AID) were observed in the non-allergic patients during the same period. Additionally, the incidence of 8 different autoantibodies was significantly higher in non-allergic patients than in control subjects. Hashimoto disease was the most common autoimmune disease observed. The results of this long-term observational study indicated a lack of a significant prevalence of new instances of autoimmune disease during 20 y of observation post-SIT and at a rate lower than that of non-allergic control subjects, suggesting that SIT is safe in this regard in the long term.
Collapse
Affiliation(s)
- Andrzej Bozek
- a Clinical Department of Internal Disease ; Dermatology and Allergology; Medical University of Silesia ; Zabrze , Poland
| | | | | |
Collapse
|
23
|
Abstract
The skin is considered the mirror of the soul and is affected by neurohormonal triggers, especially stress. Hair follicles, keratinocytes, mast cells, melanocytes, and sebocytes all express sex and stress hormones implicating them in a local "hypothalamic-pituitary-adrenal axis." In particular, the peptides corticotropin-releasing hormone (CRH) and neurotensin (NT) have synergistic action stimulating mast cells and are uniquely elevated in the serum of patients with skin diseases exacerbated by stress. Addressing the neurohormonal regulation of skin function could lead to new targets for effective treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA, 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| | - Julia M Stewart
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA, 02111, USA
| | - Alexandra Taracanova
- Department of Integrative Physiology and Pathobiology, Molecular Immunopharmacology and Drug Discovery Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA, 02111, USA
- Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA
| | - Pio Conti
- Department of Graduate Medical Sciences, University of Chieti, Chieti, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| |
Collapse
|
24
|
Rizzi A, Crivellato E, Benagiano V, Ribatti D. Mast cells in human digestive tube in normal and pathological conditions. Immunol Lett 2016; 177:16-21. [DOI: 10.1016/j.imlet.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/20/2016] [Accepted: 07/04/2016] [Indexed: 01/15/2023]
|
25
|
Gangwar RS, Friedman S, Seaf M, Levi-Schaffer F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur J Pharmacol 2016; 778:77-83. [DOI: 10.1016/j.ejphar.2015.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
|
26
|
Mekori YA, Hershko AY, Frossi B, Mion F, Pucillo CE. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. Eur J Pharmacol 2016; 778:84-9. [DOI: 10.1016/j.ejphar.2015.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
|
27
|
Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:123-33. [PMID: 26597881 DOI: 10.1016/j.ajpath.2015.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment of cholangiocarcinoma (CCA) is composed of numerous cells, including mast cells (MCs). MCs release histamine, which increases CCA progression and angiogenesis. Cholangiocytes secrete stem cell factor, which functions via the MC growth factor receptor c-Kit. Here, we show that cholangiocytes express histidine decarboxylase and its inhibition reduces CCA growth. MC recruitment in the tumor microenvironment increased CCA growth. MC infiltration and MC markers were detected by toluidine blue staining and real-time PCR in human biopsies and in tumors from athymic mice treated with saline, histamine, histidine decarboxylase inhibitor, or cromolyn sodium. Tumor growth, angiogenesis, and epithelial-mesenchymal transition (EMT)/extracellular matrix (ECM) markers were measured in mice treated with cromolyn sodium. In vitro, human CCA cells were treated with MC supernatant fluids before evaluating angiogenesis and EMT/ECM expression. Migration assays were performed with CCA cells treated with the stem cell factor inhibitor. MC supernatant fluids increased CCA histidine decarboxylase, vascular endothelial growth factor, and MC/EMT/ECM expression that decreased with pretreatment of cromolyn sodium. MCs were found in human biopsies. In mice treated with cromolyn sodium, MC infiltration and tumor growth decreased. Inhibition of CCA stem cell factor blocked MC migration and MC/EMT/ECM in CCA. MCs migrate into CCA tumor microenvironment via c-Kit/stem cell factor and increase tumor progression, angiogenesis, EMT switch, and ECM degradation.
Collapse
|
28
|
Paradigm shifts in mast cell and basophil biology and function: an emerging view of immune regulation in health and disease. Methods Mol Biol 2015; 1192:3-31. [PMID: 25149480 DOI: 10.1007/978-1-4939-1173-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
|
29
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
30
|
Gangwar RS, Levi-Schaffer F. Eosinophils interaction with mast cells: the allergic effector unit. Methods Mol Biol 2014; 1178:231-249. [PMID: 24986621 DOI: 10.1007/978-1-4939-1016-8_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mast cells (MC) and eosinophils are the key effector cells of allergy (Minai-Fleminger and Levi-Schaffer, Inflamm Res 58:631-638, 2009). In general, allergic reactions have two phases, namely, an early phase and a late phase. MC and eosinophils abundantly coexist in the inflamed tissue in the late and chronic phases and cross talk in a bidirectional manner. This bidirectional interaction between MC and eosinophils is mediated by both physical cell-cell contacts through cell surface receptors such as CD48 receptors CD48, 2B4 , 2B4 and soluble mediators through various specific granular mediators, arachidonic acid metabolites, cytokines cytokines , and chemokines, collectively termed the "Allergic Effector Unit" (AEU) (Elishmereni et al., Allergy 66:376-385, 2011; Minai-Fleminger et al., Cell Tissue Res 341:405-415, 2010). These bidirectional interactions can be studied in vitro in a customized coculture system of MC and eosinophils derived from either mouse or human source.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065, Jerusalem, 91120, Israel
| | | |
Collapse
|
31
|
Mast cells as a potential prognostic marker in prostate cancer. DISEASE MARKERS 2013; 35:711-20. [PMID: 24324287 PMCID: PMC3844173 DOI: 10.1155/2013/478303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
Abstract
Despite years of intensive investigation that has been made in understanding prostate cancer, it remains one of the major men's health issues and the leading cause of death worldwide. It is now ascertained that prostate cancer emerges from multiple spontaneous and/or inherited alterations that induce changes in expression patterns of genes and proteins that function in complex networks controlling critical cellular events. It is now accepted that several innate and adaptive immune cells, including T- and B-lymphocytes, macrophages, natural killer cells, dendritic cells, neutrophils, eosinophils, and mast cells (MCs), infiltrate the prostate cancer. All of these cells are irregularly scattered within the tumor and loaded with an assorted array of cytokines, chemokines, and inflammatory and cytotoxic mediators. This complex framework reflects the diversity in tumor biology and tumor-host interactions. MCs are well-established effector cells in Immunoglobulin-E (Ig-E) associated immune responses and potent effector cells of the innate immune system; however, their clinical significance in prostate cancer is still debated. Here, these controversies are summarized, focusing on the implications of these findings in understanding the roles of MCs in primary prostate cancer.
Collapse
|
32
|
Mekori YA, Hershko AY. T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects. Front Immunol 2012; 3:6. [PMID: 22566892 PMCID: PMC3342371 DOI: 10.3389/fimmu.2012.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/09/2012] [Indexed: 12/20/2022] Open
Abstract
Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras mitogen-activated protein kinase systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells (Treg) on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40–OX40L engagement has been found to underlie the down-regulatory effects exerted by Treg on mast cell function.
Collapse
Affiliation(s)
- Yoseph A Mekori
- Laboratory of Allergy and Clinical Immunology, Department of Medicine, The Herbert Center of Mast Cell Disorders, Meir Medical Center Kfar Saba, Israel
| | | |
Collapse
|
33
|
Caruso RA, Parisi A, Crisafulli C, Bonanno A, Lucian R, Branca G, Scardigno M, Fedele F. Intraepithelial infiltration by mast cells in human Helicobacter pylori active gastritis. Ultrastruct Pathol 2011; 35:251-5. [PMID: 21932987 DOI: 10.3109/01913123.2011.606964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent observations suggest an involvement of mast cells in Helicobacter pylori gastritis, but the mechanism of intraepithelial mast cell activation in H. pylori-infected patients remains to be clarified. Intraepithelial mast cells, identified by immunohistochemistry for CD117, were quantified in antral biopsies from 6 patients with H. pylori "active" chronic gastritis, 7 patients with H. pylori "nonactive" gastritis, and 9 controls. Antral biopsies from patients with H. pylori "active" gastritis showed higher intraepithelial mast cell counts than those from patients with H. pylori "nonactive" gastritis and from controls. Electron microscopy, selectively performed in 6 cases of H. pylori "active" gastritis, confirmed the presence of intraepithelial mast cells and allowed their subdivision into mature cells with intact electron-dense granules or degranulated cells. Other mast cells appeared to migrate through defects in the basement membrane into the epithelial layer. Mast cells in these areas often showed piecemeal degranulation or were characterized by large canaliculi, expanded Golgi areas, and a few granules, a process similar to the phase of recovery from anaphylactic degranulation of isolated human mast cells. The possible significance of these unusual ultrastructural findings is discussed.
Collapse
|
34
|
Mortaz E, Folkerts G, Redegeld F. Mast cells and COPD. Pulm Pharmacol Ther 2011; 24:367-72. [PMID: 21463700 DOI: 10.1016/j.pupt.2011.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/17/2022]
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune response to the inhalation of toxic particles and gases. Although tobacco smoking is the primary cause of this inhalation injury, many other environmental and occupational exposures contribute to the pathology of COPD. The immune inflammatory changes associated with COPD are linked to a tissue-repair and -remodeling process that increases mucus production and causes emphysematous destruction of the gas-exchanging surface of the lung. The common form of emphysema observed in smokers begins in the respiratory bronchioles near the thickened and narrowed small bronchioles that become the major site of obstruction in COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative contribution of mast cells to airway injury and remodeling is not well documented. In this review, an overview is given on the possible role of mast cells and their mediators in the pathogenesis of COPD. Activation of mast cells and mast cell signaling in response to exposure to cigarette smoke is further discussed.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
35
|
Caruso RA, Parisi A, Quattrocchi E, Scardigno M, Branca G, Parisi C, Lucianò R, Paparo D, Fedele F. Ultrastructural descriptions of heterotypic aggregation between eosinophils and tumor cells in human gastric carcinomas. Ultrastruct Pathol 2011; 35:145-9. [PMID: 21657821 DOI: 10.3109/01913123.2011.578233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A histological variant of gastric adenocarcinoma, characterized by an intense tumor-associated tissue eosinophilia (TATE), has been occasionally reported in the literature. The purpose of this ultrastructural study was to determine the interactions between frequently occurring eosinophils and tumor cells in gastric carcinoma characterized by TATE. Fresh tumor tissue of 92 gastric carcinomas was processed for both light and electron microscopic examination. Intense TATE was found in 7 out of 92 (7.6%) gastric carcinomas (6 of intestinal-type and 1 of diffuse-type). Electron microscopy, selectively performed in 7 cases with intense TATE, revealed eosinophils, singly or in groups, in contact with damaged or necrotic tumor cells. Activated eosinophils showing piecemeal degranulation were also found in intimate contact with viable tumor cells, characterized by plasma membrane caveolar invaginations. The authors regard this close morphological relationship as in vivo evidence for possible cross-talk between eosinophil and viable tumor cell, a conclusion that has already been drawn from experimental studies, but until now inadequately supported by ultrastructural observations in a human tumor.
Collapse
|
36
|
Karra L, Levi-Schaffer F. Down-regulation of mast cell responses through ITIM containing inhibitory receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:143-59. [PMID: 21713656 DOI: 10.1007/978-1-4419-9533-9_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple cell types that comprise the immune system provide an efficient defense system against invading pathogens and micro-organisms. In general, immune cells are activated for disparate functions, such as proliferation, production and release of mediators and chemotaxis, as a result of interactions between ligands and their matching immunoreceptors. This in turn leads to the recruitment and activation of a cascade of second messengers, via their regulators/adaptors, that determine the net effect of the initial response. However, activation of cells of the immune system must be tightly regulated by a finely tuned interplay between activation and inhibition to avoid excessive or inappropriate responsiveness and to maintain homeostasis. Loss of inhibitory signals may disrupt this balance, leading to various pathological processes such as allergic and auto-immune diseases. In this chapter, we will discuss down-regulating mechanisms of mast cells focusing on immunoreceptor tyrosine-based inhibition motifs (ITIM)-containing inhibitory receptors (IR).
Collapse
Affiliation(s)
- Laila Karra
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
37
|
Rama TA, Côrte-Real I, Gomes PS, Escribano L, Fernandes MH. Mastocytosis: oral implications of a rare disease. J Oral Pathol Med 2010; 40:441-50. [DOI: 10.1111/j.1600-0714.2010.00996.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T A Rama
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
38
|
Gridley DS, Luo-Owen X, Rizvi A, Makinde AY, Pecaut MJ, Mao XW, Slater JM. Low-dose Photon and Simulated Solar Particle Event Proton Effects on Foxp3+ T Regulatory Cells and other Leukocytes. Technol Cancer Res Treat 2010; 9:637-49. [DOI: 10.1177/153303461000900612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Radiation is a major factor in the spaceflight environment that has carcinogenic potential. Astronauts on missions are continuously exposed to low-dose/low-dose-rate (LDR) radiation and may receive relatively high doses during a solar particle event (SPE) that consists primarily of protons. However, there are very few reports in which LDR photons were combined with protons. In this study, C57BL/6 mice were exposed to 1.7 Gy simulated SPE (sSPE) protons over 36 h, both with and without pre-exposure to 0.01 Gray (Gy) LDR γ-rays at 0.018 cGy/h. Apoptosis in skin samples was determined by immunohistochemistry immediately post-irradiation (day 0). Spleen mass relative to body mass, white blood cells (WBC), major leukocyte populations, lymphocyte subsets (T, Th, Tc, B, NK), and CD4+ CD25+ Foxp3+ T regulatory (Treg) cells were analyzed on days 4 and 21. Apoptosis in skin samples was evident in all irradiated groups; the LDR+sSPE mice had the greatest expression of activated caspase-3. On day 4 post-irradiation, the sSPE and LDR+sSPE groups had significantly lower WBC counts in blood and spleen compared to non-irradiated controls ( p < 0.05 vs. 0 Gy). CD4+ CD25+ Foxp3+ Treg cell numbers in spleen were decreased at day 4, but proportions were increased in the sSPE and LDR+sSPE groups ( p < 0.05 vs. 0 Gy). By day 21, lymphocyte counts were still low in blood from the LDR+sSPE mice, especially due to reductions in B, NK, and CD8+ T cytotoxic cells. The data demonstrate, for the first time, that pre-exposure to LDR photons did not protect against the adverse effects of radiation mimicking a large solar storm. The increased proportion of immunosuppressive CD4+ CD25+ Foxp3+ Treg and persistent reduction in circulating lymphocytes may adversely impact immune defenses that include removal of sub-lethally damaged cells with carcinogenic potential, at least for a period of time post-irradiation.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - Xian Luo-Owen
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - Asma Rizvi
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - Adeola Y. Makinde
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - Michael J. Pecaut
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
- Department of Basic Sciences, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - Xiao Wen Mao
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| | - James M. Slater
- Department of Radiation Medicine, Loma Linda University and Medical Center, Loma Linda, CA 92354 USA
| |
Collapse
|
39
|
Minai-Fleminger Y, Elishmereni M, Vita F, Soranzo MR, Mankuta D, Zabucchi G, Levi-Schaffer F. Ultrastructural evidence for human mast cell-eosinophil interactions in vitro. Cell Tissue Res 2010; 341:405-15. [PMID: 20686785 DOI: 10.1007/s00441-010-1010-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/17/2010] [Indexed: 12/15/2022]
Abstract
We have hypothesized that mast cells (MC) and eosinophils (Eos), the main effectors of allergy, can form an effector unit. These cells co-exist in the inflamed tissues during the late and chronic stages of allergy and have been shown to be capable of influencing each other's survival and activity via soluble mediators. We have recently described couples of receptor-ligands that are expressed on either/both of these cells and that imply a physical interaction. In this study, we have investigated the existence of short-term (60 min) in vitro interactions between human peripheral blood Eos and cord-blood-derived MC by transmission electron microscopy. We have found that MC and Eos adhere to each other; the lipid body content and the granule morphology of co-cultured MC and Eos, respectively, are altered, and the level of Eos peroxidase (EPO) released by co-cultured Eos is elevated. Moreover, the transfer of EPO from Eos to MC and tryptase from MC to Eos has been observed. Our results thus indicate that, when co-cultured, MC and Eos show signs of physical contact and of reciprocal activation. This is the first in vitro evidence of functional physical interactions between human MC and Eos, interactions that might also occur in vivo during allergic diseases.
Collapse
Affiliation(s)
- Yael Minai-Fleminger
- Pharmacology & Experimental Therapeutics Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
A review of mast cells and liver disease: What have we learned? Dig Liver Dis 2010; 42:529-36. [PMID: 20363674 DOI: 10.1016/j.dld.2010.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mast cells are recognized as diverse and highly complicated cells. Aside from their notorious role in allergic inflammatory reactions, mast cells are being implicated in numerous disease processes from heart disease to cancer. Mast cells have been implicated in liver pathogenesis including hepatitis and host allograft rejection after liver transplantation. AIMS The aim of this review is to discuss the traditional function of mast cells, their location and anatomy with regards to hepatic vasculature and the role of mast cells in hepatic diseases including liver regeneration and rejection. Finally, we will touch on the role of mast cells in liver cancer. In conclusion, we hope that the reader comes away with a better understanding of the diverse and potential role(s) that mast cells may play in liver pathologies.
Collapse
|
41
|
Moquillaza LM, Aller MA, Nava MP, Santamaría L, Vergara P, Arias J. Partial hepatectomy, partial portal vein stenosis and mesenteric lymphadenectomy increase splanchnic mast cell infiltration in the rat. Acta Histochem 2010; 112:372-82. [PMID: 19446312 DOI: 10.1016/j.acthis.2009.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/03/2009] [Accepted: 03/13/2009] [Indexed: 12/11/2022]
Abstract
It is currently believed that portal hypertension induces an inflammatory response in which mast cells may be involved. The aim of this study was to verify the involvement of the intestinal submucosal and mesenteric lymph node mast cells in the splanchnic inflammatory response related to portal hypertension. Mast cell infiltration in the intestine (duodenum, jejunum, ileum, caecum and distal colon) and in the mesenteric lymph node complex (MLC) was measured using a stereological method in sham-operated rats (SO; n = 12), in two experimental models of portal hypertension, chronic (triple partial portal vein ligation, TPVL; n = 12) and transient (microsurgical partial hepatectomy; n = 12) and in rats in which the MLC was resected (n = 12). The small and large bowel submucosal infiltration increases in MLC-resected rats (p = 0.0001), in TPVL rats (p = 0.0001) and in rats with partial hepatectomy (p = 0.0001). An extensive mast cell infiltration in the MLC (p = 0.0001) was found in TPVL rats and in rats with partial hepatectomy (347.40+/-45.25 and 351.92+/-99.28/mm(3), respectively) in relation to sham-operated rats (135.27+/-30.28/mm(3)). We conclude that mast cells could be involved in the splanchnic alterations developed in the surgical experimental models of portal hypertension studied.
Collapse
|
42
|
Abstract
Allergy and autoimmunity are complex inflammatory processes caused by dysregulation of the immune system. There are select situations in which allergy and autoimmunity coexist pathologically. Traditionally considered unrelated, recent evidence suggests unexpected roles for allergic mediators in several autoimmune diseases. This review presents updated evidence for allergic mediators in several autoimmune diseases, as well as autoimmune phenomena in mast cell-related conditions. We will describe the concomitant manifestation of these conditions in patients and in animal models. The involvement of the main effectors of the immune system - mast cells, T lymphocytes, antibodies and cytokines - in both conditions is also discussed.
Collapse
Affiliation(s)
- Eyal Reinstein
- Department of Medicine B, Meir General Hospital, Kfar-Saba 44281, Israel.
| | | | | |
Collapse
|
43
|
Abstract
Mast cells (better known as allergy cells) are proinflammatory effector cells present in the human arterial intima and in evolving atherosclerotic lesions. Experiments in vitro, in vivo experiments in animals, and immunohistologic studies of human coronary samples have uncovered mechanisms by which activated mast cells could participate in the development of the lesions. When activated, mast cells acutely expel a fraction of their cytoplasmic granules, which are filled with a wide selection of heparin-bound preformed mediators. These include histamine, neutral proteases, growth factors, and proinflammatory cytokines. The microenvironmental targets of these effector molecules are various lipoprotein particles in the intimal fluid, components of the extracellular matrix, and intimal cells neighboring the activated mast cells. Importantly, sustained selective release of proinflammatory mediators without degranulation may also occur at sites of chronic inflammation. The activities of the various mediators are suggested to contribute to fatty streak formation and to the generation of unstable plaques susceptible to rupture. Thus, mast cells appear to provide a novel link between inflammation and atherogenesis.
Collapse
Affiliation(s)
- Petri T Kovanen
- Wihuri Research Institute, Kalliolinnantie 4, 00140 Helsinki, Finland.
| |
Collapse
|
44
|
Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 2009; 31:185-205. [PMID: 19533134 DOI: 10.1007/s00281-009-0165-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/25/2009] [Indexed: 12/16/2022]
Abstract
The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2-3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce allergy once they are sensitized against foreign antigens. The broad spectrum of functions makes mast cells a fascinating target for future pharmacological or nutritional interventions.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine & Immunology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
45
|
Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 2009; 58:631-8. [DOI: 10.1007/s00011-009-0042-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 01/09/2023] Open
|
46
|
Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 2009; 1143:83-104. [PMID: 19076346 DOI: 10.1196/annals.1443.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells were discovered more than 100 years ago and until recently, have been considered renegades of the host with the sole purpose of perpetuating allergy. The discovery of mast cell-deficient mice that could be reconstituted with mast cells (the so called "mast cell knock-in" mice) has allowed the study of the in vivo functions of mast cells and revealed several new facets of these cells. It is now evident that mast cells have a much broader impact on many physiological and pathologic processes. Mast cells, particularly through their dynamic interaction with the nervous system, have been implicated in wound healing, tissue remodeling, and homeostasis. Perhaps the most progress has been made in our understanding of the role of mast cells in immunity outside the realm of allergy, and host defense. Mast cells play critical roles in both innate and adaptive immunity, including immune tolerance. Greater insight into mast cell biology has prompted studies probing the additional consequences of mast cell dysfunction, which reveal a central role for mast cells in the pathogenesis of autoimmune disorders, cardiovascular disorders, and cancer. Here, we review recent developments in the study of mast cells, which present a complex picture of mast cell functions.
Collapse
Affiliation(s)
- Kavitha N Rao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
47
|
Piazuelo MB, Camargo MC, Mera RM, Delgado AG, Peek RM, Correa H, Schneider BG, Sicinschi LA, Mora Y, Bravo LE, Correa P. Eosinophils and mast cells in chronic gastritis: possible implications in carcinogenesis. Hum Pathol 2008; 39:1360-9. [PMID: 18614201 PMCID: PMC2561958 DOI: 10.1016/j.humpath.2008.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/23/2008] [Accepted: 01/28/2008] [Indexed: 02/06/2023]
Abstract
Eosinophils and mast cells participate in the immune response against Helicobacter pylori, but their involvement in the gastric precancerous process is unclear. This study aimed to estimate eosinophil and mast cell density in antral mucosa in subjects from 2 Colombian populations with contrasting gastric cancer risks. Gastric mucosa biopsies were collected from 117 adult males (72 from a high-risk area and 45 from a low-risk area). A histopathology score was used to quantify severity of the lesions. Quantitation of eosinophils in hematoxylin-eosin-stained sections and mast cells in immunostained sections for CD117/c-Kit was performed. Helicobacter pylori infection and genotyping were assessed in Steiner stain and polymerase chain reaction, respectively. Logistic regression models and semiparametric cubic smoothing splines were used for analysis of the results. Eosinophil density was significantly higher in subjects from the low-risk area as compared with subjects from the high-risk area. In both populations, eosinophil density increased with the histopathology score in the progression of lesions from normal morphology to multifocal atrophic gastritis. Intestinal metaplasia and dysplasia specimens showed further increase in eosinophil density in the high-risk area but an abrupt decrease in the low-risk area. Mast cell density increased in parallel to the histopathology score in both populations. Our results suggest that eosinophils play a dual role in chronic gastritis. In the low-risk area, elevated eosinophil density represents a T helper 2-biased response that may down-regulate the effects of proinflammatory cytokines preventing cancer development. In contrast, in the high-risk area, eosinophils might promote a T helper 1-type response leading to progression of precancerous lesions.
Collapse
Affiliation(s)
- M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - M. Constanza Camargo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Robertino M. Mera
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Hernan Correa
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN
| | - Barbara G. Schneider
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Liviu A. Sicinschi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Yolanda Mora
- Department of Pathology, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Luis E. Bravo
- Department of Pathology, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
48
|
Scholten J, Hartmann K, Gerbaulet A, Krieg T, Müller W, Testa G, Roers A. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 2007; 17:307-15. [PMID: 17972156 PMCID: PMC2268725 DOI: 10.1007/s11248-007-9153-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/09/2007] [Indexed: 01/02/2023]
Abstract
Mast cells are important effectors of type I allergy but also essential regulators of innate and adaptive immune responses. The aim of this study was to develop a Cre recombinase-expressing mouse line that allows mast cell-specific inactivation of genes in vivo. Following a BAC transgenic approach, Cre was expressed under the control of the mast cell protease (Mcpt) 5 promoter. Mcpt5-Cre transgenic mice were crossed to the ROSA26-EYFP Cre excision reporter strain. Efficient Cre-mediated recombination was observed in mast cells from the peritoneal cavity and the skin while only minimal reporter gene expression was detected outside the mast cell compartment. Our results show that the Mcpt5 promoter can drive Cre expression in a mast cell-specific fashion. We expect that our Mcpt5-Cre mice will be a useful tool for the investigation of mast cell biology.
Collapse
Affiliation(s)
- Julia Scholten
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Alexander Gerbaulet
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL UK
| | - Giuseppe Testa
- European Institute of Oncology, Via Adamello, 16, Milan, 20139 Italy
| | - Axel Roers
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
49
|
Soule BP, Brown JM, Kushnir-Sukhov NM, Simone NL, Mitchell JB, Metcalfe DD. Effects of Gamma Radiation on FcεRI and TLR-Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2007; 179:3276-86. [PMID: 17709544 DOI: 10.4049/jimmunol.179.5.3276] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ionizing gamma radiation has several therapeutic indications including bone marrow transplantation and tumor ablation. Among immune cells, susceptibility of lymphocytes to gamma radiation is well known. However, there is little information on the effects of gamma radiation on mast cells, which are important in both innate and acquired immunity. Previous studies have suggested that mast cells may release histamine in response to high doses of gamma radiation, whereas other reports suggest that mast cells are relatively radioresistant. No strong link has been established between gamma radiation and its effect on mast cell survival and activation. We examined both human and murine mast cell survival and activation, including mechanisms related to innate and acquired immune responses following gamma radiation. Data revealed that human and murine mast cells were resistant to gamma radiation-induced cytotoxicity and, importantly, that irradiation did not directly induce beta-hexosaminidase release. Instead, a transient attenuation of IgE-mediated beta-hexosaminidase release and cytokine production was observed which appeared to be the result of reactive oxygen species formation after irradiation. Mast cells retained the ability to phagocytose Escherichia coli particles and respond to TLR ligands as measured by cytokine production after irradiation. In vivo, there was no decrease in mast cell numbers in skin of irradiated mice. Additionally, mast cells retained the ability to respond to Ag in vivo as measured by passive cutaneous anaphylaxis in mice after irradiation. Mast cells are thus resistant to the cytotoxic effects and alterations in function after irradiation and, despite a transient inhibition, ultimately respond to innate and acquired immune activation signals.
Collapse
Affiliation(s)
- Benjamin P Soule
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|