1
|
Xu YJ, Zhang YN, Xue-Yang, Hao SP, Wang YJ, Yang XX, Shen YQ, Su Q, Xiao YD, Liu JQ, Li WS, He QH, Chen Y, Wang LL, Guo HZ, Xia QY, Mita K. Proteotranscriptomic analyses of the midgut and Malpighian tubules after a sublethal concentration of Cry1Ab exposure on Spodoptera litura. PEST MANAGEMENT SCIENCE 2024; 80:2587-2595. [PMID: 38265118 DOI: 10.1002/ps.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Jing Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yu-Ning Zhang
- Weste College, Southwest University, Chongqing, China
| | - Xue-Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Shao-Peng Hao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan-Jue Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiao-Xue Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ya-Qin Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Su
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ying Dan Xiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jian-Qiu Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wan-Shun Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qi-Hua He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yue Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Li-Ling Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Hui-Zhen Guo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Kazuei Mita
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Matsishina NV, Ermak MV, Kim IV, Fisenko PV, Sobko OA, Klykov AG, Emel'yanov AN. Allelochemical Interactions in the Trophic System « Henosepilachna vigintioctomaculata Motschulsky- Solanum tuberosum Linneus». INSECTS 2023; 14:insects14050459. [PMID: 37233087 DOI: 10.3390/insects14050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Henosepilachna vigintioctomaculata is an intrinsic element in the agroecosystem of potato fields. The issues of relationships in the system "potato ladybird beetle-potato plant" have not yet been studied. To study the effect of potato varieties on the potato ladybird beetle, only hatched and active larvae with a hatching rate close to 100% were selected from a laboratory colony. Larvae of the first summer generation collected in potato fields were used in our study to determine the level of adrenaline in the bodies of insects, fresh potato leaves were used to study the content of glycoalkaloids, the content and activity of proteinase inhibitors. The larvae that fed on plants of varieties Belmonda, Queen Anne, Lilly, Dachny, Kazachok, Yubilyar, and Avgustin demonstrated the highest level of stress while the stress level in those that fed on variety Smak was the lowest. The damage inflicted by potato ladybird beetles on leaves of some studied potato varieties led to a progressive increase in the content of glycoalkaloids already within 24 h after the phytophages had been transferred. In most cases, the content of glycoalkoloids increased by 20% within five days. Potato ladybird beetles feeding on plants of different potato varieties caused a progressive increase in proteinase inhibitors (% of the control). Plants of variety Smak did not show a significant increase in the content of alkaloids in the herbage in response to the damage. A correlation was established between the mortality rate, the activity of proteinase inhibitors, the dynamics of glycoalkaloids, and the level of adrenaline, which could be formulated as follows: the higher the content of glycoalkaloids and the activity of proteinase inhibitors in the tissues of potato plants, the higher the level of stress in the potato ladybird beetles that feed on them.
Collapse
Affiliation(s)
- Nathalia Valerievna Matsishina
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Marina Vladimirovna Ermak
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Irina Vyacheslavovna Kim
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Petr Viktorovich Fisenko
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Olga Abdulalievna Sobko
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Alexey Grigorievich Klykov
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| | - Alexey Nikolaevich Emel'yanov
- FSBSI «FSC of Agricultural Biotechnology of the Far East Named after A.K. Chaiki», Timiryazevsky stl., Volozhenina st., 30 B, 692539 Ussuriysk, Russia
| |
Collapse
|
4
|
Zhang C, Wei J, Naing ZL, Soe ET, Tang J, Liang G. Up-regulated serpin gene involved in Cry1Ac resistance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105269. [PMID: 36464374 DOI: 10.1016/j.pestbp.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) is a critical limiting factor for applying the Bt crops. Some studies indicated that decreased protoxin activation because of lower enzymatic activities of trypsin and chymotrypsin and increased expression of serpin might involve in Bt resistance. Our previous study identified an endogenous serpin could inhibit the midgut proteases to activate Cry1Ac and reduce the insecticide activity to Helicoverpa armigera. We hypothesis that up-regulated serpin involve in resistance via inhibiting enzymatic activities of trypsin and chymotrypsin to decrease protoxin activation. Herein, we found the serpin-e gene relative expression in midgut was significantly higher in the LF30 resistant strain than that in the susceptible strain during all developmental stages. Importantly, RNAi-mediated silencing of serpin-e gene expression caused 4.46-fold mortality changes in LF30 strain, but the trypsin and chymotrypsin proteases activities were only changed 0.79-fold and 2.22-fold. In addition, although proteases activities were significantly lower in LF30 strain than that in the susceptible strain, the resistance ratios of LF30 to Cry1Ac protoxin and to activated Cry1Ac toxin were no difference. The results indicated serpins caused insect resistance to Cry1Ac protoxins partly through inhibiting the trypsin and chymotrypsin proteases activities, but it also existed other mechanisms in LF30.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinrong Tang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100,PR China.
| |
Collapse
|
5
|
Comparative Hessian Fly Larval Transcriptomics Provides Novel Insight into Host and Nonhost Resistance. Int J Mol Sci 2021; 22:ijms222111498. [PMID: 34768928 PMCID: PMC8583952 DOI: 10.3390/ijms222111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.
Collapse
|
6
|
Chauhan VK, Dhania NK, Lokya V, Bhuvanachandra B, Padmasree K, Dutta-Gupta A. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. J Biosci 2021. [DOI: 10.1007/s12038-021-00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
8
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
9
|
Chen G, Wang Y, Liu Y, Chen F, Han L. Differences in midgut transcriptomes between resistant and susceptible strains of Chilo suppressalis to Cry1C toxin. BMC Genomics 2020; 21:634. [PMID: 32928099 PMCID: PMC7490912 DOI: 10.1186/s12864-020-07051-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Chilo suppressalis is a widespread rice pest that poses a major threat to food security in China. This pest can develop resistance to Cry toxins from Bacillus thuringiensis (Bt), threatening the sustainable use of insect-resistant transgenic Bt rice. However, the molecular basis for the resistance mechanisms of C. suppressalis to Cry1C toxin remains unknown. This study aimed to identify genes associated with the mechanism of Cry1C resistance in C. suppressalis by comparing the midgut transcriptomic responses of resistant and susceptible C. suppressalis strains to Cry1C toxin and to provide information for insect resistance management. Results A C. suppressalis midgut transcriptome of 139,206 unigenes was de novo assembled from 373 million Illumina HiSeq and Roche 454 clean reads. Comparative analysis identified 5328 significantly differentially expressed unigenes (DEGs) between C. suppressalis Cry1C-resistant and -susceptible strains. DEGs encoding Bt Cry toxin receptors, aminopeptidase-P like protein, the ABC subfamily and alkaline phosphatase were downregulated, suggesting an association with C. suppressalis Cry1C resistance. Additionally, Cry1C resistance in C. suppressalis may be related to changes in the transcription levels of enzymes involved in hydrolysis, digestive, catalytic and detoxification processes. Conclusion Our study identified genes potentially involved in Cry1C resistance in C. suppressalis by comparative transcriptome analysis. The assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of C. suppressalis resistance to Cry toxins.
Collapse
Affiliation(s)
- Geng Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanhui Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lanzhi Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Guo Y, Wang Y, O'Donoghue AJ, Jiang Z, Carballar-Lejarazú R, Liang G, Hu X, Wang R, Xu L, Guan X, Zhang F, Wu S. Engineering of multiple trypsin/chymotrypsin sites in Cry3A to enhance its activity against Monochamus alternatus Hope larvae. PEST MANAGEMENT SCIENCE 2020; 76:3117-3126. [PMID: 32323409 DOI: 10.1002/ps.5866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bacillus thuringiensis Cry3 toxins exhibit specific toxicity against several coleopteran larvae. However, owing to its low toxicity to Monochamus alternatus, Cry3A toxin is not useful for managing M. alternatus larvae. Here we assessed the proteolytic activation of Cry3Aa toxin in M. alternatus larval midgut and increased its toxicity by molecular modification. RESULTS Our results indicated that insufficient processing of Cry3Aa protoxin and non-specific enzymatic digestion of Cry3Aa toxin in the midgut of M. alternatus larvae led to low toxicity. The results of transcriptome analysis, enzymatic assay with fluorogenic substrates, and multiplex substrate profiling by mass spectrometry showed that the main digestive enzymes in M. alternatus larval midgut were trypsin-like proteases that preferentially cleaved peptides with arginine and lysine residues. Consequently, trypsin recognition sites were introduced into the Domain I of Cry3Aa protoxin in the loop regions between α-helix 3 and α-helix 4 to facilitate proteolytic activation. Multiple potential trypsin cleavage sites away from the helix sheet and functional regions in Cry3Aa proteins were also mutated to alanine to prevent non-specific enzymatic digestion. Bioassays indicated that a modified Cry3Aa-T toxin (K65A, K70A, K231A, K468A, and K596A) showed a 9.5-fold (LC50 = 12.3 μg/mL) increase in toxicity to M. alternatus larvae when compared to native Cry3Aa toxin. CONCLUSION This study highlights an effective way to increase the toxicity of Cry3Aa toxin to M. alternatus, which may be suitable for managing the resistance of transgenic plants to other pests, including some of the most important pests in agriculture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yafang Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Molecular Diagnostics, Ministry of Education, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Liu T, Guo X, Bu Y, Zhou Y, Duan Y, Yang Q. Structural and biochemical insights into an insect gut-specific chitinase with antifungal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103326. [PMID: 31968227 DOI: 10.1016/j.ibmb.2020.103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The antifungal activity of insect chitinase has rarely been studied. Here, we show that chitinase ChtIV, which is specifically expressed in the midgut of Asian corn borer (Ostrinia furnacalis), has antifungal activity toward phytopathogenic fungi. ChtIV exhibited high stability and mycelial hydrolytic activity in the extreme midgut environment, which has a pH of 10 and is rich in proteases. Hyper-N-glycosylation and reduced electrostatic interactions ensure the stability of ChtIV in the midgut. The structural characteristics of ChtIV are similar to two plant antifungal chitinases but distinct from an insect chitinase for cuticular chitin degradation in both the substrate-binding cleft and auxiliary binding motif. Since the phytopathogenic fungi are those that frequently invade corn, ChtIV may play a role in insect immune system and become a potential pesticide target. The crystal structures of ChtIV and its complexes with penta-N-acetylchitopentaose (a substrate) and allosamidin (an inhibitor) were obtained, which may facilitate rational design of ChtIV inhibitors as agrichemicals.
Collapse
Affiliation(s)
- Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoguang Guo
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunfei Bu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Duan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Guo Z, Gong L, Kang S, Zhou J, Sun D, Qin J, Guo L, Zhu L, Bai Y, Bravo A, Soberón M, Zhang Y. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:23-30. [PMID: 31973862 DOI: 10.1016/j.pestbp.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/21/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) have been widely used to control agricultural pests in both foliage sprays and transgenic crops. Nevertheless, rapid evolution of insect resistance to Cry toxins requires elucidation of the molecular mechanisms involved in Cry resistance. Two proposed models have been described to explain the toxicity of Cry proteins, the classic model states that Cry protoxin is activated by midgut proteases resulting in activated toxin that binds to receptors and forms a pore in the midgut cells triggering larval death, and the newly proposed dual model of the mode of action of Bt Cry toxins states that protoxin and activated toxins may have different mechanisms of action since several resistant strains to activated Cry toxins are still susceptible to the same Cry-protoxin. Protoxin activation by midgut proteases is a key step in both models. Herein, we evaluated Cry1Ac protoxin activation in a susceptible Plutella xylostella (L.) strain (DBM1Ac-S) and in the near-isogenic strain (NIL-R) with high field-evolved Cry1Ac resistance. Previous work showed that Cry1Ac resistance in NIL-R correlates with reduced binding to midgut receptors due to enhanced MAPK signaling pathway and down regulation of ABCC2 receptor. However, reduced midgut trypsin levels and altered midgut protease gene transcription were also observed in the Cry1Ac-resistant field isolated strain that is parent of the NIL-R strain. Therefore, we analyzed the midgut protease activities in both DBM1Ac-S and NIL-R strains. Detection of enzymatic activities showed that caseinolytic protease, trypsin and chymotrypsin activities were not significantly different between the susceptible and resistant strains. Furthermore, treatment with different trypsin or chymotrypsin inhibitors, such as Nα-tosyl-l-lysine chloromethyl ketone (TLCK) or Np-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not affect the susceptibility to Cry1Ac protoxin of the DBM1Ac-S and NIL-R larvae. Bioassay results indicated that the NIL-R larvae showed similar resistant levels to both Cry1Ac protoxin and trypsin-activated toxin. Taken together, our results demonstrated that high-level field-evolved Cry1Ac resistance in the NIL-R strain is independent of Cry1Ac protoxin activation and the specific protoxin mechanism of action. This discovery will strengthen our comprehensive understanding of the complex mechanistic basis of Bt resistance in different insects.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Gong L, Kang S, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Akami M, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.). Toxins (Basel) 2020; 12:toxins12020076. [PMID: 31979385 PMCID: PMC7076802 DOI: 10.3390/toxins12020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022] Open
Abstract
Bacillus thuringiensis (Bt) produce diverse insecticidal proteins to kill insect pests. Nevertheless, evolution of resistance to Bt toxins hampers the sustainable use of this technology. Previously, we identified down-regulation of a trypsin-like serine protease gene PxTryp_SPc1 in the midgut transcriptome and RNA-Seq data of a laboratory-selected Cry1Ac-resistant Plutella xylostella strain, SZ-R. We show here that reduced PxTryp_SPc1 expression significantly reduced caseinolytic and trypsin protease activities affecting Cry1Ac protoxin activation, thereby conferring higher resistance to Cry1Ac protoxin than activated toxin in SZ-R strain. Herein, the full-length cDNA sequence of PxTryp_SPc1 gene was cloned, and we found that it was mainly expressed in midgut tissue in all larval instars. Subsequently, we confirmed that the PxTryp_SPc1 gene was significantly decreased in SZ-R larval midgut and was further reduced when selected with high dose of Cry1Ac protoxin. Moreover, down-regulation of the PxTryp_SPc1 gene was genetically linked to resistance to Cry1Ac in the SZ-R strain. Finally, RNAi-mediated silencing of PxTryp_SPc1 gene expression decreased larval susceptibility to Cry1Ac protoxin in the susceptible DBM1Ac-S strain, supporting that low expression of PxTryp_SPc1 gene is involved in Cry1Ac resistance in P. xylostella. These findings contribute to understanding the role of midgut proteases in the mechanisms underlying insect resistance to Bt toxins.
Collapse
Affiliation(s)
- Lijun Gong
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Le Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Fan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Mazarin Akami
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Zhongxia Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Lizhang Wen
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| |
Collapse
|
14
|
Zhang M, Wei J, Ni X, Zhang J, Jurat-Fuentes JL, Fabrick JA, Carrière Y, Tabashnik BE, Li X. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2019; 75:1099-1106. [PMID: 30264537 DOI: 10.1002/ps.5224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Field-evolved resistance of Helicoverpa zea to Bacillus thuringiensis (Bt) toxin Cry1Ac was first reported more than a decade ago, yet the underlying mechanisms remain elusive. Towards understanding the mechanisms of resistance to Cry1Ac, we analyzed a susceptible (LAB-S) and two resistant (GA and GA-R) strains of H. zea. The GA strain was derived from Georgia and exposed to Bt toxins only in the field. The GA-R strain was derived from the GA strain and selected for increased resistance to Cry1Ac in the laboratory. RESULTS Resistance to MVPII, a liquid formulation containing a hybrid protoxin similar to Cry1Ac, was 110-fold for GA-R and 7.8-fold for GA relative to LAB-S. In midgut brush border membrane vesicles, activity of alkaline phosphatase and aminopeptidase N did not vary significantly among strains. The activity of total proteases, trypsin-like proteases and chymotrypsin-like proteases was significantly lower for GA-R and GA than LAB-S, but did not differ between GA-R and GA. When H. zea midgut cells were exposed to Cry1Ac protoxin that had been digested with midgut extracts, toxicity was significantly lower for extracts from GA-R and GA relative to extracts from LAB-S, but did not differ between GA-R and GA. Transcriptional analysis showed that none of the five protease genes examined was associated with the decline in Cry1Ac activation in GA-R and GA relative to LAB-S. CONCLUSION The results suggest that decreased Cry1Ac activation is a contributing field-selected mechanism of resistance that helps explain the reduced susceptibility of the GA-R and GA strains. Relative to the LAB-S strain, the two Cry1Ac-resistant strains had lower total protease, trypsin and chymotrypsin activities, a lower Cry1Ac activation rate, and Cry1Ac protoxin incubated with their midgut extracts was less toxic to H. zea midgut cells. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Jizhen Wei
- Department of Entomology, University of Arizona, Tucson, AZ
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Xiao Y, Wu K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180316. [PMID: 30967027 PMCID: PMC6367150 DOI: 10.1098/rstb.2018.0316] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Extensive use of chemical pesticides poses a great threat to the environment and food safety. The discovery of Bacillus thuringiensis (Bt) toxins with effective insecticidal activity against pests and the development of transgenic technology of plants opened a new era of pest control. Transgenic Bt crops, including maize, cotton and soya bean, have now been produced and commercialized to protect against about 30 major coleopteran and lepidopteran pests, greatly benefiting the environment and the economy. However, with the long-term cultivation of Bt crops, some target pests have gradually developed resistance. Numerous studies have indicated that mutations in genes for toxins activation, toxin-binding and insect immunization are important sources in Bt resistance. An in-depth exploration of the corresponding Bt-resistance mechanisms will aid in the design of new strategies to prevent and control pests. Future research will focus on Bt crops expressing new genes and multiple genes to control a broader range of pests as part of an integrated pest management programme. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People's Republic of China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| |
Collapse
|
16
|
Jin M, Liao C, Chakrabarty S, Wu K, Xiao Y. Comparative Proteomics of Peritrophic Matrix Provides an Insight into its Role in Cry1Ac Resistance of Cotton Bollworm Helicoverpa armigera. Toxins (Basel) 2019; 11:E92. [PMID: 30717423 PMCID: PMC6409725 DOI: 10.3390/toxins11020092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are widely used in sprays and transgenic crops to control insect pests, but the evolution of insect resistance threatens their long-term use. Different resistance mechanisms have been identified, but some have not been completely elucidated. Here, the transcriptome of the midgut and proteome of the peritrophic matrix (PM) were comparatively analyzed to identify potential mechanism of resistance to Cry1Ac in laboratory-selected strain XJ10 of Helicoverpa armigera. This strain had a 146-fold resistance to Cry1Ac protoxin and 45-fold resistance to Cry1Ac activated toxin compared with XJ strain. The mRNA and protein levels for several trypsin genes were downregulated in XJ10 compared to the susceptible strain XJ. Furthermore, 215 proteins of the PM were identified, and nearly all had corresponding mRNAs in the midgut. These results provide new insights that the PM may participate in Bt resistance.
Collapse
Affiliation(s)
- Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China.
| | - Chongyu Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
17
|
Zhao A, Li Y, Leng C, Wang P, Li Y. Inhibitory Effect of Protease Inhibitors on Larval Midgut Protease Activities and the Performance of Plutella xylostella (Lepidoptera: Plutellidae). Front Physiol 2019; 9:1963. [PMID: 30697169 PMCID: PMC6340996 DOI: 10.3389/fphys.2018.01963] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Plutella xylostella L. (diamondback moth) is a pest of cruciferous plants. To understand the relationship among protease inhibitors, protease activities and the growth and development of this insect, the activities of midgut proteases of P. xylostella larvae were determined in this study. Protease samples were extracted from the midguts of P. xylostella larvae, and the protease activities were determined using enzyme specific substrates. The results showed that CaCl2, EDTA, and EGTA inhibited only the trypsin. Among the common protease inhibitors, phenylmethyl sulfonyl fluorine (PMSF), Nα-p-methyl sulfonyl-L-lysine chloromethylketone (TLCK), Nα-methyl sulfonyl-L- phenylalanine chloromethyl ketone (TPCK), soybean trypsin inhibitor (STI), and PMSF inhibited the total protease, high-alkaline trypsin (a trypsin subtype with highly alkaline pH optimum), low-alkaline trypsin (another trypsin subtype with slightly alkaline pH optimum), and chymotrypsin; TLCK inhibited the total protease and high-alkaline trypsin, whereas TPCK only activated the high-alkaline trypsin activities. STI had an inhibitory effect on all the proteases. These results showed that protease inhibitors had a certain extent inhibition to protease activities in the larval midgut of P. xylostella and that STI can potentially be used for effective pest control. The development of P. xylostella was delayed in the presence of different inhibitors. These effects were also related to the concentration of the inhibitor. A higher STI concentration showed a longer lasting effect but lower effect in this study compared to that of TLCK. The protease inhibitors had some inhibitory effect on the synthesis and secretion of proteases, and interfered with the protease activity, thereby inhibiting the absorption of nutrients and delaying the growth and development of P. xylostella and reducing their ability to reproduce. These findings should provide the baseline information about using for effective pest management in the future.
Collapse
Affiliation(s)
- Aiping Zhao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Yin Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Chunmeng Leng
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ping Wang
- Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Abdelgaffar HM, Oppert C, Sun X, Monserrate J, Jurat-Fuentes JL. Differential heliothine susceptibility to Cry1Ac associated with gut proteolytic activity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:1-8. [PMID: 30744882 DOI: 10.1016/j.pestbp.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
The Cry1Ac protein is the most active insecticidal toxin from the bacterium Bacillus thuringiensis (Bt) to members of the heliothinae subfamily in Lepidoptera, which includes some of the most devastating pests of corn and cotton worldwide. However, there are wide discrepancies in susceptibility among members of this subfamily in the US. Specifically, susceptibility to Cry1Ac in Helicoverpa zea (Hz) is >100-fold lower when compared to Heliothis virescens (Hv) larvae. The biochemical properties and Cry1Ac protoxin processing activity of gut digestive fluids from larvae of Hz and Hv were compared to test their role in differential susceptibility to Cry1Ac. Comparatively lower protease activity, associated with slower Cry1Ac proteolytic processing, was detected in digestive fluids of Hz compared to Hv. Moreover, Cry1Ac toxin processed by Hz digestive fluids displayed significantly lower toxicity in vitro against cultured insect cells compared to toxin activated by Hv proteases. These data support a contributing role for gut proteases in differential susceptibility to Cry1Ac in heliothine larvae.
Collapse
Affiliation(s)
- Heba M Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cris Oppert
- Bayer CropScience, Morrisville, NC 27709, USA
| | - Xiaocun Sun
- Research Computing Support, Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA..
| |
Collapse
|
19
|
Wei J, Yang S, Chen L, Liu X, Du M, An S, Liang G. Transcriptomic Responses to Different Cry1Ac Selection Stresses in Helicoverpa armigera. Front Physiol 2018; 9:1653. [PMID: 30524311 PMCID: PMC6262065 DOI: 10.3389/fphys.2018.01653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/02/2018] [Indexed: 12/02/2022] Open
Abstract
Helicoverpa armigera can develop resistance to Bacillus thuringiensis (Bt), which threaten the long-term success of Bt crops. In the present study, RNAseq was employed to investigate the midgut genes response to strains with different levels of resistance (LF5, LF10, LF20, LF30, LF60, and LF120) in H. armigera. Results revealed that a series of differentially expressed unigenes (DEGs) were expressed significantly in resistant strains compared with the LF-susceptible strain. Nine trypsin genes, ALP2, were downregulated significantly in all the six resistant strains and further verified by qRT-PCR, indicating that these genes may be used as markers to monitor and manage pest resistance in transgenic crops. Most importantly, the differences in DEG functions in the different resistant strains revealed that different resistance mechanisms may develop during the evolution of resistance. The immune and detoxification processes appear to be associated with the low-level resistance (LF5 strain). Metabolic process-related macromolecules possibly lead to resistance to Cry1Ac in the LF10 and LF20 strains. The DEGs involved in the “proton-transporting V-type ATPase complex” and the “proton-transporting two-sector ATPase complex” were significantly expressed in the LF30 strain, probably causing resistance to Cry1Ac in the LF30 strain. The DEGs involved in binding and iron ion homeostasis appear to lead to high-level resistance in the LF60 and LF120 strains, respectively. The multiple genes and different pathways seem to be involved in Cry1Ac resistance depending on the levels of resistance. Although the mechanisms of resistance are very complex in H. armigera, a main pathway seemingly exists, which contributes to resistance in each level of resistant strain. Altogether, the findings in the current study provide a transcriptome-based foundation for identifying the functional genes involved in Cry1Ac resistance in H. armigera.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
21
|
Abdelmalek N, Sellami S, Kallassy-Awad M, Tounsi MF, Mebarkia A, Tounsi S, Rouis S. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:91-97. [PMID: 28364809 DOI: 10.1016/j.pestbp.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 06/07/2023]
Abstract
The economically important crop pest Ephestia kuehniella was tested at two stages of larval development for susceptibility to Bacillus thuringiensis Cry1Aa toxin. Bioassays showed that toxicity decreased during the development of larvae stage. In fact, Cry1Aa toxins from BNS3-Cry- (pHT-cry1Aa) showed low toxicity against the first-instar larvae (L1) with a LC50 value of about 421.02μg/g of diet and was not toxic against the fifth-instar (L5), comparing to the BLB1 toxins used as positive control which represent a LC50 value of about 56.96 and 84.21μg/g of diet against L1 and L5 instars larvae, respectively. Effects of Cry1Aa toxins were reflected in histopathological observations by the weak destruction of midgut epithelium, slight hypertrophy of epithelial cells, and minor alteration of brush border membrane (BBM) detected mainly in L1 larvae stage comparing to the more extensive damage caused by BLB1 toxins. Interestingly, in vitro proteolysis of Cry1Aa toxins was found to correlate with the difference of toxicity during larval stage development. In fact, the weak proteinase activity detected inside the L1 midgut has led to the persistence of the Cry1Aa active forms (65 and 58kDa) during prolonged incubations, causing the alterations described previously. Three subfamilies of aminopeptidase (APN) receptors were detected in both larvae instars with different intensities and molecular weights (150kDa and 55kDa for APN1, and 90kDa for APN2 and APN4). Remarkably, binding assay using Cry1Aa toxin seems to have no direct correlation with larval stages toxicity differences, since same putative receptors were detected. Understanding the reasons for the clear differences in the effectiveness of Cry1Aa toxins during larval development stages of E. kuehniella is very important for the design of future improvement insecticidal approaches and for the accomplishment of resistance prevention strategies.
Collapse
Affiliation(s)
- Nouha Abdelmalek
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sameh Sellami
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | - Molka Feki Tounsi
- Laboratory of Molecular and Cellular Screening Processes Genomics and Bioinformatics, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Souad Rouis
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
22
|
Peterson B, Bezuidenhout CC, Van den Berg J. An Overview of Mechanisms of Cry Toxin Resistance in Lepidopteran Insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:362-377. [PMID: 28334065 DOI: 10.1093/jee/tow310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Arthropods have the capacity to evolve resistance to insecticides and insecticidal traits in genetically modified crops. Resistance development among Lepidoptera is a common phenomenon, and a repertoire of resistance mechanisms to various Cry toxins have been identified from laboratory, greenhouse, and field studies in this insect order. Elucidation of such resistance mechanisms is crucial for developing IRM (insect resistance management) strategies to ensure sustainable use of genetically modified crops. This mini review provides a comprehensive overview of mechanisms of resistance that have been reported for lepidopteran pests. This study demonstrated that resistance mechanisms are highly complex, and the most common mechanism of resistance is altered binding sites. It is yet to be established whether all these altered binding sites are regulated by an MAPK signaling pathway, which might suggest a universal mechanism of resistance in lepidopterans.
Collapse
Affiliation(s)
- B Peterson
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - C C Bezuidenhout
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - J Van den Berg
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| |
Collapse
|
23
|
Yao J, Zhu YC, Lu N, Buschman LL, Zhu KY. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn. Int J Mol Sci 2017; 18:ijms18020301. [PMID: 28146087 PMCID: PMC5343837 DOI: 10.3390/ijms18020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
- Department of Agriculture-Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS 38776, USA.
| | - Yu-Cheng Zhu
- Department of Agriculture-Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS 38776, USA.
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrent L Buschman
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
- Burland Drive, Bailey, CO 80421, USA.
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
24
|
Santos-Amaya OF, Tavares CS, Rodrigues JVC, Campos SO, Guedes RNC, Alves AP, Pereira EJG. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2017; 73:35-43. [PMID: 27147125 DOI: 10.1002/ps.4312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The presence of fitness costs of resistance to Bacillus thuringiensis (Bt) insecticidal proteins in insect populations may delay or even reverse the local selection of insect resistance to Bt transgenic crops, and deserves rigorous investigation. Here we assessed the fitness costs associated with Cry1Fa resistance in two strains of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), derived from field collections in different Brazilian regions and further selected in the laboratory for high levels of resistance to Cry1Fa using leaves of TC1507 corn. RESULTS Fitness components were compared using paired resistant and susceptible strains with similar genetic backgrounds and F1 generations from reciprocal crosses, all of them reared on non-transgenic corn leaves. No apparent life history costs in the larval stage were observed in the Bt-resistant strains. Moreover, the resistance remained stable for seven generations in the absence of selection, with no decrease in the proportion of resistant individuals. Larval respiration rates were also similar between resistant and susceptible homozygotes, and heterozygotes displayed respiration rates and demographic performance equal or superior to those of susceptible homozygotes. CONCLUSION In combination, these results indicate the lack of strong fitness costs associated with resistance to Cry1Fa in the fall armyworm strains studied. These findings suggest that Cry1Fa resistance in S. frugiperda populations is unlikely to be counterselected in Cry1Fa-free environments. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Clébson S Tavares
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Silverio O Campos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Eliseu José G Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Interações Planta-Praga, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
25
|
Regode V, Kuruba S, Mohammad AS, Sharma HC. Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera. Front Microbiol 2016; 7:1567. [PMID: 27766093 PMCID: PMC5052264 DOI: 10.3389/fmicb.2016.01567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Bacillus thuringiensis toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac) to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation toward pro-Cry1Ac. Among 12 gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2, and IVS3) were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2, and IVS3 isolates were purified to 11.90-, 15.50-, and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40°C. Maximum inhibition of total proteolytic activity was exerted by phenylmethane sulfonyl fluoride followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65, and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity toward H. armigera. The gut bacterial isolates IVS1, IVS2, and IVS3 showed homology with B. thuringiensis (CP003763.1), Vibrio fischeri (CP000020.2), and Escherichia coli (CP011342.1), respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of B. thuringiensis protoxin and play a major role in inducing pathogenicity of B. thuringiensis toxins in H. armigera.
Collapse
Affiliation(s)
- Visweshwar Regode
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics, PatancheruIndia; Department of Biochemistry, Gulbarga University, KalaburagiIndia
| | | | - Akbar S Mohammad
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru India
| | - Hari C Sharma
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru India
| |
Collapse
|
26
|
Stalinski R, Laporte F, Tetreau G, Després L. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. INFECTION GENETICS AND EVOLUTION 2016; 44:218-227. [DOI: 10.1016/j.meegid.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/09/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
|
27
|
Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Sci Rep 2016; 6:24311. [PMID: 27095284 PMCID: PMC4837340 DOI: 10.1038/srep24311] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/24/2016] [Indexed: 11/25/2022] Open
Abstract
Crops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful technologies developed for the control of pests but the evolution of resistance to them remains a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently commercialized, though not yet in Australia. We found that, although relatively high, the frequency of alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously isolated lines, suggesting that they belong to one common gene and this mechanism is relatively frequent. Vip3Aa-resistance does not confer cross-resistance to Cry1Ac or Cry2Ab. Vip3Aa was labeled with 125I and used to show specific binding to H. armigera brush-border membrane vesicles (BBMV). Binding was of high affinity (Kd = 25 and 19 nM for susceptible and resistant insects, respectively) and the concentration of binding sites was high (Rt = 140 pmol/mg for both). Despite the narrow-spectrum resistance, binding of 125I-labeled Vip3Aa to BBMV of resistant and susceptible insects was not significantly different. Proteolytic conversion of Vip3Aa protoxin into the activated toxin rendered the same products, though it was significantly slower in resistant insects.
Collapse
|
28
|
Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner). Appl Biochem Biotechnol 2015; 177:1621-37. [DOI: 10.1007/s12010-015-1841-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
29
|
Zhao C, Jurat-Fuentes JL, Abdelgaffar HM, Pan H, Song F, Zhang J. Identification of a New cry1I-Type Gene as a Candidate for Gene Pyramiding in Corn To Control Ostrinia Species Larvae. Appl Environ Microbiol 2015; 81:3699-705. [PMID: 25795679 PMCID: PMC4421046 DOI: 10.1128/aem.00379-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Pyramiding of diverse cry toxin genes from Bacillus thuringiensis with different modes of action is a desirable strategy to delay the evolution of resistance in the European corn borer (Ostrinia nubilalis). Considering the dependency of susceptibility to Cry toxins on toxin binding to receptors in the midgut of target pests, a diverse mode of action is commonly defined as recognition of unique binding sites in the target insect. In this study, we present a novel cry1Ie toxin gene (cry1Ie2) as a candidate for pyramiding with Cry1Ab or Cry1Fa in corn to control Ostrinia species larvae. The new toxin gene encodes an 81-kDa protein that is processed to a protease-resistant core form of approximately 55 kDa by trypsin digestion. The purified protoxin displayed high toxicity to Ostrinia furnacalis and O. nubilalis larvae but low to no activity against Spodoptera or heliothine species or the coleopteran Tenebrio molitor. Results of binding assays with (125)I-labeled Cry1Ab toxin and brush border membrane vesicles from O. nubilalis larvae demonstrated that Cry1Ie2 does not recognize the Cry1Ab binding sites in that insect. Reciprocal competition binding assays with biotin-labeled Cry1Ie2 confirmed the lack of shared sites with Cry1Ab or Cry1Fa in O. nubilalis brush border membrane vesicles. These data support Cry1Ie2 as a good candidate for pyramiding with Cry1Ab or Cry1Fa in corn to increase the control of O. nubilalis and reduce the risk of resistance evolution.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Science, Jilin University, Changchun, Jilin, China State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Heba M Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism. Appl Environ Microbiol 2015; 81:5184-95. [PMID: 26025894 DOI: 10.1128/aem.00593-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023] Open
Abstract
The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism.
Collapse
|
31
|
Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M. Resistance to bio-insecticides or how to enhance their sustainability: a review. FRONTIERS IN PLANT SCIENCE 2015; 6:381. [PMID: 26150820 PMCID: PMC4472983 DOI: 10.3389/fpls.2015.00381] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/12/2015] [Indexed: 05/12/2023]
Abstract
After more than 70 years of chemical pesticide use, modern agriculture is increasingly using biological control products. Resistances to conventional insecticides are wide spread, while those to bio-insecticides have raised less attention, and resistance management is frequently neglected. However, a good knowledge of the limitations of a new technique often provides greater sustainability. In this review, we compile cases of resistance to widely used bio-insecticides and describe the associated resistance mechanisms. This overview shows that all widely used bio-insecticides ultimately select resistant individuals. For example, at least 27 species of insects have been described as resistant to Bacillus thuringiensis toxins. The resistance mechanisms are at least as diverse as those that are involved in resistance to chemical insecticides, some of them being common to bio-insecticides and chemical insecticides. This analysis highlights the specific properties of bio-insecticides that the scientific community should use to provide a better sustainability of these products.
Collapse
Affiliation(s)
- Myriam Siegwart
- Institut National de la Recherche Agronomique, UR1115, Plantes et Systèmes de Culture Horticoles UnitAvignon, France
- *Correspondence: Myriam Siegwart, Institut National de la Recherche Agronomique, – Plantes et Systèmes de Culture Horticoles Unit – Bât B, 228 Route de L'aérodrome, CS 40509, Domaine St Paul – Site Agroparc, 84914 Avignon, France
| | - Benoit Graillot
- Laboratoire de Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Institut Mines-Telecom et Université de Montpellier Sud de FranceAlès, France
- Natural Plant Protection, Arysta LifeScience GroupPau, France
| | | | - Samantha Besse
- Natural Plant Protection, Arysta LifeScience GroupPau, France
| | - Marc Bardin
- Institut National de la Recherche Agronomique, UR407, Plant Pathology UnitMontfavet, France
| | - Philippe C. Nicot
- Institut National de la Recherche Agronomique, UR407, Plant Pathology UnitMontfavet, France
| | - Miguel Lopez-Ferber
- Laboratoire de Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Institut Mines-Telecom et Université de Montpellier Sud de FranceAlès, France
| |
Collapse
|
32
|
Liu C, Xiao Y, Li X, Oppert B, Tabashnik BE, Wu K. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep 2014; 4:7219. [PMID: 25427690 PMCID: PMC4245529 DOI: 10.1038/srep07219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/06/2014] [Indexed: 01/02/2023] Open
Abstract
Transgenic plants producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are useful for pest control, but their efficacy is reduced when pests evolve resistance. Here we examined the mechanism of resistance to Bt toxin Cry1Ac in the laboratory-selected LF5 strain of the cotton bollworm, Helicoverpa armigera. This strain had 110-fold resistance to Cry1Ac protoxin and 39-fold resistance to Cry1Ac activated toxin. Evaluation of five trypsin genes revealed 99% reduced transcription of one trypsin gene (HaTryR) was associated with resistance. Silencing of this gene with RNA interference in susceptible larvae increased their survival on diets containing Cry1Ac. Bioassays of progeny from crosses revealed that resistance to Cry1Ac was genetically linked with HaTryR. We identified mutations in the promoter region of HaTryR in the resistant strain. In transfected insect cell lines, transcription was lower when driven by the resistant promoter compared with the susceptible promoter, implicating cis-mediated down-regulation of HaTryR transcription as a mechanism of resistance. The results suggest that H. armigera can adapt to Bt toxin Cry1Ac by decreased expression of trypsin. Because trypsin activation of protoxin is a critical step in toxicity, transgenic plants with activated toxins rather than protoxins might increase the durability of Bt crops.
Collapse
Affiliation(s)
- Chenxi Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China
| | - Yutao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Brenda Oppert
- USDA Agricultural Research Service Center for Grain and Animal Health Research, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China
| |
Collapse
|
33
|
Siegfried BD, Hellmich RL. Understanding successful resistance management. GM CROPS & FOOD 2014; 3:184-93. [DOI: 10.4161/gmcr.20715] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Yao J, Buschman LL, Lu N, Khajuria C, Zhu KY. Changes in gene expression in the larval gut of Ostrinia nubilalis in Response to Bacillus thuringiensis Cry1Ab protoxin ingestion. Toxins (Basel) 2014; 6:1274-94. [PMID: 24704690 PMCID: PMC4014733 DOI: 10.3390/toxins6041274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 12/04/2022] Open
Abstract
We developed a microarray based on 2895 unique transcripts assembled from 15,000 cDNA sequences from the European corn borer (Ostrinia nubilalis) larval gut. This microarray was used to monitor gene expression in early third-instar larvae of Bacillus thuringiensis (Bt)-susceptible O. nubilalis after 6 h feeding on diet, with or without the Bt Cry1Ab protoxin. We identified 174 transcripts, for which the expression was changed more than two-fold in the gut of the larvae fed Cry1Ab protoxin (p < 0.05), representing 80 down-regulated and 94 up-regulated transcripts. Among 174 differentially expressed transcripts, 13 transcripts putatively encode proteins that are potentially involved in Bt toxicity, and these transcripts include eight serine proteases, three aminopeptidases, one alkaline phosphatase, and one cadherin. The expressions of trypsin-like protease and three aminopeptidase transcripts were variable, but two potential Bt-binding proteins, alkaline phosphatase and cadherin were consistently up-regulated in larvae fed Cry1Ab protoxin. The significantly up and down-regulated transcripts may be involved in Cry1Ab toxicity by activation, degradation, toxin binding, and other related cellular responses. This study is a preliminary survey of Cry1Ab protoxin-induced transcriptional responses in O. nubilalis gut and our results are expected to help with further studies on Bt toxin-insect interactions at the molecular level.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrent L Buschman
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA.
| | - Chitvan Khajuria
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
35
|
Bhardwaj U, Bhardwaj A, Kumar R, Leelavathi S, Reddy VS, Mazumdar-Leighton S. Revisiting rubisco as a protein substrate for insect midgut proteases. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:13-35. [PMID: 24338735 DOI: 10.1002/arch.21140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.
Collapse
Affiliation(s)
- Usha Bhardwaj
- Plant-Insect Interactions Group, Department of Botany, Delhi University, Delhi, India
| | | | | | | | | | | |
Collapse
|
36
|
González-Cabrera J, García M, Hernández-Crespo P, Farinós GP, Ortego F, Castañera P. Resistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:635-643. [PMID: 23603093 DOI: 10.1016/j.ibmb.2013.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 06/02/2023]
Abstract
Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.
Collapse
Affiliation(s)
- Joel González-Cabrera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Luttrell R, Huang F. Characterization and transcriptional analyses of cDNAs encoding three trypsin- and chymotrypsin-like proteinases in Cry1Ab-susceptible and Cry1Ab-resistant strains of sugarcane borer, Diatraea saccharalis. INSECT SCIENCE 2013; 20:485-496. [PMID: 23955944 DOI: 10.1111/j.1744-7917.2012.01514.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2012] [Indexed: 06/02/2023]
Abstract
Diatraea saccharalis is a major corn borer pest. Midgut serine proteinases are essential for insect growth and development. Alteration of midgut proteinases is responsible for Bt resistance development in some species. To clone midgut trypsin and chymotrypsin cDNAs and to test if the Cry1Ab resistance in D. saccharalis is associated with changes in midgut proteinases, total midgut tryptic and chymotryptic activities, cDNA sequences, and gene expressions of three trypsin and three chymotrypsin genes were comparatively examined between Cry1Ab-susceptible (Cry1Ab-SS) and Cry1Ab-resistant (Cry1Ab-RR) strains. Full-length cDNAs encoding three trypsin- and three chymotrypsin-like proteinases were sequenced from Cry1Ab-SS and Cry1Ab-RR larvae. These cDNAs code for active forms of midgut serine proteinases with all functional motifs, including signal peptide, conserved His-Asp-Ser for the catalytic triad, three pairs of cysteines for disulfide bridge configurations, and conserved substrate specificity determination residues. In general, cDNA and putative protein sequences are highly similar between Cry1Ab-SS and Cry1Ab-RR strains, except for a few nucleotide and predicted amino acid substitutions, whose function need to be further clarified. Total trypsin and chymotrypsin activities were also similar between Cry1Ab-SS and Cry1Ab-RR strains. Transcriptional levels of the trypsin and chymotrypsin genes had numerical difference between Cry1Ab-SS and Cry1Ab-RR strains, but the difference was not statistically significant. Data suggest that the development of Cry1Ab resistance in D. saccharalis was not significantly associated with these trypsins and chymotrypsins. Results clarified the role of six midgut proteinases and provided a foundation for continuing examination of potential involvement of other midgut proteinases in Bt resistance development and other important biochemical processes.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites. PLoS One 2013; 8:e53079. [PMID: 23308139 PMCID: PMC3537739 DOI: 10.1371/journal.pone.0053079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low. Methodology/Principal Findings Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV). Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that 125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances 125I-Cry35Ab1 specific binding, and that 125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1) No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with 125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2) No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with 125I-Cry3Aa, or 125I-Cry8Ba. Conclusions/Significance Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba for deployment as insect resistance management pyramids for in-plant control of western corn rootworm.
Collapse
|
39
|
Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensisinsecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 2013; 37:3-22. [DOI: 10.1111/j.1574-6976.2012.00341.x] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/10/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022] Open
|
40
|
Yao J, Buschman LL, Oppert B, Khajuria C, Zhu KY. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae. PLoS One 2012; 7:e44090. [PMID: 22952884 PMCID: PMC3432080 DOI: 10.1371/journal.pone.0044090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023] Open
Abstract
Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and their homologs from the European corn borer (Ostrinia nubilalis) larval gut. Our analyses of the cDNA-deduced amino acid sequences indicated that 12 were putative trypsins, 12 were putative chymotrypsins, and the remaining 10 were trypsin and chymotrypsin homologs that lack one or more conserved residues of typical trypsins and chymotrypsins. Reverse transcription PCR analysis indicated that all genes were highly expressed in gut tissues, but one group of phylogenetically-related trypsin genes, OnTry-G2, was highly expressed in larval foregut and midgut, whereas another group, OnTry-G3, was highly expressed in the midgut and hindgut. Real-time quantitative PCR analysis indicated that several trypsin genes (OnTry5 and OnTry6) were significantly up-regulated in the gut of third-instar larvae after feeding on Cry1Ab protoxin from 2 to 24 h, whereas one trypsin (OnTry2) was down-regulated at all time points. Four chymotrypsin and chymotrypsin homolog genes (OnCTP2, OnCTP5, OnCTP12 and OnCTP13) were up-regulated at least 2-fold in the gut of the larvae after feeding on Cry1Ab protoxin for 24 h. Our data represent the first in-depth study of gut transcripts encoding expanded families of protease genes in O. nubilalis larvae and demonstrate differential expression of protease genes that may be related to Cry1Ab intoxication and/or resistance.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Lawrent L. Buschman
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain & Animal Health Research, Manhattan, Kansas, United States of America
| | - Chitvan Khajuria
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chakroun M, Bel Y, Caccia S, Abdelkefi-Mesrati L, Escriche B, Ferré J. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J Invertebr Pathol 2012; 110:334-9. [DOI: 10.1016/j.jip.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/09/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
|
42
|
Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY. Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS One 2011; 6:e23983. [PMID: 21887358 PMCID: PMC3161092 DOI: 10.1371/journal.pone.0023983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
Abstract
Studies to understand the Bacillus thuringiensis (Bt) resistance mechanism in European corn borer (ECB, Ostrinia nubilalis) suggest that resistance may be due to changes in the midgut-specific Bt toxin receptor. In this study, we identified 10 aminopeptidase-like genes, which have previously been identified as putative Bt toxin receptors in other insects and examined their expression in relation to Cry1Ab toxicity and resistance. Expression analysis for the 10 aminopeptidase-like genes revealed that most of these genes were expressed predominantly in the larval midgut, but there was no difference in the expression of these genes in Cry1Ab resistant and susceptible strains. This suggested that altered expression of these genes was unlikely to be responsible for resistance in these ECB strains. However, we found that there were changes in two amino acid residues of the aminopeptidase-P like gene (OnAPP) involving Glu305 to Lys305 and Arg307 to Leu307 in the two Cry1Ab-resistant strains as compared with three Cry1Ab-susceptible strains. The mature OnAPP contains 682 amino acid residues and has a putative signal peptide at the N-terminus, a predicted glycosylphosphatidyl-inositol (GPI)-anchor signal at the C-terminal, three predicted N-glycosylation sites at residues N178, N278 and N417, and an O-glycosylation site at residue T653. We used a feeding based-RNA interference assay to examine the role of the OnAPP gene in Cry1Ab toxicity and resistance. Bioassays of Cry1Ab in larvae fed diet containing OnAPP dsRNA resulted in a 38% reduction in the transcript level of OnAPP and a 25% reduction in the susceptibility to Cry1Ab as compared with larvae fed GFP dsRNA or water. These results strongly suggest that the OnAPP gene could be involved in binding the Cry1Ab toxin in the ECB larval midgut and that mutations in this gene may be associated with Bt resistance in these two ECB strains.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Lawrent L. Buschman
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Kansas State University, Manhattan, Kansas, United States of America
| | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Cotton bollworm resistance to Bt transgenic cotton: A case analysis. SCIENCE CHINA-LIFE SCIENCES 2010; 53:934-41. [DOI: 10.1007/s11427-010-4045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/06/2010] [Indexed: 10/19/2022]
|
44
|
Sayed A, Wiechman B, Struewing I, Smith M, French W, Nielsen C, Bagley M. Isolation of transcripts from Diabrotica virgifera virgifera LeConte responsive to the Bacillus thuringiensis toxin Cry3Bb1. INSECT MOLECULAR BIOLOGY 2010; 19:381-389. [PMID: 20337747 DOI: 10.1111/j.1365-2583.2010.00998.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used as a method of insect pest management for several decades. In recent years, a transgenic corn expressing the Cry3Bb1 toxin has been successfully used for protection against corn rootworm larvae (genus Diabrotica). The biological action of the Bt toxin in corn rootworms has not yet been clearly defined. Because development of resistance to Bt by corn rootworms will have huge economic and ecological costs, insight into larval response to Bt toxin is highly desirable. We identified 19 unique transcripts that are differentially expressed in D. virgifera virgifera larvae reared on corn transgenic for Cry3Bb1. Putative identities of these genes were consistent with impacts on metabolism and development. Analysis of highly modulated transcripts resulted in the characterization of genes coding for a member of a cysteine-rich secretory protein family and a glutamine-rich membrane protein. A third gene that was isolated encodes a nondescript 132 amino acid protein while a fourth highly modulated transcript could not be further characterized. Expression patterns of these four genes were strikingly different between susceptible and resistant western corn rootworm populations. These genes may provide useful targets for monitoring of Bt exposure patterns and resistance development in pest and non-target insect populations.
Collapse
Affiliation(s)
- A Sayed
- Dynamac Corporation c/o US Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Scott IM, Thaler JS, Scott JG. Response of a Generalist Herbivore Trichoplusia ni to Jasmonate-Mediated Induced Defense in Tomato. J Chem Ecol 2010; 36:490-9. [DOI: 10.1007/s10886-010-9780-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/16/2010] [Accepted: 03/16/2010] [Indexed: 11/29/2022]
|
46
|
Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS One 2009; 4:e8098. [PMID: 19956592 PMCID: PMC2780328 DOI: 10.1371/journal.pone.0008098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022] Open
Abstract
Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb) which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori). Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt), Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs), including of Attacin, Lebocin, Enbocin, Gloverin and Moricin families, were upregulated at 24 hours post the infection.
Collapse
Affiliation(s)
- Lulin Huang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Economic Crops Breeding and Cultivation, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Tingcai Cheng
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
| | - Pingzhen Xu
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Daojun Cheng
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ting Fang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
- * E-mail:
| |
Collapse
|
47
|
Schmidt NR, Haywood JM, Bonning BC. Toward the physiological basis for increased Agrotis ipsilon multiple nucleopolyhedrovirus infection following feeding of Agrotis ipsilon larvae on transgenic corn expressing Cry1Fa2. J Invertebr Pathol 2009; 102:141-8. [DOI: 10.1016/j.jip.2009.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
|
48
|
Pereira EJG, Siqueira HAA, Zhuang M, Storer NP, Siegfried BD. Measurements of Cry1F binding and activity of luminal gut proteases in susceptible and Cry1F resistant Ostrinia nubilalis larvae (Lepidoptera: Crambidae). J Invertebr Pathol 2009; 103:1-7. [PMID: 19766122 DOI: 10.1016/j.jip.2009.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/24/2009] [Accepted: 08/03/2009] [Indexed: 11/17/2022]
Abstract
The biochemical mechanism of resistance to the Bacillus thuringiensis Cry1F toxin was studied in a laboratory-selected strain of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) showing more than 3000-fold resistance to Cry1F and limited cross resistance to other Cry toxins. Analyses of Cry1F binding to brush border membrane vesicles of midgut epithelia from susceptible and resistant larvae using ligand immunoblotting and Surface Plasmon Resonance (SPR) suggested that reduced binding of Cry1F to insect receptors was not associated with resistance. Additionally, no differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Considering these results along with previous evidence of relatively narrow spectrum of cross resistance and monogenic inheritance, the resistance mechanism in this Cry1F selected strain of O. nubilalis appears to be specific and may be distinct from previously identified resistance mechanisms reported in other Lepidoptera.
Collapse
Affiliation(s)
- Eliseu J G Pereira
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
49
|
Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis): exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance. BMC Genomics 2009; 10:286. [PMID: 19558725 PMCID: PMC2717985 DOI: 10.1186/1471-2164-10-286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/29/2009] [Indexed: 11/23/2022] Open
Abstract
Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST) libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt) toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis), one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4%) appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3)with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2 chymotrypsin-like protease genes, and 1 aminopeptidase genes in the resistant strain as compared with the susceptible strain. In contrast, the expression of 3 trypsin- like and 3 chymotrypsin-like protease genes, 2 aminopeptidase genes, and 2 alkaline phosphatase genes were increased in the resistant strain. Such differential expressions of the candidate genes may suggest their involvement in Cry1Ab resistance. Indeed, certain trypsin-like and chymotrypsin-like proteases have previously been found to activate or degrade Bt protoxins and toxins, whereas several aminopeptidases, cadherin-like proteins and alkaline phosphatases have been demonstrated to serve as Bt receptor proteins in other insect species. Conclusion We developed a relatively large EST database consisting of 12,519 high-quality sequences from a total of 15,000 cDNAs from the larval gut of ECB. To our knowledge, this database represents the largest gut-specific EST database from a lepidopteran pest. Our work provides a foundation for future research to develop an ECB gut-specific DNA microarray which can be used to analyze the global changes of gene expression in response to Bt protoxins/toxins and the genetic difference(s) between Bt- resistant and susceptible strains. Furthermore, we identified 52 candidate genes that may potentially be involved in Bt toxicity and resistance. Differential expressions of 15 out of the 41 selected candidate genes examined by RT-PCR, including 5 genes with apparently decreased expression and 10 with increased expression in Cry1Ab-resistant strain, may help us conclusively identify the candidate genes involved in Bt resistance and provide us with new insights into the mechanism of Cry1Ab resistance in ECB.
Collapse
|
50
|
Hernández-Martínez P, Ferré J, Escriche B. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. PEST MANAGEMENT SCIENCE 2009; 65:645-650. [PMID: 19253909 DOI: 10.1002/ps.1725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Spodoptera exigua (Hübner) has developed resistance to a wide range of chemical insecticides. Products based on Bacillus thuringiensis Cry toxins are used in integrated pest management as an ecologically friendly alternative for pest control. Since there are few B. thuringiensis Cry proteins highly active against S. exigua, it is desirable to apply appropriate resistance management strategies to prevent the evolution of resistance to these proteins. RESULTS Spodoptera exigua larvae were selected with Cry1Ab, a protein with low activity against this pest. Selected larvae developed > 30-fold resistance to Cry1Ab in 13 generations, relative to an unselected strain. The estimated realised heritability (h(2)) for the first five generations of selection was 0.15. Cross-resistance was also observed to the more active proteins Cry1Ca, Cry1Da and Cry1Fa (>20, 26 and > 8 respectively). The activity of midgut proteases to degrade the ingested toxin was tested, although no differences in activity were found between selected and unselected larvae. CONCLUSION Spodoptera exigua is able to evolve cross-resistance to highly active Cry proteins when exposed to a protein with marginal toxicity to this species. It is important to take this into account in areas where S. exigua is a secondary pest and B. thuringiensis Cry1A toxins are used to control other pests.
Collapse
|