1
|
Mota-Bertran A, Coenders G, Plaja P, Saez M, Barceló MA. Air pollution and children's mental health in rural areas: compositional spatio-temporal model. Sci Rep 2024; 14:19363. [PMID: 39169039 PMCID: PMC11339296 DOI: 10.1038/s41598-024-70024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Air pollution stands as an environmental risk to child mental health, with proven relationships hitherto observed only in urban areas. Understanding the impact of pollution in rural settings is equally crucial. The novelty of this article lies in the study of the relationship between air pollution and behavioural and developmental disorders, attention deficit hyperactivity disorder (ADHD), anxiety, and eating disorders in children below 15 living in a rural area. The methodology combines spatio-temporal models, Bayesian inference and Compositional Data (CoDa), that make it possible to study areas with few pollution monitoring stations. Exposure to nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2) is related to behavioural and development disorders, anxiety is related to particulate matter (PM10), O3 and SO2, and overall pollution is associated to ADHD and eating disorders. To sum up, like their urban counterparts, rural children are also subject to mental health risks related to air pollution, and the combination of spatio-temporal models, Bayesian inference and CoDa make it possible to relate mental health problems to pollutant concentrations in rural settings with few monitoring stations. Certain limitations persist related to misclassification of exposure to air pollutants and to the covariables available in the data sources used.
Collapse
Affiliation(s)
- Anna Mota-Bertran
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Germà Coenders
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Pere Plaja
- Fundació Salut Empordà., Figueres, Spain
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain.
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain.
| | - Maria Antònia Barceló
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| |
Collapse
|
2
|
Xu J, Shi Y, Chen G, Guo Y, Tang W, Wu C, Liang S, Huang Z, He G, Dong X, Cao G, Yang P, Lin Z, Zhu S, Wu F, Liu T, Ma W. Joint Effects of Long-Term Exposure to Ambient Fine Particulate Matter and Ozone on Asthmatic Symptoms: Prospective Cohort Study. JMIR Public Health Surveill 2023; 9:e47403. [PMID: 37535415 PMCID: PMC10436124 DOI: 10.2196/47403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The associations of long-term exposure to air pollutants in the presence of asthmatic symptoms remain inconclusive and the joint effects of air pollutants as a mixture are unclear. OBJECTIVE We aimed to investigate the individual and joint associations of long-term exposure to ambient fine particulate matter (PM2.5) and daily 8-hour maximum ozone concentrations (MDA8 O3) in the presence of asthmatic symptoms in Chinese adults. METHODS Data were derived from the World Health Organization Study on Global Ageing and Adult Health (WHO SAGE) cohort study among adults aged 50 years or older, which was implemented in 1 municipality and 7 provinces across China during 2007-2018. Annual average MDA8 O3 and PM2.5 at individual residential addresses were estimated by an iterative random forest model and a satellite-based spatiotemporal model, respectively. Participants who were diagnosed with asthma by a doctor or taking asthma-related therapies or experiencing related conditions within the past 12 months were recorded as having asthmatic symptoms. The individual associations of PM2.5 and MDA8 O3 with asthmatic symptoms were estimated by a Cox proportional hazards regression model, and the joint association was estimated by a quantile g-computation model. A series of subgroup analyses was applied to examine the potential modifications of some characteristics. We also calculated the population-attributable fraction (PAF) of asthmatic symptoms attributed to PM2.5 and MDA8 O3. RESULTS A total of 8490 adults older than 50 years were included, and the average follow-up duration was 6.9 years. During the follow-up periods, 586 (6.9%) participants reported asthmatic symptoms. Individual effect analyses showed that the risk of asthmatic symptoms was positively associated with MDA8 O3 (hazard ratio [HR] 1.12, 95% CI 1.01-1.24, for per quantile) and PM2.5 (HR 1.18, 95% CI 1.05-1.31, for per quantile). Joint effect analyses showed that per equal quantile increment of MDA8 O3 and PM2.5 was associated with an 18% (HR 1.18, 95% CI 1.05-1.33) increase in the risk of asthmatic symptoms, and PM2.5 contributed more (68%) in the joint effects. The individual PAFs of asthmatic symptoms attributable to PM2.5 and MDA8 O3 were 2.86% (95% CI 0.17%-5.50%) and 4.83% (95% CI 1.42%-7.25%), respectively, while the joint PAF of asthmatic symptoms attributable to exposure mixture was 4.32% (95% CI 1.10%-7.46%). The joint associations were greater in participants with obesity, in urban areas, with lower family income, and who used unclean household cooking fuel. CONCLUSIONS Long-term exposure to PM2.5 and MDA8 O3 may individually and jointly increase the risk of asthmatic symptoms, and the joint effects were smaller than the sum of individual effects. These findings informed the importance of joint associations of long-term exposure to air pollutants with asthma.
Collapse
Affiliation(s)
- Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Shi
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Gongbo Chen
- School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Shuru Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wong M, Forno E, Celedón JC. Asthma interactions between obesity and other risk factors. Ann Allergy Asthma Immunol 2022; 129:301-306. [PMID: 35500862 PMCID: PMC10825856 DOI: 10.1016/j.anai.2022.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To review and critically discuss published evidence on interactions between obesity and selected risk factors on asthma in children and adults, and to discuss potential future directions in this field. DATA SOURCES National Library of Medicine (via PubMed) STUDY SELECTION: A literature search was conducted for human studies on obesity and selected interactions (with sex, race and ethnicity, socioeconomic status, indoor and outdoor pollutants, depression, anxiety, and diet) on asthma. Studies that were published in English and contained a full text were considered for inclusion in this review. RESULTS Current evidence supports interactions between obesity and outdoor and indoor air pollutants (including second-hand smoke [SHS]) on enhancing asthma risk, although there are sparse data on the specific pollutants underlying such interactions. Limited evidence also suggests that obesity may modify the effects of depression or anxiety on asthma, whereas little is known about potential interactions between obesity and sex-hormone levels or dietary patterns. CONCLUSION Well-designed observational prospective studies (eg, for pollutants and sex hormones) and randomized clinical trials (eg, for the treatment of depression) should help establish the impact of modifying coexisting exposures to reduce the harmful effects of obesity on asthma. Such studies should be designed to have a sample size that is large enough to allow adequate testing of interactions between obesity and risk factors that are identified a priori and thus, well characterized, using objective measures and biomarkers (eg, urinary or serum cotinine for SHS, epigenetic marks of specific environmental exposures).
Collapse
Affiliation(s)
- Matthew Wong
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Pekince Md B, Baccioglu Md A. Allergic and non-allergic asthma phenotypes and exposure to air pollution. J Asthma 2021; 59:1509-1520. [PMID: 34254843 DOI: 10.1080/02770903.2021.1955133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Although harmful effects of air pollution on airway diseases are well-established, its effect on allergy still remains unclear. The aim of this study was to examine changes on asthma clinic and oxidant homeostasis due to air pollution between allergic asthma (AA) and non-allergic asthma (NA) phenotypes. METHODS This prospective, case-control study included patients with well-controlled asthma under regular treatment (n = 57) and healthy individuals (n = 51). Of asthma patients, 22 had AA and 35 had NA phenotypes. Respiratory symptoms, pulmonary function tests, serum total antioxidant status (TAS) and total oxidant status (TOS), and thiol/disulfide levels were compared between the most (V1) and least (V2) air-polluted times. RESULTS High air pollution exposure resulted to an increase in the frequency of respiratory symptoms and serum inflammation markers in both asthmatic and healthy individuals. Frequency of dyspnea and cough in AA and rhinitis in NA decreased from V1 to V2. Hospitalization due to asthma exacerbation, systemic corticosteroid use, and eosinophil counts were more frequent in NA group than AA in V1. An increase of blood eosinophil counts was observed in AA group at the same visit. Mean TAS and TOS levels were higher in asthma group than control group, and the decline in TAS and TOS levels from V1 to V2 was seen only in NA. All thiols decreased and SH/total SH ratios significantly increased from V1 to V2 in all groups. CONCLUSION This study demonstrates that air pollution affects both asthma patients and healthy individuals. Through oxidant-antioxidant and thiol pathways, however, it adversely affects respiratory system of asthma patients, at a greater extent, than healthy individuals.
Collapse
Affiliation(s)
- Busra Pekince Md
- Division of Critical Care, Department of Pulmonary Diseases, School of Medicine, Selcuk University, Konya, Turkey
| | - Ayse Baccioglu Md
- Division of Immunology and Allergy, Department of Pulmonary Diseases, School of Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
5
|
Bédard A, Li Z, Ait-hadad W, Camargo CA, Leynaert B, Pison C, Dumas O, Varraso R. The Role of Nutritional Factors in Asthma: Challenges and Opportunities for Epidemiological Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063013. [PMID: 33804200 PMCID: PMC7999662 DOI: 10.3390/ijerph18063013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
The prevalence of asthma has nearly doubled over the last decades. Twentieth century changes in environmental and lifestyle factors, including changes in dietary habits, physical activity and the obesity epidemic, have been suggested to play a role in the increase of asthma prevalence and uncontrolled asthma worldwide. A large body of evidence has suggested that obesity is a likely risk factor for asthma, but mechanisms are still unclear. Regarding diet and physical activity, the literature remains inconclusive. Although the investigation of nutritional factors as a whole (i.e., the “diet, physical activity and body composition” triad) is highly relevant in terms of understanding underlying mechanisms, as well as designing effective public health interventions, their combined effects across the life course has not received a lot of attention. In this review, we discuss the state of the art regarding the role of nutritional factors in asthma, for each window of exposure. We focus on the methodological and conceptual challenges encountered in the investigation of the complex time-dependent interrelations between nutritional factors and asthma and its control, and their interaction with other determinants of asthma. Lastly, we provide guidance on how to address these challenges, as well as suggestions for future research.
Collapse
Affiliation(s)
- Annabelle Bédard
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
- Correspondence:
| | - Zhen Li
- Clinical Research Centre, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Wassila Ait-hadad
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Bénédicte Leynaert
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Christophe Pison
- Service Hospitalier Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, Inserm 1055, Université Grenoble Alpes, 38400 Grenoble, France;
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| |
Collapse
|
6
|
Mehta U, Dey S, Chowdhury S, Ghosh S, Hart JE, Kurpad A. The Association Between Ambient PM 2.5 Exposure and Anemia Outcomes Among Children Under Five Years of Age in India. Environ Epidemiol 2021; 5:e125. [PMID: 33778358 PMCID: PMC7939416 DOI: 10.1097/ee9.0000000000000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Anemia is highly prevalent in India, especially in children. Exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for anemia via. systemic inflammation. Using health data from the National Family and Health Survey 2015-2016, we examined the association between ambient PM2.5 exposure and anemia in children under five across India through district-level ecological and individual-level analyses. METHODS The ecological analysis assessed average hemoglobin levels and anemia prevalence (hemoglobin < 11 g/dL considered anemic) by district using multiple linear regression models. The individual-level analysis assessed average individual hemoglobin level and anemia status (yes/no) using generalized linear mixed models to account for clustering by district. Ambient PM2.5 exposure data were derived from the Multiangle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) data and averaged from birth date to date of interview. RESULTS The district-level ecological analysis found that, for every 10 μg m-3 increase in ambient PM2.5 exposure, average anemia prevalence increased by 1.90% (95% CI = 1.43, 2.36) and average hemoglobin decreased by 0.07 g/dL (95% CI = 0.09, 0.05). At the individual level, for every 10 μg m-3 increase in ambient PM2.5 exposure, average hemoglobin decreased by 0.14 g/dL (95% CI = 0.12, 0.16). The odds ratio associated with a 10-μg m-3 increase in ambient PM2.5 exposure was 1.09 (95% CI = 1.06, 1.11). There was evidence of effect modification by wealth index, maternal anemia status, and child BMI. CONCLUSION Our results suggest that ambient PM2.5 exposure could be linked to anemia in Indian children, although additional research on the underlying biologic mechanisms is needed. Future studies on this association should specifically consider interactions with dietary iron deficiency, maternal anemia status, and child BMI.Keywords: Anemia; Children; Ambient PM2.5 exposure; India; Association.
Collapse
Affiliation(s)
- Unnati Mehta
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi, India
- School of Public Policy, IIT Delhi, New Delhi, India
| | - Sourangsu Chowdhury
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Santu Ghosh
- St. John’s Medical College, Bengaluru, India
| | - Jaime E Hart
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
7
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
8
|
Song Y, Qi Z, Zhang Y, Wei J, Liao X, Li R, Dong C, Zhu L, Yang Z, Cai Z. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139304. [PMID: 32438171 DOI: 10.1016/j.scitotenv.2020.139304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with decreased cardiac function, especially in high risk populations such as obese ones. In this study, impacts of PM2.5 exposure on cardiac function were investigated by using the diet-induced obesity mice model. Mice were fed with normal diet or high-fat diet (HFD) for four weeks and then exposed to phosphate-buffered solution or Taiyuan winter PM2.5 (0.25 mg/kg body/day) through intratracheal instillation for another four weeks. Among physiological indices recorded, heart rate and blood pressure were increased after PM2.5 exposure in the heart of the obese mice. Metabolomics and lipidomics were applied to explore molecular alterations in response to the co-treatment of PM2.5 and HFD. Our results demonstrated both direct impacts on cardiac function and indirect effects resulted from the injury of other organs. Inflammation of lung and hypothalamus may be responsible for the elevation of phenylalanine metabolism in serum and its downstream products: epinephrine and norepinephrine, the catecholamines involves in regulating cardiac system. In intracardiac system, the co-treatment led to imbalance of energy metabolism, in addition to oxidative stress and inflammation. In contrast to the upregulation of glucose and fatty acids uptake and CoA synthesis, levels of ATP, acetyl-CoA and the intermediates in glycolysis pathway decreased in the heart. The results indicated that energy metabolism disorder was possibly one of the important contributing factors to the more severe adverse effects of the combined treatment of HFD and PM2.5.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
Abstract
Household air pollution is a leading cause of disability-adjusted life years in Southeast Asia and the third leading cause of disability-adjusted life years globally. There are at least sixty sources of household air pollution, and these vary from country to country. Indoor tobacco smoking, construction material used in building houses, fuel used for cooking, heating and lighting, use of incense and various forms of mosquito repellents, use of pesticides and chemicals used for cleaning at home, and use of artificial fragrances are some of the various sources that contribute to household air pollution. Household air pollution affects all stages of life with multi-systemic health effects, and its effects are evident right from pre-conception to old age.
In utero exposure to household air pollutants has been shown to have health effects which resonate over the entire lifetime. Exposures to indoor air pollutants in early childhood also tend to have repercussions throughout life. The respiratory system bears the maximum brunt, but effects on the cardiovascular system, endocrine system, and nervous system are largely underplayed. Household air pollutants have also been implicated in the development of various types of cancers. Identifying household air pollutants and their health implications helps us prepare for various health-related issues. However, the real challenge is adopting changes to reduce the health effects of household air pollution and designing innovative interventions to minimize the risk of further exposure. This review is an attempt to understand the various sources of household air pollution, the effects on health, and strategies to deal with this emergent risk factor of global mortality and morbidity.
Collapse
Affiliation(s)
| | - Sundeep Salvi
- Chest Research Foundation, Kalyaninagar, Pune, India
| |
Collapse
|