1
|
Biswas T, Sims C, Yuvaraj JK, Roberts RE, Löfstedt C, Andersson MN. Functional Characterization Supports Multiple Evolutionary Origins of Pheromone Receptors in Bark Beetles. Mol Biol Evol 2024; 41:msae196. [PMID: 39288326 PMCID: PMC11451568 DOI: 10.1093/molbev/msae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Chemical communication using pheromones is thought to have contributed to the diversification and speciation of insects. The species-specific pheromones are detected by specialized pheromone receptors (PRs). Whereas the evolution and function of PRs have been extensively studied in Lepidoptera, only a few PRs have been identified in beetles, which limits our understanding of their evolutionary histories and physiological functions. To shed light on these questions, we aimed to functionally characterize potential PRs in the spruce bark beetle Ips typographus ("Ityp") and explore their evolutionary origins and molecular interactions with ligands. Males of this species release an aggregation pheromone comprising 2-methyl-3-buten-2-ol and (4S)-cis-verbenol, which attracts both sexes to attacked trees. Using two systems for functional characterization, we show that the highly expressed odorant receptor (OR) ItypOR41 responds specifically to (4S)-cis-verbenol, with structurally similar compounds eliciting minor responses. We next targeted the closely related ItypOR40 and ItypOR45. Whereas ItypOR40 was unresponsive, ItypOR45 showed an overlapping response profile with ItypOR41, but a broader tuning. Our phylogenetic analysis shows that these ORs are present in a different OR clade as compared to all other known beetle PRs, suggesting multiple evolutionary origins of PRs in bark beetles. Next, using computational analyses and experimental validation, we reveal two amino acid residues (Gln179 and Trp310) that are important for ligand binding and pheromone specificity of ItypOR41 for (4S)-cis-verbenol, possibly via hydrogen bonding to Gln179. Collectively, our results shed new light on the origins, specificity, and ligand binding mechanisms of PRs in beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Cassie Sims
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | | | | | - Christer Löfstedt
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| | - Martin N Andersson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
- Department of Biology, Max Planck Center Next Generation Insect Chemical Ecology (nGICE), Lund University, Lund, Sweden
| |
Collapse
|
2
|
Xie J, Liu J, Khashaveh A, Tang H, Liu X, Zhao D, Wang Q, Shi W, Liu T, Zhang Y. Two Structural Analogs of Kairomones are Detected by an Odorant Receptor HvarOR28 in the Coccinellid Hippodamia variegata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21624-21634. [PMID: 39300682 DOI: 10.1021/acs.jafc.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In natural environments, general plant volatiles and herbivore-induced plant volatiles (HIPVs) serve as critical clues for predatory natural enemies in the search for prey. The insect olfactory system plays a vital role in perceiving plant volatiles including HIPVs. In this study, we found that HIPV (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) and the plant volatile geranyl acetate (GA), two structurally similar chemicals, displayed electrophysiological activities on the antennae of the ladybird Hippodamia variegata, but were only attractive to adult females in behavior. Moreover, mated female ladybirds laid a significantly higher number of eggs on TMTT-treated and GA-treated cotton leaves compared to controls. Screening of female-biased odorant receptors (ORs) from the antennal transcriptomes, performing Xenopus oocytes expression coupled with two-electrode voltage clamp recordings, suggested that HvarOR28 specifically tuned to TMTT and GA. Molecular docking and site-directed mutagenesis revealed that the amino acid residues Tyr143 and Phe81 of HvarOR28 are the key site for binding with TMTT and GA. Furthermore, RNA interference (RNAi) assay demonstrated that HvarOR28-silenced individuals demonstrated a notable decrease in electrophysiological responses, even female adults almost lost behavioral preference for the two compounds. Thus, it could be concluded that HvarOR28 in H. variegata contributes to facilitating egg laying through the perception of TMTT and GA. These findings may help to develop new olfactory modulators based on the behaviorally active ligands of HvarOR28.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingtao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Sichuan University of Arts and Science, Dazhou 635000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingnan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Johny J, Große-Wilde E, Kalinová B, Roy A. Antennal Transcriptome Screening and Identification of Chemosensory Proteins in the Double-Spine European Spruce Bark Beetle, Ips duplicatus (Coleoptera: Scolytinae). Int J Mol Sci 2024; 25:9513. [PMID: 39273461 PMCID: PMC11395090 DOI: 10.3390/ijms25179513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects.
Collapse
Affiliation(s)
- Jibin Johny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Ewald Große-Wilde
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| |
Collapse
|
4
|
Yang ZX, Wang PF, Shen D, Yin NN, Zhao YJ, Liu NY. Candidate membrane protein gene families related to chemoreception in a wood-boring beetle, Pharsalia antennata Gahan (Coleoptera: Cerambycidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101239. [PMID: 38723431 DOI: 10.1016/j.cbd.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
The longhorned beetles are key players for the maintenance of biodiversity in the terrestrial ecosystem. As xylophagous cerambycid insects in Coleoptera, the beetles have evolved specialized olfactory and gustatory systems to recognize chemical cues in the surrounding habitats. Despite over 36,000 described species in the Cerambycidae family including a wood-boring pest Pharsalia antennata, only a limited number of them (<1 %) have been characterized regarding their chemical ecology at the molecular level. Here, we surveyed four membrane protein gene families in P. antennata related to chemoreception through transcriptomics, phylogenetics and expression profiling analyses. In total, 144 genes encoding 72 odorant receptors (ORs), 33 gustatory receptors (GRs), 23 ionotropic receptors (IRs), four sensory neuron membrane proteins (SNMPs) and 12 ionotropic glutamate receptors (iGluRs) were harvested from the transcriptome of multiple tissues including antennae and legs of both sexes. The lineage-specific expansion of PantORs possibly implied a diverse range of host plants in this beetle, supporting this correlation between the host range and olfactory receptor repertoire sizes across cerambycid species. Further phylogenetic analysis revealed that Group 2 was contributed mainly to the large OR gene repertoire in P. antennata, representing 18 genes in Group 2A and eight in Group 2B. On the other hand, some key chemosensory genes were identified by applying a phylogenetics approach, such as PantOR21 close to the 2-phenylethanol receptor in Megacyllene caryae, three carbon dioxide GRs and seven Antennal IRs (A-IRs) clades. We also determined sex- and tissue-specific expression profiles of 69 chemosensory genes, revealing the high expression of most PantORs in antennae. Noticeably, 10 sex-biased genes (six PantORs, three PantIRs and PantSNMP1a) were presented in antennae, five sex-biased PantGRs in legs and 39 sex-biased genes (15 PantORs, 13 PantGRs, eight PantIRs and three PantSNMPs) in abdomens. These findings have greatly enhanced our knowledge about the chemical ecology of P. antennata and identify candidate molecular targets for mediating smell and taste of this beetle.
Collapse
Affiliation(s)
- Zi-Xuan Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Peng-Fei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Dan Shen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
5
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
6
|
Xu Z, Chen P, Yan R, Chen G, Qian J, Zhu G, Chen M, Guo Y. Antenna-Biased Odorant Receptor PstrOR17 Mediates Attraction of Phyllotreta striolata to (S)-Cis-Verbenol and (-)-Verbenone. Int J Mol Sci 2024; 25:4362. [PMID: 38673947 PMCID: PMC11049977 DOI: 10.3390/ijms25084362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.
Collapse
Affiliation(s)
- Zhanyi Xu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Peitong Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Ru Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Guoxing Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Jiali Qian
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Guonian Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| | - Mengli Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yirong Guo
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; (Z.X.); (P.C.); (J.Q.); (G.Z.)
| |
Collapse
|
7
|
Lizana P, Mutis A, Palma-Millanao R, González-González A, Ceballos R, Quiroz A, Bardehle L, Hidalgo A, Torres F, Romero-López A, Venthur H. Comparative transcriptomic analysis of chemoreceptors in two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101174. [PMID: 38096641 DOI: 10.1016/j.cbd.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/15/2024]
Abstract
Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
| | - Angélica González-González
- Laboratorio de Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Centro Tecnológico de Control Biológico, Instituto de Investigaciones Agropecuarias (INIA)-Quilamapu, Chillán, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Leonardo Bardehle
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Torres
- Carrera de Química y Farmacia, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Angel Romero-López
- Laboratorio de Infoquímicos y Otros Productos Bióticos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
8
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
9
|
Hong B, Zhai Y, Yang Y, Chang Q, Li G, Zhang F. Identification and sex-specific expression of chemosensory genes in the antennal transcriptomes of Pachyrhinus yasumatsui (Coleoptera: Curculionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7135657. [PMID: 37083941 PMCID: PMC10120841 DOI: 10.1093/jisesa/iead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Pachyrhinus yasumatsui Kono et Morimoto is a major pest of Chinese jujube, which is widespread in northern China and causes severe economic losses in the jujube industry. Chemosensory genes play crucial roles in insect behaviors. Currently, little is known about chemosensory genes in P. yasumatsui. In the present study, antennal transcriptomes of female and male adult P. yasumatsui were annotated. In total, 113 genes involved in chemosensory functions were identified, including 41 odorant receptors, 28 odorant-binding proteins, 16 ionotropic receptors, 15 chemosensory proteins, 9 gustatory receptors, and 4 sensory neuron membrane proteins. Subsequently, the phylogenetic analyses of these olfactory-related proteins in P. yasumatsui were conducted using multiple sequence alignment. Furthermore, sex-specific expression levels of 113 genes were analyzed based on fragments per kilobase of transcript per million mapped reads (FPKM). Then, the quantitative real-time PCR (RT-qPCR) was used to quantify gene expression profiles of 28 P. yasumatsui OBPs (PyasOBPs) and 15 CSPs (PyasCSPs). The results revealed that 20 PyasOBPs and 13 PyasCSPs exhibited significantly higher expression in the antennae than in the bodies, suggesting that they might have functions in olfaction. Moreover, some OBPs and CSPs (PyasOBP6, PyasOBP7, PyasOBP16, PyasOBP21, and PyasCSP4) exhibited female-biased expression, indicating that they might take part in several female-specific behaviors. This study will promote the understanding of olfactory mechanism in P. yasumatsui, and our findings lay the groundwork for developing environmentally friendly pest management measures.
Collapse
Affiliation(s)
- Bo Hong
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Yingyan Zhai
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Qing Chang
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Guangwei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China
| | | |
Collapse
|
10
|
Genome-Wide Identification of the Odorant Receptor Gene Family and Revealing Key Genes Involved in Sexual Communication in Anoplophora glabripennis. Int J Mol Sci 2023; 24:ijms24021625. [PMID: 36675132 PMCID: PMC9861320 DOI: 10.3390/ijms24021625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Insects use a powerful and complex olfactory recognition system to sense odor molecules in the external environment to guide behavior. A large family of odorant receptors (ORs) mediates the detection of pheromone compounds. Anoplophora glabripennis is a destructive pest that harms broad-leaved tree species. Although olfactory sensation is an important factor affecting the information exchange of A. glabripennis, little is known about the key ORs involved. Here, we identified ninety-eight AglaORs in the Agla2.0 genome and found that the AglaOR gene family had expanded with structural and functional diversity. RT-qPCR was used to analyze the expression of AglaORs in sex tissues and in adults at different developmental stages. Twenty-three AglaORs with antennal-biased expression were identified. Among these, eleven were male-biased and two were female-biased and were more significantly expressed in the sexual maturation stage than in the post-mating stage, suggesting that these genes play a role in sexual communication. Relatively, two female-biased AglaORs were overexpressed in females seeking spawning grounds after mating, indicating that these genes might be involved in the recognition of host plant volatiles that may regulate the selection of spawning grounds. Our study provides a theoretical basis for further studies into the molecular mechanism of A. glabripennis olfaction.
Collapse
|
11
|
Chen HH, Dewer Y, Wang Y, Tan SQ, Liu XL, Shi WP. Interference with orco gene expression affects host recognition in Diorhabda tarsalis. Front Physiol 2022; 13:1069391. [PMID: 36605899 PMCID: PMC9808408 DOI: 10.3389/fphys.2022.1069391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Diorhabda tarsalis Weise is an important insect pest of the Chinese licorice Glycyrrhiza uralensis Fisch. Behavior of the beetle, including host location, oviposition site selection, self-defense, and aggregation, were regulated by plant volatiles or insect pheromones. Aim: In this study, Identification of ORs and function research on orco were carried out, these could lead to the development of understand for olfaction mechanism in D. tarsalis. Methods: ORs were identified by PacBio RS II platform to sequence the antennas of adult D. tarsalis, the function of orco was explored by dsRNA interference. Results: 29 odorant receptor candidate genes of D. tarsalis were obtained, which code for 130-479 amino acids. Phylogenetic trees of olfactory receptors were constructed with 243 ORs from eight Coleoptera species. DtarORco, DtarOR7 and DtarOR26 are specifically expressed in the antenna, and the expression levels were significantly higher than other DtarORs in antenna, there were no differential expression between male and female beetles. An odorant coreceptor gene (DtarORco) has characteristics of an odorant receptor family member, the encoded mature protein has a predicted molecular weight of 53.898 kDa, dsRNA L4440 expression vectors were constructed and successfully transformed into ribonuclease III-deficient Escherichia coli strain HT115 DE3. After interference treatment, the relative expression level of DtarORco in D. tarsalis antennae significantly decreased and electrophysiological responses to host localization odor signals significantly decreased. At the same time, beetles lost the ability to locate hosts. Discussion: The research on its mechanism of olfaction may lead to the development of new control measures that are environmentally friendly.
Collapse
Affiliation(s)
- Hong-Hao Chen
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management Chinese Medicinal Herbs Research Center and College of Plant Protection, China Agricultural University, Beijing, China,Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Egypt
| | - Yan Wang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shu-Qian Tan
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management Chinese Medicinal Herbs Research Center and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao-Li Liu
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wang-Peng Shi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management Chinese Medicinal Herbs Research Center and College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Wang-Peng Shi,
| |
Collapse
|
12
|
Mitchell RF, Doucet D, Bowman S, Bouwer MC, Allison JD. Prediction of a conserved pheromone receptor lineage from antennal transcriptomes of the pine sawyer genus Monochamus (Coleoptera: Cerambycidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:615-625. [PMID: 36242627 DOI: 10.1007/s00359-022-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022]
Abstract
Longhorned beetles (Cerambycidae) are a diverse family of wood-boring insects, many species of which produce volatile pheromones to attract mates over long distances. The composition and structure of the pheromones remain constant across many cerambycid species, and comparative studies of those groups could, therefore, reveal the chemoreceptors responsible for pheromone detection. Here, we use comparative transcriptomics to identify a candidate pheromone receptor in the large and economically important cerambycid genus Monochamus, males of which produce the aggregation-sex pheromone 2-(undecyloxy)-ethanol ("monochamol"). Antennal transcriptomes of the North American species M. maculosus, M. notatus, and M. scutellatus revealed 60-70 odorant receptors (ORs) in each species, including four lineages of simple orthologs that were highly conserved, highly expressed in both sexes, and upregulated in the flagellomeres where olfactory sensilla are localized. Two of these orthologous lineages, OR29 and OR59, remained highly expressed and conserved when we included a re-annotation of an antennal transcriptome of the Eurasian congener M. alternatus. OR29 is also orthologous to a characterized pheromone receptor in the cerambycid Megacyllene caryae, suggesting it as the most likely candidate for a monochamol receptor and highlighting its potential as a conserved lineage of pheromone receptors within one of the largest families of beetles.
Collapse
Affiliation(s)
- Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA.
| | - Daniel Doucet
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Susan Bowman
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Marc C Bouwer
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, P6A2E5, Canada
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Roberts RE, Biswas T, Yuvaraj JK, Grosse‐Wilde E, Powell D, Hansson BS, Löfstedt C, Andersson MN. Odorant receptor orthologues in conifer-feeding beetles display conserved responses to ecologically relevant odours. Mol Ecol 2022; 31:3693-3707. [PMID: 35532927 PMCID: PMC9321952 DOI: 10.1111/mec.16494] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Insects are able to detect a plethora of olfactory cues using a divergent family of odorant receptors (ORs). Despite the divergent nature of this family, related species frequently express several evolutionarily conserved OR orthologues. In the largest order of insects, Coleoptera, it remains unknown whether OR orthologues have conserved or divergent functions in different species. Using HEK293 cells, we addressed this question through functional characterization of two groups of OR orthologues in three species of the Curculionidae (weevil) family, the conifer-feeding bark beetles Ips typographus L. ("Ityp") and Dendroctonus ponderosae Hopkins ("Dpon") (Scolytinae), and the pine weevil Hylobius abietis L. ("Habi"; Molytinae). The ORs of H. abietis were annotated from antennal transcriptomes. The results show highly conserved response specificities, with one group of orthologues (HabiOR3/DponOR8/ItypOR6) responding exclusively to 2-phenylethanol (2-PE), and the other group (HabiOR4/DponOR9/ItypOR5) responding to angiosperm green leaf volatiles (GLVs). Both groups of orthologues belong to the coleopteran OR subfamily 2B, and share a common ancestor with OR5 in the cerambycid Megacyllene caryae, also tuned to 2-PE, suggesting a shared evolutionary history of 2-PE receptors across two beetle superfamilies. The detected compounds are ecologically relevant for conifer-feeding curculionids, and are probably linked to fitness, with GLVs being used to avoid angiosperm nonhost plants, and 2-PE being important for intraspecific communication and/or playing a putative role in beetle-microbe symbioses. To our knowledge, this study is the first to reveal evolutionary conservation of OR functions across several beetle species and hence sheds new light on the functional evolution of insect ORs.
Collapse
Affiliation(s)
| | | | | | - Ewald Grosse‐Wilde
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| | - Daniel Powell
- Department of BiologyLund UniversityLundSweden
- Present address:
Global Change Ecology Research GroupSchool of Science, Technology and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | | | | |
Collapse
|
14
|
Li X, Li JW, Sun WX, Li W, Gao HY, Liu TX, Qu MJ. Candidate Chemosensory Genes Identified in the Adult Antennae of Sympiezomias velatus and Binding Property of Odorant-Binding Protein 15. Front Physiol 2022; 13:907667. [PMID: 35711318 PMCID: PMC9193972 DOI: 10.3389/fphys.2022.907667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory genes play important roles in insect behaviors and have thus become potential molecular targets for pest control based on the manipulation of chemoreception-driven behaviors. The great gray weevil Sympiezomias velatus (Chevrolat) (Coleoptera: Curculionidae) is an important agricultural pest that causes serious economic losses to many crops in China, but its chemosensory genes have not been reported. Here we assembled the antennal transcriptomes of female and male adult S. velatus and revealed the major chemosensory genes necessary for olfaction. A total of 138 candidate chemosensory genes in six families were identified, including 41 encoding odorant-binding proteins (OBPs), 11 encoding chemosensory proteins (CSPs), 62 encoding odorant receptors (ORs), 15 encoding gustatory receptors (GRs), six encoding ionotropic receptors (IRs), and three encoding sensory neuron membrane proteins (SNMPs). We analyzed their phylogenetic relationship based on the amino acid sequences of these chemosensory-related protein families in S. velatus and other insects, and the expression profiles based on their antennal transcriptomes. Chemosensory genes that show antenna-abundant/specific or sex-biased expression were observed, suggesting that these genes might have functions in olfaction. Furthermore, we chose an antenna-abundant OBP belonging to ABPX subfamily, SvelOBP15, to investigate its binding property. The results showed that among 33 tested compounds, SvelOBP15 displayed high binding affinities (Ki = 7.36-12.94 μmol/L) with farnesol, nerolidol, limonene and diisobutyl phthalate, indicating that SvelOBP15 plays olfactory roles by binding and transporting specific plant volatiles. These findings will help us better understand the olfactory systems of S. velatus, and provide a basis for functional elucidation of these chemosensory genes.
Collapse
Affiliation(s)
- Xiao Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Jian-Wen Li
- College of Life Sciences, Yangtze University, Jingzhou, China.,Weinan Product Quality Supervision and Inspection Institute, Weinan, China
| | - Wen-Xiu Sun
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Hua-Yuan Gao
- Peanut Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tong-Xian Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming-Jing Qu
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
15
|
Wu G, Su R, Ouyang H, Zheng X, Lu W, Wang X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). INSECTS 2022; 13:insects13060553. [PMID: 35735890 PMCID: PMC9224838 DOI: 10.3390/insects13060553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary In this study, we conducted antennal transcriptome analysis in Glenea cantor (Cerambycidae: Lamiinae) and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. Abstract Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level.
Collapse
|
16
|
Ma X, Lu X, Zhang P, Deng X, Bai J, Xu Z, Diao J, Pang H, Wang Q, Zhao H, Ma W, Ma L. Transcriptome Analysis of Antennal Chemosensory Genes in Curculio Dieckmanni Faust. (Coleoptera: Curculionidae). Front Physiol 2022; 13:896793. [PMID: 35615683 PMCID: PMC9124802 DOI: 10.3389/fphys.2022.896793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The olfactory system plays a key role in regulating insect behaviors, such as locating host plants, spawning sites, and mating partners and avoiding predators. Chemosensory genes are required for olfactory recognition in insects. Curculio dieckmanni Faust. (Coleoptera: Curculionidae) damages hazelnuts and causes severe economic losses. There are no effective control measures, but understanding the olfaction mechanisms of this insect could lead to a new approach for population management. However, the genes that perform chemosensory functions in C. dieckmanni are still unclear. Using high-throughput sequencing, we assembled the antennal transcriptome of C. dieckmanni and annotated the major chemosensory gene families. Of the chemosensory gene families, we found 23 odorant-binding proteins, 15 chemosensory proteins, 2 sensory neuron membrane proteins, 15 odorant receptors, 23 ionotropic receptors, and nine gustatory receptors. Using Blast sequence alignment and phylogenetic analysis, the sequences of these proteins were identified. Male- and female-specific chemosensory genes involved in odorant detection and recognition were validated by qRT-PCR. Among the chemosensory genes, we found significant differences in the expression of CdieOBP8, CdieOBP9, CdieOBP19, CdieOBP20, CdieOBP21, CdieCSP15, CdieOR13, and CdieOR15 between adult male and female C. dieckmanni. A total of 87 expressed chemosensory proteins were found in C. dieckmanni. Investigating these proteins will help reveal the molecular mechanism of odorant recognition in C. dieckmanni and may aid the development of novel control strategies for this species.
Collapse
Affiliation(s)
- Xiaoqian Ma
- College of Forestry, Northeast Forestry University, Harbin, China
- Forest Protection Research Institute, HeiLongJiang Academy of Forestry, Harbin, China
| | - Xinming Lu
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Ping Zhang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xun Deng
- Forest Protection Research Institute, HeiLongJiang Academy of Forestry, Harbin, China
| | - Jianyang Bai
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhe Xu
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jian Diao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Hongyang Pang
- Mudanjiang Branch, HeiLongJiang Academy of Forestry, Mudanjiang, China
| | - Qi Wang
- Forest Protection Research Institute, HeiLongJiang Academy of Forestry, Harbin, China
| | - Hongying Zhao
- Forest Protection Research Institute, HeiLongJiang Academy of Forestry, Harbin, China
| | - Wei Ma
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Wei Ma, ; Ling Ma,
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin, China
- *Correspondence: Wei Ma, ; Ling Ma,
| |
Collapse
|
17
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|
18
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
19
|
Identification of Olfactory Genes in Monochamus saltuarius and Effects of Bursaphelenchus xylophilus Infestation on Their Expression. FORESTS 2022. [DOI: 10.3390/f13020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused disastrous losses of pine forests in many countries, and the success of PWN depends strongly on interactions with its insect vectors. Monochamus saltuarius is a newly recorded vector in Northeast China. Feeding (i.e., immature) and egg-laying (i.e., mature) Monochamus spp. target different host plants, and olfactory cues play important roles regarding host choice. Whether infestation with PWN affects olfactory mechanisms in M. saltuarius related to feeding and oviposition is of interest as this may affect the spread of nematodes to new healthy hosts. However, little is known about molecular mechanisms of the olfactory system of M. saltuarius. We identified chemosensory-related genes in adult M. saltuarius and examined the influence of B. xylophilus on the respective expression patterns. Fifty-three odorant-binding proteins (OBPs), 15 chemosensory proteins, 15 olfactory receptors (ORs), 10 gustatory receptors, 22 ionotropic receptors (IRs), and two sensory neuron membrane proteins were identified, and sex bias among non-infested beetles was mainly found with respect to expression of OBPs. Interestingly, OBPs and ORs were markedly down-regulated in male M. saltuarius infested with B. xylophilus, which may reduce olfactory sensitivity of male M. saltuarius and affect the spreading of B. xylophilus to new hosts. Our results will help understand the interactions between B. xylophilus and M. saltuarius, which may lead to the identification of new control targets in the olfactory system of M. saltuarius.
Collapse
|
20
|
Xie J, Liu T, Yi C, Liu X, Tang H, Sun Y, Shi W, Khashaveh A, Zhang Y. Antenna-Biased Odorant Receptor HvarOR25 in Hippodamia variegata Tuned to Allelochemicals from Hosts and Habitat Involved in Perceiving Preys. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1090-1100. [PMID: 35072468 DOI: 10.1021/acs.jafc.1c05593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Odorant receptors (ORs) of ladybird Hippodamia variegata play vital chemosensory roles in searching and locating preys. In the current study, 37 ORs were initially identified from the antennal transcriptome of H. variegata. The quantitative polymerase chain reaction demonstrated that several HvarORs including HvarOR25 were specific or enriched in ladybird antennae. In two-electrode voltage clamp recordings, recombinant HvarOR25 was narrowly tuned to six chemical ligands including aphid-induced, aphid-derived, and plant-derived volatiles. In electroantennogram assays, all six volatiles elicited electrophysiological responses. Among the six volatiles, cis-3-hexenyl acetate, hexyl butyrate, hexyl hexanoate, and 3-methyl-3-buten-1-ol were attractive for both sexes of H. variegata. Additionally, molecular docking indicated that HvarOR25 was bound to all ligands with high binding affinities. Taken together, HvarOR25 facilitates perception of preys by recognizing relevant allelochemicals from hosts and habitat. Our findings provide valuable insights into understanding biological functions of HvarORs and help to develop a novel biocontrol strategy based on olfactory-active compounds.
Collapse
Affiliation(s)
- Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
22
|
Liu X, Tong N, Wu Z, Li Y, Ma M, Liu P, Lu M. Identification of Chemosensory Genes Based on the Antennal Transcriptomic Analysis of Plagiodera versicolora. INSECTS 2021; 13:insects13010036. [PMID: 35055879 PMCID: PMC8781154 DOI: 10.3390/insects13010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Insects can sense surrounding chemical signals by their accurate chemosensory systems. This system plays a vital role in the life history of insects. Several gene families participate in chemosensory processes, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), chemosensory proteins (CSPs), odorant binding proteins (OBPs), and sensory neuron membrane proteins (SNMPs). Plagiodera versicolora (Coleoptera: Chrysomelidae), is a leaf-eating forest pest found in salicaceous trees worldwide. In this study, a transcriptome analysis of male and female adult antennae in P. versicolora individuals was conducted, which identified a total of 98 candidate chemosensory genes including 40 ORs, 7 IRs, 13 GRs, 10 CSPs, 24 OBPs, and 4 SNMPs. Subsequently, the tissue expression profiles of 15 P. versicolora OBPs (PverOBPs) and 39 ORs (PverORs) were conducted by quantitative real-time PCR. The data showed that almost all PverOBPs and PverORs were highly expressed in the male and female antennae. In addition, several OBPs and ORs (PverOBP10, PverOBP12, PverOBP18, PverOR24, and PverOR35) had higher expression levels in female antennae than those in the male antennae, indicating that these genes may be taking part in some female-specific behaviors, such as find mates, oviposition site, etc. This study deeply promotes further understanding of the chemosensory system and functional studies of the chemoreception genes in P. versicolora.
Collapse
|
23
|
Hickey BL, Chen J, Zou Y, Gill AD, Zhong W, Millar JG, Hooley RJ. Enantioselective sensing of insect pheromones in water. Chem Commun (Camb) 2021; 57:13341-13344. [PMID: 34817473 DOI: 10.1039/d1cc05540b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An arrayed combination of water-soluble deep cavitands and cationic dyes has been shown to optically sense insect pheromones at micromolar concentration in water. Machine learning approaches were used to optimize the most effective array components, which allows differentiation between small structural differences in targets, including between different diastereomers, even though the pheromones have no innate chromophore. When combined with chiral additives, enantiodiscrimination is possible, dependent on the size and shape of the pheromone.
Collapse
Affiliation(s)
- Briana L Hickey
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA.
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Yunfan Zou
- Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | - Adam D Gill
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jocelyn G Millar
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA. .,Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
25
|
Hou XQ, Yuvaraj JK, Roberts RE, Zhang DD, Unelius CR, Löfstedt C, Andersson MN. Functional Evolution of a Bark Beetle Odorant Receptor Clade Detecting Monoterpenoids of Different Ecological Origins. Mol Biol Evol 2021; 38:4934-4947. [PMID: 34293158 PMCID: PMC8557457 DOI: 10.1093/molbev/msab218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How and which new functions may evolve among related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which physiological and behavioral responses to pheromones, volatiles from host and nonhost trees, and fungal symbionts are well described. In contrast, knowledge of OR function is restricted to two receptors detecting the pheromone compounds (S)-(-)-ipsenol (ItypOR46) and (R)-(-)-ipsdienol (ItypOR49). These receptors belong to an Ips-specific OR-lineage comprising seven ItypORs. To gain insight into the functional evolution of related ORs, we characterized the five remaining ORs in this clade using Xenopus oocytes. Two receptors responded primarily to the host tree monoterpenes (+)-3-carene (ItypOR25) and p-cymene (ItypOR27). Two receptors responded to oxygenated monoterpenoids produced in larger relative amounts by the beetle-associated fungi, with ItypOR23 specific for (+)-trans-(1R, 4S)-4-thujanol, and ItypOR29 responding to (+)-isopinocamphone and similar ketones. ItypOR28 responded to the pheromone E-myrcenol from the competitor Ips duplicatus. Overall, the OR responses match well with those of previously characterized olfactory sensory neuron classes except that neurons detecting E-myrcenol have not been identified. The characterized ORs are under strong purifying selection and demonstrate a shared functional property in that they all primarily respond to monoterpenoids. The variation in functional groups among OR ligands and their diverse ecological origins suggest that neofunctionalization has occurred early in the evolution of this OR-lineage following gene duplication.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Department of Biology, Lund University, Lund, Sweden
| | | | | | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - C Rikard Unelius
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | | | | |
Collapse
|
26
|
Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021; 12:717698. [PMID: 34671270 PMCID: PMC8521011 DOI: 10.3389/fphys.2021.717698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bingqiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenjie Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abudukyoum Kader
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haoyu Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
27
|
Ji T, Xu Z, Jia Q, Wang G, Hou Y. Non-palm Plant Volatile α-Pinene Is Detected by Antenna-Biased Expressed Odorant Receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Front Physiol 2021; 12:701545. [PMID: 34434116 PMCID: PMC8381602 DOI: 10.3389/fphys.2021.701545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
The majority of insects rely on a highly complex and precise olfactory system to detect various volatile organic compounds released by host and non-host plants in environments. The odorant receptors (ORs) are considered to play an important role in odor recognition and the molecular basis of ORs, particularly in coleopterans they are relatively poorly understood. The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most destructive pests of the global palm industry. Although feeding and egg oviposition behaviors of RPW can be repelled by some non-palm plant volatiles, such as α-pinene, geraniol, or 1-octen-3-ol, there is limited understanding of how RPW recognizes the non-host plant volatiles. In this study, three candidate RferOrs were identified from the Rfer-specific clade, and the tissue expression analysis used was mainly expressed in the antennae of both sexes. Functional characterization of RferOr6, RferOr40, and RferOr87 was analyzed by using the Xenopus oocyte expression system, and the results indicated that RferOr6/RferOrco was narrowly tuned to α-pinene. The behavioral experiment showed that α-pinene at the concentrations of 10 and 100 μg/μl can cause a significantly repelled behavioral response of RPW. In conclusion, this study reveals that RferOr6 is an antenna-biased expressed OR used by RPW to detect the volatile compound α-pinene in non-palm plants, and our results provide a foundation for further in vivo functional studies of Or6 in RPW, including in vivo knockout/knockdown and feeding/ovipositing behavioral studies of RPW and further pest control.
Collapse
Affiliation(s)
- Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchen Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Wu L, Zhai X, Li L, Li Q, Liu F, Zhao H. Identification and Expression Profile of Chemosensory Genes in the Small Hive Beetle Aethina tumida. INSECTS 2021; 12:insects12080661. [PMID: 34442228 PMCID: PMC8396569 DOI: 10.3390/insects12080661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
Aethina tumida is a parasite and predator of honeybee causing severe loss to the bee industry. No effective and environmentally friendly methods are available to control this pest at present. Chemosensory genes play key roles in insect behavior which can potentially be used as targets for developing environmentally friendly pest control agents. In this study, the putative chemosensory genes in antennae and forelegs of A. tumida involved in olfaction or contact chemical communication of adults were investigated using RNA transcriptome sequencing and PCR methods. Based on transcriptomic data, unigenes encoding 38 odorant receptors (ORs), 24 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 3 sensory neuron membrane proteins (SNMPs), 29 odorant binding proteins (OBPs), and 22 chemosensory proteins (CSPs) were identified. The analyses of tissue expression profiles revealed that genes encoding 38 ORs, 13 antennal IRs, 11 GRs, 1 SNMP, 24 OBPs, and 12 CSPs were predominately expressed in antennae. No significant differences in expression levels of these genes were found between males and females. Genes encoding 5 non-NMDA iGluRs, 3 GRs, 2 SNMPs, 5 OBPs, and 12 CSPs were predominately expressed in forelegs. RT-PCR assays for SNMPs, OBPs and CSPs further revealed that 3 OBPs (AtumOBP3, 26 and 28) and 3 CSPs (AtumCSP7, 8 and 21) were highly expressed in antennae. Our results enrich the gene inventory of A. tumida and facilitate the discovery of potential novel targets for developing new pest control measures.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
| | - Xin Zhai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- Correspondence: (F.L.); (H.Z.)
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (L.W.); (X.Z.); (L.L.); (Q.L.)
- Correspondence: (F.L.); (H.Z.)
| |
Collapse
|
29
|
Gonzalez F, Johny J, Walker WB, Guan Q, Mfarrej S, Jakše J, Montagné N, Jacquin-Joly E, Alqarni AS, Al-Saleh MA, Pain A, Antony B. Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum. Sci Rep 2021; 11:8334. [PMID: 33859212 PMCID: PMC8050089 DOI: 10.1038/s41598-021-87348-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Research and Development, ChemTica Internacional S.A., Santo Domingo, Heredia, Costa Rica
| | - Jibin Johny
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - William B Walker
- Department To Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Qingtian Guan
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Sara Mfarrej
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Abdulaziz S Alqarni
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
30
|
Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R, Cali K, Persaud K, Al-Saleh MA, Pain A. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol Ecol 2021; 30:2025-2039. [PMID: 33687767 DOI: 10.1111/mec.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCOs list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is its primary enemy. The RPW is a category-1 quarantine insect pest that causes enormous economic losses in palm tree cultivation worldwide. The RPW synchronizes mass gathering on the palm tree for feeding and mating, regulated by a male-produced pheromone composed of two methyl-branched compounds, (4RS, 5RS)-4-methylnonan-5-ol (ferrugineol) and 4(RS)-methylnonan-5-one (ferrugineone). Despite the importance of odorant detection in long-range orientation towards palm trees, palm colonization, and mating, the pheromone receptor has not been identified in this species. In this study, we report the identification and characterization of the first RPW pheromone receptor, RferOR1. Using gene silencing and functional expression in Drosophila olfactory receptor neurons, we demonstrate that RferOR1 is tuned to ferrugineol and ferrugineone and binds five other structurally related molecules. We reveal the lifetime expression of RferOR1, which correlates with adult mating success irrespective of age, a factor that could explain the wide distribution and spread of this pest. As palm weevils are challenging to control based on conventional methods, elucidation of the mechanisms of pheromone detection opens new routes for mating disruption and the early detection of this pest via the development of pheromone receptor-based biosensors.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Khasim Cali
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Rondoni G, Roman A, Meslin C, Montagné N, Conti E, Jacquin-Joly E. Antennal Transcriptome Analysis and Identification of Candidate Chemosensory Genes of the Harlequin Ladybird Beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). INSECTS 2021; 12:insects12030209. [PMID: 33801288 PMCID: PMC8002065 DOI: 10.3390/insects12030209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The predatory harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) has been widely released for classical and augmentative biological control programs of insect herbivores and is now distributed worldwide. Because of its invasive behavior and the threat it can pose to local biodiversity, this ladybird has been adopted as a model species for invasive biocontrol predators. A huge amount of existing literature is available on this species. However, little is known about the mechanisms underlying H. axyridis smell and taste, even though these senses are important in this ladybird for courtship, mating, and for locating suitable habitats for feeding and oviposition. Here we describe the first chemosensory gene repertoire that is expressed in the antennae of male and female H. axyridis. Our findings would likely represent the basis for future functional studies aiming at increasing the efficacy of H. axyridis in biological control or at reducing its populations in those areas where the ladybird has become a matter of concern due to its invasiveness. Abstract In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins. Maximum-likelihood phylogenetic analyses allowed to assign candidate H. axyridis chemosensory genes to previously described groups in each of these families. Differential expression analysis between males and females revealed low variability between sexes, possibly reflecting the known absence of relevant sexual dimorphism in the structure of the antennae and in the distribution and abundance of the sensilla. However, we revealed significant differences in expression of three chemosensory genes, namely two male-biased odorant-binding proteins and one male-biased odorant receptor, suggesting their possible involvement in pheromone detection. Our data pave the way for improving the understanding of the molecular basis of chemosensory reception in Coccinellidae.
Collapse
Affiliation(s)
- Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
- Correspondence:
| | - Alessandro Roman
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| |
Collapse
|
32
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021; 19:16. [PMID: 33499862 PMCID: PMC7836466 DOI: 10.1186/s12915-020-00946-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
33
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021. [PMID: 33499862 DOI: 10.1101/2020.03.07.980797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
34
|
Lyons-Yerion CD, Barbour JD, Mongold-Diers JA, Williams CJ, Cook SP. Identification of a Male-Produced Volatile Pheromone for Phymatodes dimidiatus (Coleoptera: Cerambycidae) and Seasonal Flight Phenology of Four Phymatodes Species Endemic to the North American Intermountain West. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1077-1087. [PMID: 32885824 DOI: 10.1093/ee/nvaa092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Research over the last 15 yr has shown widespread pheromone parsimony within the coleopteran family Cerambycidae, with a number of highly conserved pheromone motifs, often shared within and across subfamilies, tribes, and genera. Our goals were to increase our understanding of the evolution of volatile pheromones within the Cerambycidae, their role in reproductive isolation and to identify pheromones for use in the development of lures for monitoring cerambycids. Over 3 yr, we tested 12 compounds known to be cerambycid pheromones as possible attractants at sites across Idaho. This study focused on species within the cerambycine genus Phymatodes (Tribe: Callidiini). We also collected and analyzed headspace volatiles of captured Phymatodes dimidiatus (Kirby). Our results demonstrate that (R)-2-methylbutan-1-ol is a male-produced volatile pheromone for P. dimidiatus. These results are consistent with prior research suggesting that (R)-2-methylbutan-1-ol and (R)-3-hydroxyhexan-2-one, individually or in a blend of both compounds, commonly serve as pheromones for Phymatodes spp. We captured Phymatodes starting in mid-May, continuing through mid-August. Our data indicate that flight periods of Phymatodes spp. in Idaho overlap. These species may be utilizing various mechanisms to ensure reproductive isolation, such as the production of different volatile pheromones, minor components, and/or proportions of components, utilizing different host species and/or host volatiles, differing daily activity periods, and/or occupying different heights in the tree canopy. Our results contribute to the basic understanding of the chemical and behavioral ecology of the Cerambycidae and can be applied to the development of pheromone lures for monitoring of economically important or endangered species.
Collapse
Affiliation(s)
- Claudia D Lyons-Yerion
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - James D Barbour
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Southwest Idaho Research & Extension Center, Parma, ID
| | | | | | - Stephen P Cook
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
35
|
Han H, Liu Z, Meng F, Jiang Y, Cai J. Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). PeerJ 2020; 8:e9581. [PMID: 32844056 PMCID: PMC7414772 DOI: 10.7717/peerj.9581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.
Collapse
Affiliation(s)
- Han Han
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuoying Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Departments of Anesthesiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Fanming Meng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yangshuai Jiang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Qian JL, Mang DZ, Lv GC, Ye J, Li ZQ, Chu B, Sun L, Liu YJ, Zhang LW. Identification and Expression Profile of Olfactory Receptor Genes Based on Apriona germari (Hope) Antennal Transcriptome. Front Physiol 2020; 11:807. [PMID: 32792974 PMCID: PMC7387575 DOI: 10.3389/fphys.2020.00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Insects’ olfactory receptor plays a central role in detecting chemosensory information from the environment. Odorant receptors (ORs) and ionotropic receptors (IRs) are two types of olfactory receptors, and they are essential for the recognition of ligands at peripheral neurons. Apriona germari (Hope) (Coleoptera: Cerambycidae) is one of the most serious insect pests that cause damage to economic trees and landscaping trees, resulting in massive environmental damages and economic losses. Olfactory-based management strategy has been suggested as a promising strategy to control this wood-boring beetle. However, the olfactory perception mechanism in A. germari is now almost unknown. In the present study, RNA sequencing analysis was used to determine the transcriptomes of adult A. germari antennae. Among 36,834 unigenes derived from the antennal assembly, we identified 42 AgerORs and three AgerIRs. Based on the tissue expression pattern analysis, 27 AgerORs displayed a female-biased expression. Notably, AgerOR3, 5, 13, 33, and 40 showed a significant female-biased expression and were clustered with the pheromone receptors of Megacyllene caryae in the phylogenetic tree, suggesting that these AgerORs could be potential pheromone receptors for sensing male-produced sex pheromones in A. germari. The AgerIRs expression profile demonstrated that AgerIR2 had high expression levels in male labial palps, suggesting that this receptor may function to detect female-deposited trail-sex pheromone blend of A. germari. In addition, the phylogenetic tree showed that the Orco gene of five cerambycidae species was highly conservative. These results provide a foundation for further studies on the molecular mechanisms of olfactory chemoreception in A. germari apart from suggesting novel targets for the control of this pest in the future.
Collapse
Affiliation(s)
- Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ding-Ze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Guo-Chang Lv
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Zhao-Qun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Bo Chu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yu-Jun Liu
- Anhui Academy of Science and Technology, Hefei, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Adams SA, Tsutsui ND. The evolution of species recognition labels in insects. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190476. [PMID: 32420852 PMCID: PMC7331023 DOI: 10.1098/rstb.2019.0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The evolution of pre-zygotic reproductive isolation is a key step in the process of speciation. In many organisms, particularly insects, chemical labels are used as pheromones for species-specific mate recognition. Although an enormous body of knowledge exists regarding the patterns of pheromone chemical ecology, much less is known about the evolutionary processes that underlie the origin of new mating pheromones. Here, we examine case studies that have illuminated the origins of species-specific mating pheromones and suggest future directions for productive research. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, #3114, Berkeley, CA 94720-3114, USA
| |
Collapse
|
38
|
Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles ( Aethina tumida). Int J Mol Sci 2020; 21:ijms21134582. [PMID: 32605135 PMCID: PMC7370172 DOI: 10.3390/ijms21134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles.
Collapse
|
39
|
Abstract
The technique of two-electrode voltage-clamp (TEVC) recording from the heterologous expression system of olfactory receptors (ORs) in Xenopus laevis oocytes has been widely used to deorphanize insect ORs, that is to identify specific ligands for each of them. However, there is a controversial issue on whether ORs are activated by the odorant/OBP complex or the odorant alone. The mechanism of interaction among odorants, odorant-binding proteins (OBPs) and ORs remains largely unknown, due to the limitations in the use of scientific and innovative methods. In this chapter, the modified Xenopus oocytes expression system combined with TEVC technique is used to approach this issue. We describe the experimental strategies and provide detailed protocols for recording the signals generated by ORs in response to odorant/OBP complex at different concentrations. Results obtained by this approach have revealed that the presence of OBPs in the system affects the selectivity and sensitivity responses of ORs. Such studies help understanding the molecular mechanism of odorant detection in peripheral nervous system.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
40
|
Zhao YJ, Li GC, Zhu JY, Liu NY. Genome-based analysis reveals a novel SNMP group of the Coleoptera and chemosensory receptors in Rhaphuma horsfieldi. Genomics 2020; 112:2713-2728. [PMID: 32145380 DOI: 10.1016/j.ygeno.2020.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
41
|
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera). INSECT MOLECULAR BIOLOGY 2020; 29:77-91. [PMID: 31381201 DOI: 10.1111/imb.12611] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/27/2019] [Accepted: 07/25/2019] [Indexed: 05/10/2023]
Abstract
The insect odorant receptors (ORs) are amongst the largest gene families in insect genomes and the primary means by which insects recognize volatile compounds. The evolution of ORs is thus instrumental in explaining the chemical ecology of insects and as a model of evolutionary biology. However, although ORs have been described from numerous insect species, their analysis within and amongst the insect orders has been hindered by a combination of limited genomic information and a tendency of the OR family toward rapid divergence, gain, and loss. We addressed these issues in the insect order Coleoptera through a targeted genomic annotation effort that included 1181 ORs from one species of the sister order Strepsiptera and 10 species representing the four coleopteran suborders. The numbers of ORs in each species varied from hundreds to fewer than 10, but coleopteran ORs could nevertheless be represented within a scheme of nine monophyletic subfamilies. We observed many radiations and losses of genes amongst OR subfamilies, and the diversity of ORs appeared to parallel the host breadth of the study species. However, some small lineages of ORs persisted amongst many coleopteran families, suggesting receptors of key function that underlie the olfactory ecology of beetles.
Collapse
Affiliation(s)
- R F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - T M Schneider
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - A M Schwartz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - M N Andersson
- Department of Biology, Lund University, Lund, Sweden
| | - D D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
42
|
Identification of candidate chemosensory genes of Ophraella communa LeSage (Coleoptera: Chrysomelidae) based on antennal transcriptome analysis. Sci Rep 2019; 9:15551. [PMID: 31664149 PMCID: PMC6820725 DOI: 10.1038/s41598-019-52149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
Antennal olfaction plays a key role in insect survival, which mediates important behaviors like host search, mate choice, and oviposition site selection. As an oligophagous insect, olfaction is extremely important for Ophraella communa to locate host plants. However, information on the olfactory genes has been lacking in O. communa. Using next generation sequencing, we assembled the antennal transcriptome of O. communa and first reported the major chemosensory genes necessary for olfaction in this species. In this study, a total 105 candidate chemosensory genes were identified in O. communa antennae, including 25 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 30 odorant receptors (ORs), 18 ionotropic receptors (IRs), and 17 gustatory receptors (GRs). We also identified full-length sequences of the highly conserved ORco and IR8a/25a family in O. communa. In addition, the expression profile of 15 ORs and four OBPs were validated by quantitative real-time polymerase chain reaction (qPCR). We found that OcomOR2/4/19 and OcomOBP19/20 had a biased expression in male antennae, and OcomOR8 had a biased expression in the female antennae. This large number of chemosensory genes handled by homology analysis and qPCR results will provide the first insights into molecular basis for the olfactory systems of O. communa as well as advance our understanding of olfactory mechanisms in Coleoptera.
Collapse
|
43
|
Hanks LM, Mongold-Diers JA, Mitchell RF, Zou Y, Wong JCH, Meier LR, Johnson TD, Millar JG. The Role of Minor Pheromone Components in Segregating 14 Species of Longhorned Beetles (Coleoptera: Cerambycidae) of the Subfamily Cerambycinae. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2236-2252. [PMID: 31136653 DOI: 10.1093/jee/toz141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We present research on the chemical ecology of 14 species of longhorned beetles (Coleoptera: Cerambycidae), in four tribes of the subfamily Cerambycinae, conducted in east-central Illinois over 8 yr. Adult males produce aggregation-sex pheromones that attract both sexes. Twenty independent field bioassays explored the pheromone chemistry of the species and tested the possible attractive or antagonistic effects of compounds that are not produced by a given species, but are pheromone components of other species. Analyses of beetle-produced volatiles revealed compounds that had not been reported previously from several of the species. The most common pheromone component was (R)-3-hydroxyhexan-2-one, but pheromones of some species included isomers of the related 2,3-hexanediols. Males of the congeners Phymatodes amoenus (Say) and Phymatodes testaceus (L.) produced pure (R)-2-methylbutan-1-ol. Enantiomers of 2-methylbutan-1-ol also proved to be powerful synergists for Megacyllene caryae (Gahan), Sarosesthes fulminans (F.), and Xylotrechus colonus (F.). The major components of pheromone blends were consistently present in collections of headspace volatiles from male beetles, and only the major components were inherently attractive to a subset of species when tested as single components. Minor components of some species acted as powerful synergists, but in other cases appeared not to influence attraction. Among the minor components identified in headspace extracts from males, 2,3-hexanedione and 2-hydroxyhexan-3-one appeared to be analytical artifacts or biosynthetic by-products, and were neither attractants nor synergists. The antagonistic effects of minor compounds produced by heterospecific males suggest that these compounds serve to maintain prezygotic reproductive isolation among some species that share pheromone components.
Collapse
Affiliation(s)
- Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - Robert F Mitchell
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yunfan Zou
- Departments of Entomology and Chemistry, University of California, Riverside, CA
| | - Joseph C H Wong
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Linnea R Meier
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Todd D Johnson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA
| |
Collapse
|
44
|
Zhou LY, Li W, Liu HY, Xiang F, Kang YK, Yin X, Huang AP, Wang YJ. Systemic identification and analyses of genes potentially involved in chemosensory in the devastating tea pest Basilepta melanopus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100586. [DOI: 10.1016/j.cbd.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/27/2022]
|
45
|
Zhang X, Yang S, Zhang J, Wang X, Wang S, Liu M, Xi J. Identification and expression analysis of candidate chemosensory receptors based on the antennal transcriptome of Lissorhoptrus oryzophilus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:133-142. [DOI: 10.1016/j.cbd.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
|
46
|
Bari G, Scala A, Garzone V, Salvia R, Yalcin C, Vernile P, Aresta AM, Facini O, Baraldi R, Bufo SA, Vogel H, de Lillo E, Rapparini F, Falabella P. Chemical Ecology of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae): Behavioral and Biochemical Strategies for Intraspecific and Host Interactions. Front Physiol 2019; 10:604. [PMID: 31191334 PMCID: PMC6545930 DOI: 10.3389/fphys.2019.00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study focuses on several aspects of communication strategies adopted by adults of the Mediterranean flat-headed root-borer Capnodis tenebrionis (Coleoptera: Buprestidae). Morphological studies on the structures involved in mate recognition and acceptance revealed the presence of porous areas in the pronota in both sexes. These areas were variable in shape and size, but proportionally larger in males. The presence of chaetic, basiconic, and coeloconic sensilla in the antennae of both males and females was verified. Bioassays revealed stereotyped rituals in males and the involvement of female pronotal secretions in mate recognition and acceptance. During the mating assays, the female's pronotum was covered by a biologically inert polymeric resin (DenFilTM), which prevented males from detecting the secretions and from completing the copulation ritual. The use of the resin allowed for the collection of chemical compounds. GC-MS analysis of the resin suggested it may be used to retain compounds from insect body surfaces and revealed sex-specific chemical profiles in the cuticles. Since adult C. tenebrionis may use volatile organic compounds (VOCs) emitted from leaves or shoots, the VOC emission profiles of apricot trees were characterized. Several volatiles related to plant-insect interactions involving fruit tree species of the Rosaceae family and buprestid beetles were identified. To improve understanding of how VOCs are perceived, candidate soluble olfactory proteins involved in chemoreception (odorant-binding proteins and chemosensory proteins) were identified using tissue and sex-specific RNA-seq data. The implications for chemical identification, physiological and ecological functions in intraspecific communication and insect-host interactions are discussed and potential applications for monitoring presented.
Collapse
Affiliation(s)
- Giuseppe Bari
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Scala
- Department of Science, University of Basilicata, Potenza, Italy
| | - Vita Garzone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, Potenza, Italy
| | - Cem Yalcin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Syngenta, Izmir, Turkey
| | - Pasqua Vernile
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Osvaldo Facini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Rita Baraldi
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | - Sabino A. Bufo
- Department of Science, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Enrico de Lillo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Rapparini
- Department of Biology, Agriculture and Food Sciences, Biometeorology Institute, National Research Council, Bologna, Italy
| | | |
Collapse
|
47
|
Liu H, Zhang X, Liu C, Liu Y, Mei X, Zhang T. Identification and expression of candidate chemosensory receptors in the white-spotted flower chafer, Protaetia brevitarsis. Sci Rep 2019; 9:3339. [PMID: 30833589 PMCID: PMC6399352 DOI: 10.1038/s41598-019-38896-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022] Open
Abstract
Accurate detection and recognition of chemical signals play extremely important roles for insects in their survival and reproduction. Chemosensory receptors, including odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs), are involved in detection of volatile signals. In the present study, we aimed to identify candidate chemosensory receptors, and RNA-seq technology was employed to sequence the antennal transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae: Cetoniinae), a native agricultural and horticultural pest in East-Asia. According to the sequence similarity analysis, we identified 72 PbreORs, 11 PbreGRs and eight PbreIRs. Among PbreORs, PbreOR2, PbreOR33 and PbreOR53 were preliminarily classified into pheromone receptors. Further qRT-PCR analysis indicated that 11 PbreORs were specifically expressed in the antennae of male P. brevitarsis, whereas 23 PbreORs were specifically expressed in the female antennae. Our results laid a solid foundation for further functional elucidations of insect chemoreceptors, which could be used as the potential targets of pest management.
Collapse
Affiliation(s)
- Hongmin Liu
- Agriculture College, Xinyang Agriculture and Forestry University, Xinyang, 464000, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, 071000, P. R. China
| | - Chunqin Liu
- Cangzhou Technical College, Cangzhou, 061001, P. R. China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, 071000, P. R. China.
| |
Collapse
|
48
|
Mitchell RF, Ray AM, Hanks LM, Millar JG. The Common Natural Products (S)-α-Terpineol and (E)-2-Hexenol are Important Pheromone Components of Megacyllene antennata (Coleoptera: Cerambycidae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1547-1552. [PMID: 30137276 PMCID: PMC6692852 DOI: 10.1093/ee/nvy126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 06/08/2023]
Abstract
We report here the pheromone of Megacyllene antennata (White) (Coleoptera: Cerambycidae), a species native to southwestern North America whose larvae feed in woody tissues of mesquite (Prosopis species; Fabaceae). Adult males sex-specifically produced a blend of eight common natural products, including the monoterpene alcohol (S)-α-terpineol; the monoterpenes (S)-limonene and terpinolene; the aromatic alcohols (R)-1-phenylethanol and 2-phenylethanol; and (E)-2-hexenol, (E)-2-hexenal, and 1-hexanol. Individual males produced the components in varying amounts, but (S)-α-terpineol and (E)-2-hexenal were always present and together constituted the majority of the blend. A synthetic reconstruction of the complete blend attracted both males and females of M. antennata during field bioassays, as did all subsets of the blend that included (S)-α-terpineol and (E)-2-hexenol. Adults were most strongly attracted to blends of the latter two compounds when in ratios approaching parity. Neither of the compounds were present in the bouquet of volatiles emitted by host plants of the larvae.
Collapse
Affiliation(s)
- Robert F Mitchell
- Department of Neuroscience, University of Arizona, Tucson, AZ
- Center for Insect Science, University of Arizona, Tucson, AZ
| | - Ann M Ray
- Department of Biology, Xavier University, Cincinnati, OH
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
49
|
Pang JX, Zeng X, Zhu JY, Liu NY. Chemosensory Transmembrane Protein Families in the Coffee White Stemborer, Xylotrechus quadripes (Coleoptera: Cerambycidae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:969-981. [PMID: 29850795 DOI: 10.1093/ee/nvy076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The coffee white stemborer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), feeds primarily on Coffea arabica L. (Gentianales: Rubiaceae) with its egg, larva, and pupa being developed within the trunk. The detection of chemosensory-related cues linked to adult mating, host seeking, and recognition is driven by three chemoreceptor gene repertoires of odorant (ORs), gustatory (GRs), and ionotropic (IRs) receptors as well as sensory neuron membrane proteins (SNMPs). Yet, information on these genes involved in chemoreception is unavailable in X. quadripes and relatively poor in the cerambycid beetles. Here, we presented the identification of four chemosensory transmembrane proteins from the antennal transcriptome of X. quadripes, including 33 ORs, five GRs, 18 IRs, and four SNMPs. Phylogenetic analysis classified the ORs into groups 1, 2, 3, 7, and olfactory coreceptor (Orco), showing three potential candidates (OR13, OR17, and OR21) for the sensing of male sex pheromones. The IRs were clustered into 10 orthologous groups, with additional copies for IR41a, IR64a, and IR75 clades. Four SNMPs were distributed in four independent clades, possibly representing a complete set in this species. Expression profiles revealed that all the genes were highly expressed in antennae, suggesting their olfactory roles. In addition, most of the genes showed the expression in nonantennal tissues including thoraxes, abdomens, wings, and legs, suggesting their involvement in nonchemosensory functions. Of notice, a highly conserved coreceptor IR25a displayed male-biased expression in the antennae, as the first presence in the cerambycid beetles. This study has established reference resources for understanding the mechanisms underlying the interactions between/within this beetle and its host plants.
Collapse
Affiliation(s)
- Ji-Xin Pang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, China
| | - Xin Zeng
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, China
| |
Collapse
|
50
|
Wei J, Zhou Q, Hall L, Myrick A, Hoover K, Shields K, Baker TC. Olfactory Sensory Neurons of the Asian Longhorned Beetle, Anoplophora glabripennis, Specifically Responsive to its two Aggregation-Sex Pheromone Components. J Chem Ecol 2018; 44:637-649. [PMID: 29956046 DOI: 10.1007/s10886-018-0978-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022]
Abstract
We performed single-sensillum recordings from male and female antennae of the Asian longhorned beetle, Anoplophora glabripennis, that included as stimuli the two components of this species' aggregation-sex pheromone in addition to various general odorants. We compared the aggregation-sex-pheromone-component responses of olfactory sensory neurons (OSNs) to those of OSNs that responded to a variety of plant-related odorants. In the smooth-tipped, tapered, trichoid sensilla on the most distal antennal flagellomeres nos. 10 or 11 of both males and females, we found OSNs with high-amplitude action potentials that were tuned to the aldehyde and alcohol pheromone components and that did not respond to various plant-related volatiles. Because this OSN type responded to both the alcohol and aldehyde components it cannot be considered to be specifically tuned to either component. These large-spiking OSNs were co-compartmentalized in these sensilla with a second, smaller-spiking OSN responding to plant-related volatiles such as geraniol, citronellal, limonene, 1-octanol, nerol and citral. The large-spiking OSNs thus appear to be a type that will be involved in aggregation-sex pheromone pathways targeting a specific glomerulus in the antennal lobe and in generating pheromone-related behavioral responses in A. glabripennis. In other sensilla located in these distal antennal flagellomeres as well as those located more proximally, i.e., mid-length along the antenna on flagellomere nos. 4-7, we found OSNs in blunt-tipped basiconic sensilla that were responsive to other plant-related volatiles, especially the terpenoids, (E,E)-alpha farnesene, (E)-β-farnesene, β-caryophyllene, and eugenol. Some of these terpenoids have been implicated in improving attraction to pheromone-baited traps. Some of these same OSNs responded additionally to either of the two sex pheromone components, but because these OSNs also responded to some of the above plant volatiles as shown by cross-adaptation experiments, these OSNs will not be the types that convey sex-pheromone-specific information to the antennal lobe.
Collapse
Affiliation(s)
- Jianrong Wei
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA.,College of Life Science, Hebei University, Baoding City, People's Republic of China
| | - Qiong Zhou
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| | - Loyal Hall
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA
| | - Andrew Myrick
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA
| | | | - Thomas C Baker
- Center for Chemical Ecology and Department of Entomology, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|