1
|
Yang W, Ye C, Wang L, Nie J, Liu X, Zhang T, Zhang W, Saba NU, Yin L, Xing L, Su X. Binding properties of olfactory proteins to host volatiles, free fatty acids and cuticular hydrocarbons in the termite Reticulitermes aculabialis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104211. [PMID: 39542378 DOI: 10.1016/j.ibmb.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
As eusocial insects prevalent in tropical and subtropical regions, termites are characterized by highly organized behaviors and exceptional adaptability, rooted in caste differentiation and chemical communication. These traits make them excellent models for studying insect social structures and ecological interactions. Investigating how termites use chemical signals to perceive and respond to their environment provides insights into their coordination and adaptation within complex ecosystems. This study delved into the chemosensory mechanisms of Reticulitermes aculabialis, examining the interactions of four olfactory proteins with 70 ligands, including host volatiles, cuticular hydrocarbons (CHCs), and free fatty acids (FFAs). Molecular docking simulations revealed varied affinities of the olfactory proteins for long-chain hydrocarbons (n-C23 to n-C28), suggesting a nuanced chemical communication system through specific hydrocarbon detection. RacuCSP1 and RacuCSP2 exhibited specific binding to linoleic acid and undecanoic acid, respectively, highlighting the significance of FFAs in the physiological and behavioral processes of termites. The four olfactory proteins showed a strong affinity for longifolene in fluorescence competitive binding experiments. Notably, RacuOBPs exhibited unique affinities for terpenoid volatiles such as β-lonone and neocembrene, while RacuCSPs specifically bound with terpenoids like 3-carene, myrtenol, α-pinene oxide and β-pinene indicating their critical roles in host detection. Behavioral observations following gene silencing revealed that RacuOBP5 was essential for recognizing longifolene and α-lonone recognition, while RacuCSP1 was key for detecting α-pinene in termites. These findings enhance our understanding of the termite chemosensory system and offer insights for developing precise pest management strategies.
Collapse
Affiliation(s)
- Wenxu Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chenxu Ye
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lu Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jinjuan Nie
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xinyi Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Tiange Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenxiu Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Noor Us Saba
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lingfang Yin
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohong Su
- College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Gebremedhin MB, Xu Z, Kuang C, Nawaz M, Wei N, Cao J, Zhou Y, Zhang H, Zhou J. Involvement of a Microplusin-like Gene (HlonML-1) in the Olfactory Chemosensation of Haemophysalis longicornis: Expression, RNA Silencing, and Behavioral Implications. Microorganisms 2024; 12:2269. [PMID: 39597658 PMCID: PMC11596346 DOI: 10.3390/microorganisms12112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The study of tick olfaction is relatively new compared to that of insects, and the molecular mechanisms involved remain poorly understood. Despite several potential chemosensory genes identified in multiple tick species, these are yet to be validated through independent functional experiments. In this research, we cloned and analyzed a microplusin-like gene, HlonML-1, and investigated its role in the chemosensory activities of H. longicornis. The results showed that this gene's amino acid sequences lack histidine residues essential for antimicrobial activity, and it is evolutionarily linked to putative chemosensory microplusins in ticks. Gene expression analyses indicated that HlonML-1 was significantly more abundant in ticks exposed to potential attractants and in the forelegs of H. longicornis than in non-exposed ticks and the hindlegs, respectively. Tick forelegs support the Haller's organ, which is a sensory structure mostly specialized for chemosensation. Furthermore, Y-tube olfactometer assays indicated that silencing HlonML-1 significantly impaired adult ticks' ability to detect selected odors, while their gustatory-related behavior remained unaffected compared to the control groups. Given its unique sequences, relative abundance in chemosensory tissues, and impact on odor detection, HlonML-1 is likely involved in the olfactory chemosensation of H. longicornis. Future research validating putative chemosensory microplusins in the genomes of various tick species may enhance our understanding of their olfactory functions in tick and lead to the identification of new molecular targets for developing tick repellents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China (N.W.)
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China (N.W.)
| |
Collapse
|
3
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
4
|
Liang D, Chen H, An L, Li Y, Zhao P, Upadhyay A, Hansson BS, Zhao J, Han Q. Molecular identification and functional analysis of Niemann-Pick type C2 proteins,carriers for semiochemicals and other hydrophobic compounds in the brown dog tick, Rhipicephalus linnaei. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105451. [PMID: 37247999 DOI: 10.1016/j.pestbp.2023.105451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with β-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 μM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 μM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Collapse
Affiliation(s)
- Dejuan Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Yao Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
5
|
Gebremedhin MB, Xu Z, Kuang C, Shumuye NA, Cao J, Zhou Y, Zhang H, Zhou J. Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller's Organ. INSECTS 2023; 14:294. [PMID: 36975979 PMCID: PMC10053194 DOI: 10.3390/insects14030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Ticks are obligatory hematophagous ectoparasites and vectors of many animal and human pathogens. Chemosensation plays a significant role in tick communication with their environment, including seeking out blood meal hosts. Studies on the structure and function of Haller's organ and its components have improved our understanding regarding tick olfaction and its chemical ecology. Compared with the knowledge on insect olfaction, less is known about the molecular basis of olfaction in ticks. This review focused on the chemosensory-related candidate molecules likely involved in tick olfaction. Members of the ionotropic receptor family and a new class of odorant-binding proteins are now known to be involved in tick olfaction, which appear to differ from that of insects. These candidate molecules are more closely related to those of mites and spiders than to other arthropods. The amino acid sequences of candidate niemann-pick type C2 and microplusin-like proteins in ticks exhibit features indicating their potential role as binding proteins. In the future, more comprehensive pertinent research considering the existing shortcomings will be required to fully understand the molecular basis of tick olfactory chemoreception. This information may contribute to the development of new molecular-based control mechanisms to reduce tick populations and related disease transmission.
Collapse
Affiliation(s)
- Mebrahtu Berhe Gebremedhin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Nigus Abebe Shumuye
- State Key Laboratory of Veterinary Etiological Biology, National Animal Echinococcosis Para-Reference Laboratory, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
6
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
7
|
De S, Kingan SB, Kitsou C, Portik DM, Foor SD, Frederick JC, Rana VS, Paulat NS, Ray DA, Wang Y, Glenn TC, Pal U. A high-quality Ixodes scapularis genome advances tick science. Nat Genet 2023; 55:301-311. [PMID: 36658436 DOI: 10.1038/s41588-022-01275-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Ixodes spp. and related ticks transmit prevalent infections, although knowledge of their biology and development of anti-tick measures have been hindered by the lack of a high-quality genome. In the present study, we present the assembly of a 2.23-Gb Ixodes scapularis genome by sequencing two haplotypes within one individual, complemented by chromosome-level scaffolding and full-length RNA isoform sequencing, yielding a fully reannotated genome featuring thousands of new protein-coding genes and various RNA species. Analyses of the repetitive DNA identified transposable elements, whereas the examination of tick-associated bacterial sequences yielded an improved Rickettsia buchneri genome. We demonstrate how the Ixodes genome advances tick science by contributing to new annotations, gene models and epigenetic functions, expansion of gene families, development of in-depth proteome catalogs and deciphering of genetic variations in wild ticks. Overall, we report critical genetic resources and biological insights impacting our understanding of tick biology and future interventions against tick-transmitted infections.
Collapse
Affiliation(s)
- Sandip De
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Shelby D Foor
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julia C Frederick
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA. .,Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
8
|
Zhou H, Yan H, Wang E, Zhang B, Xu X. Expression and functional analysis of Niemann-Pick C2 gene in Phytoseiulus persimilis. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:201-213. [PMID: 36920643 DOI: 10.1007/s10493-023-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a new protein class of semiochemical binding and transporting, Niemann-Pick proteins type C2 (NPC2) in arthropods have received more attentions in recent decade. However, the gene function has not been studied in phytoseiid mites with biocontrol potential. In the current study, we cloned a NPC2 gene PpNPC2a from the transcriptome of Phytoseiulus persimilis Athias-Henriot. By encoding 181 amino acids with a conserved ML domain, PpNPC2a was found a homolog of NPC2-1 in Galendromus occidentalis Nesbitt. We then measured the spatio-temporal expression of PpNPC2a in P. persimilis, and found the highest expression in female adults compared to other stages. Due to the tiny body size of predatory mites, we only examined tissue expressions in two sections: the anterior part (gnathosoma and the first pair of legs) and the posterior part (idiosoma without the first pair of legs). Higher transcription of PpNPC2a was found in the posterior part. To investigate the potential function of PpNPC2a in P. persimilis, we interfered gene expression in female adults by feeding dsRNA, which resulted in a decrease of relative expression by 59.1 and 78.2% after 24 and 72 h, respectively. Compared with the control, dsNPC2a-treated P. persimilis were insensitive to the scent of leaves or plants infested by spider mites, suggesting a role of PpNPC2a in response to plant volatiles. However, the dsNPC2a-interfered mites could still respond to four representative compounds of herbivore-induced plant volatiles, including 4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), methyl salicylate (MeSA), β-caryophyllene and linalool. In short, our results indicated PpNPC2a may be involved in the chemosensory process of P. persimilis in response to whole-plant volatiles.
Collapse
Affiliation(s)
- Hongxu Zhou
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Hong Yan
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Endong Wang
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| | - Bo Zhang
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| | - Xuenong Xu
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, 100193, Beijing, China.
| |
Collapse
|
9
|
Cui Y, Wang J, Liu Q, Li D, Zhang W, Liu X, Wang J, Song X, Yao F, Wu H, Zhao N. Identification and expression of potential olfactory-related genes related to Niemann-Pick C2 protein and ionotropic receptors in Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:337-350. [PMID: 35971047 DOI: 10.1007/s10493-022-00729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Studies have shown that the main pathway for tick host localization and perception of mating information may be chemosensory. However, chemical communication in ticks is poorly understood, especially in those other than the Ixodes ticks. Niemann-Pick C2 (NPC2) protein and ionotropic receptors (IRs) are considered to be closely related to the perception of infochemicals in arthropods. Through bioinformatic analysis, eight NPC2 and four IR candidate genes were identified through screening and identification of the transcriptome sequencing database of Haemaphysalis longicornis. Phylogenetic tree analysis indicated that H. longicornis possesses similar homology to the genus Ixodes. A comparison of the expression of NPC2 and IR in tick forelegs (first pair of legs), hind legs (fourth pair of legs), and capitula using RT-PCR revealed that, barring HlonNPC2-8, 11 candidate genes were highly expressed in the foreleg and capitulum, which are the main sensory organs of ticks. They were also expressed in the hind legs, except for six genes that were not expressed in the males. RT-qPCR analysis showed upregulation and higher relative expression of HlonNPC2-1, HlonNPC2-3, HlonNPC2-6, and HlonNPC2-8 when stimulated by ammonium hydroxide, whereas the others were downregulated and demonstrated lower relative expression. These results further support the putative role of NPC2s as a new odorant carrier in ticks and present 12 promising candidate genes for understanding tick olfactory communication, enriching the data on these genes, especially outside the genus Ixodes.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Yao
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ning Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
10
|
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. INSECT MOLECULAR BIOLOGY 2021; 30:519-531. [PMID: 34216416 DOI: 10.1111/imb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
We focused our study on the 12 recently identified putative odorant carrier proteins in the ectoparasitic mite, Varroa destructor. Here we show, via an exclusion of the chemosensory appendages (forelegs and gnathosoma) that transcripts of five of the 12 genes were significantly lower, suggesting that they are likely involved in carrying host volatiles. Specifically, three transcripts were found to be foreleg-specific while the other two transcripts were expressed in both the forelegs and gnathosoma. We focused on one of the highly expressed and foreleg-specific transcript Vd40090, which encodes a Niemann-Pick disease protein type C2 (NPC2) protein. Effects of dsRNA-mediated silencing of Vd40090 were first measured by quantifying the transcript levels of genes that encode other putative odorant carrier proteins as well as reproduction related proteins. In addition, the impact of silencing on mites behaviour and survival was tested. Silencing of Vd40090 effectively disrupted Varroa host selection, acceptance and feeding and significantly impaired the expression of genes that regulate its reproduction in brood cells, resulting in reduced reproduction and survival.
Collapse
Affiliation(s)
- B T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - K Mani
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - N Eliash
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
11
|
Zhu J, Renzone G, Arena S, Dani FR, Paulsen H, Knoll W, Cambillau C, Scaloni A, Pelosi P. The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae. Int J Mol Sci 2021; 22:ijms22136828. [PMID: 34202019 PMCID: PMC8269058 DOI: 10.3390/ijms22136828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy;
| | - Harald Paulsen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems, Austria
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (UMR 7257), CNRS and Aix-Marseille Université, CDEX 09, 13288 Marseille, France;
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Correspondence:
| |
Collapse
|
12
|
Zhu J, Iannucci A, Dani FR, Knoll W, Pelosi P. Lipocalins in Arthropod Chemical Communication. Genome Biol Evol 2021; 13:6261314. [PMID: 33930146 PMCID: PMC8214410 DOI: 10.1093/gbe/evab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lipocalins represent one of the most successful superfamilies of proteins. Most of them are extracellular carriers for hydrophobic ligands across aqueous media, but other functions have been reported. They are present in most living organisms including bacteria. In animals they have been identified in mammals, molluscs, and arthropods; sequences have also been reported for plants. A subgroup of lipocalins, referred to as odorant-binding proteins (OBPs), mediate chemical communication in mammals by ferrying specific pheromones to the vomeronasal organ. So far, these proteins have not been reported as carriers of semiochemicals in other living organisms; instead chemical communication in arthropods is mediated by other protein families structurally unrelated to lipocalins. A search in the databases has revealed extensive duplication and differentiation of lipocalin genes in some species of insects, crustaceans, and chelicerates. Their large numbers, ranging from a handful to few dozens in the same species, their wide divergence, both within and between species, and their expression in chemosensory organs suggest that such expansion may have occurred under environmental pressure, thus supporting the hypothesis that lipocalins may be involved in chemical communication in arthropods.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.,Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Alessio Iannucci
- Departement of Biology, University of Firenze, Sesto Fiorentino, Italy
| | | | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
13
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Comparative morphological and transcriptomic analyses reveal chemosensory genes in the poultry red mite, Dermanyssus gallinae. Sci Rep 2020; 10:17923. [PMID: 33087814 PMCID: PMC7578799 DOI: 10.1038/s41598-020-74998-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
Detection of chemical cues via chemosensory receptor proteins are essential for most animals, and underlies critical behaviors, including location and discrimination of food resources, identification of sexual partners and avoidance of predators. The current knowledge of how chemical cues are detected is based primarily on data acquired from studies on insects, while our understanding of the molecular basis for chemoreception in acari, mites in particular, remains limited. The poultry red mite (PRM), Dermanyssus gallinae, is one of the most important blood-feeding ectoparasites of poultry. PRM are active at night which suck the birds' blood during periods of darkness and hide themselves in all kinds of gaps and cracks during the daytime. The diversity in habitat usage, as well as the demonstrated host finding and avoidance behaviors suggest that PRM relies on their sense of smell to orchestrate complex behavioral decisions. Comparative transcriptome analyses revealed the presence of candidate variant ionotropic receptors, odorant binding proteins, niemann-pick proteins type C2 and sensory neuron membrane proteins. Some of these proteins were highly and differentially expressed in the forelegs of PRM. Rhodopsin-like G protein-coupled receptors were also identified, while insect-specific odorant receptors and odorant co-receptors were not detected. Furthermore, using scanning electron microscopy, the tarsomeres of all leg pairs were shown to be equipped with sensilla chaetica with or without tip pores, while wall-pored olfactory sensilla chaetica were restricted to the distal-most tarsomeres of the forelegs. This study is the first to describe the presence of chemosensory genes in any Dermanyssidae family. Our findings make a significant step forward in understanding the chemosensory abilities of D. gallinae.
Collapse
|
15
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, Jiang JF, Wang Q, Zhang B, Ji P, Bell-Sakyi L, Cui XM, Yuan TT, Jiang BG, Yang WF, Lam TTY, Chang QC, Ding SJ, Wang XJ, Zhu JG, Ruan XD, Zhao L, Wei JT, Ye RZ, Que TC, Du CH, Zhou YH, Cheng JX, Dai PF, Guo WB, Han XH, Huang EJ, Li LF, Wei W, Gao YC, Liu JZ, Shao HZ, Wang X, Wang CC, Yang TC, Huo QB, Li W, Chen HY, Chen SE, Zhou LG, Ni XB, Tian JH, Sheng Y, Liu T, Pan YS, Xia LY, Li J, Zhao F, Cao WC. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 2020; 182:1328-1340.e13. [PMID: 32814014 DOI: 10.1016/j.cell.2020.07.023] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Lifeng Du
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei Zhan
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peifeng Ji
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei-Fei Yang
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Shu-Jun Ding
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Jinan 250014, Shandong, P.R. China
| | - Xian-Jun Wang
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Jinan 250014, Shandong, P.R. China
| | - Jin-Guo Zhu
- ManZhouLi Customs District, Manzhouli 021400, Inner Mongolia, P.R. China
| | - Xiang-Dong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, P.R. China
| | - Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Jia-Te Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China
| | - Teng Cheng Que
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanjing 530028, Guangxi, P.R. China
| | - Chun-Hong Du
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali 671000, Yunnan, P.R. China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Jing Xia Cheng
- Shanxi Provence Center for Disease Control and Prevention, Xian 030012, Shanxi, P.R. China
| | - Pei-Fang Dai
- Shanxi Provence Center for Disease Control and Prevention, Xian 030012, Shanxi, P.R. China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Xiao-Hu Han
- Shenyang Agriculture University, Shenyang 110866, Liaoning, P.R. China
| | - En-Jiong Huang
- Fuzhou International Travel Healthcare Center, Fuzhou 350001, Fujian, P.R. China
| | - Lian-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Yu-Chi Gao
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, P.R. China
| | - Hong-Ze Shao
- Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun 130062, Jilin, P.R. China
| | - Xin Wang
- Qingjiangpu District Center for Disease Control and Prevention, Huai'an 223001, Jiangsu, P.R. China
| | - Chong-Cai Wang
- Hainan International Travel Healthcare Center, Haikou 570311, Hainan, P.R. China
| | - Tian-Ci Yang
- State Key Lab of Mosquito-borne Diseases, Hangzhou International Tourism Healthcare Center, Hangzhou Customs of China, Hangzhou 310012, Zhejiang, P.R. China
| | - Qiu-Bo Huo
- Mudanjiang Forestry Central Hospital, Mudanjiang 157000, Heilongjiang, P.R. China
| | - Wei Li
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, P.R. China
| | - Hai-Ying Chen
- Collaboration Unit for Field Epidemiology of the State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention. Nanchang 330038, Jiangxi, P.R. China
| | - Shen-En Chen
- Collaboration Unit for Field Epidemiology of the State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention. Nanchang 330038, Jiangxi, P.R. China
| | - Ling-Guo Zhou
- Shaanxi Natural Reserve and Wildlife Administration Station, Xi'an 710082, Shaanxi, P.R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, Hubei, P.R. China
| | - Yue Sheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, P.R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, Yunan, P.R. China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, P.R. China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, P.R. China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, P.R. China.
| |
Collapse
|
17
|
Chemosensory and Behavioural Responses of Ixodes scapularis to Natural Products: Role of Chemosensory Organs in Volatile Detection. INSECTS 2020; 11:insects11080502. [PMID: 32759735 PMCID: PMC7469143 DOI: 10.3390/insects11080502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/26/2023]
Abstract
Simple Summary Ticks are responsible of transmitting serious disease agents of importance to human and veterinary health. Despite the importance of repellents, deterrents and acaricides in tick management, little is understood about the types of chemicals recognized and the mechanism behind chemoreception. Being almost totally blind, ticks rely on chemosensation to identify and locate hosts for a successful blood meal and to detect chemical signals in the environment. We explored the neurophysiology of tick chemosensory system in the context of behaviourally-relevant volatile stimuli, including essential oil components, to evaluate how the combination of attractants and plant volatile compounds is detected and processed. The observed inhibition (or deterrent effect) in tick electrophysiological response and behavioural activity, after the tick has been exposed to a binary mixture of attractant and volatile compound, represents an important advancement in understanding how tick olfaction works and what may be the mechanism behind detecting unpleasant odor stimuli and consequently been deterred. These information will provide more insights in developing new natural product-based deterrents for self-protection. Abstract Blacklegged ticks, Ixodes scapularis, represent a significant public health concern due to their vectoring of tick-borne disease. Despite their medical importance, there is still limited knowledge of the chemosensory system of this species, and thus a poor understanding of host-seeking behaviour and chemical ecology. We investigated the electrophysiological sensitivity of adult female blacklegged ticks to attractants and plant-derived compounds via an electrode inserted into the scutum. The response of female ticks to binary mixtures with a constant concentration of a selected attractant (butyric acid) and increasing concentration of volatile organic compounds (VOCs) (geraniol, phenethyl alcohol, β-citronellol, and citral) was recorded. A strict relationship between increasing volatile concentration and a decreasing response was observed for each VOC. Y-tube bioassays confirmed that tick attraction towards butyric acid decreased with the presence of a VOC, which exerted a deterrent effect. To determine the specific role of sensory appendages involved in the detection of attractant chemical stimuli, we tested tick electrophysiological response after removing appendages that house chemosensory sensilla (foretarsi, pedipalps, or both). The chemosensory response was related to the molecular structure of attractant odorant, and the lack of pedipalps significantly reduced olfactory responses, suggesting they play an important role in detecting attractants. This study provides new insight into the neurophysiological mechanisms underlying tick olfaction and the potential for interactions between attractant and deterrent chemical detection.
Collapse
|
18
|
Expanded complement of Niemann-Pick type C2-like protein genes in Clonorchis sinensis suggests functions beyond sterol binding and transport. Parasit Vectors 2020; 13:38. [PMID: 31973758 PMCID: PMC6979364 DOI: 10.1186/s13071-020-3910-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The parasitic flatworm Clonorchis sinensis inhabits the biliary tree of humans and other piscivorous mammals. This parasite can survive and thrive in the bile duct, despite exposure to bile constituents and host immune attack. Although the precise biological mechanisms underlying this adaptation are unknown, previous work indicated that Niemann-pick type C2 (NPC2)-like sterol-binding proteins might be integral in the host-parasite interplay. Expansions of this family in some invertebrates, such as arthropods, have shown functional diversification, including novel forms of chemoreception. Thus, here we curated the NPC2-like protein gene complement in C. sinensis, and predicted their conserved and/or divergent functional roles. Methods We used an established comparative genomic-bioinformatic approach to curate NPC2-like proteins encoded in published genomes of Korean and Chinese isolates of C. sinensis. Protein sequence and structural homology, presence of conserved domains and phylogeny were used to group and functionally classify NPC2-like proteins. Furthermore, transcription levels of NPC2-like protein-encoding genes were explored in different developmental stages and tissues. Results Totals of 35 and 32 C. sinensis NPC2-like proteins were predicted to be encoded in the genomes of the Korean and Chinese isolates, respectively. Overall, these proteins had low sequence homology and high variability of sequence alignment coverage when compared with curated NPC2s. Most C. sinensis proteins were predicted to retain a conserved ML domain and a conserved fold conformation, with a large cavity within the protein. Only one protein sequence retained the conserved amino acid residues required in bovine NPC2 to bind cholesterol. Non-canonical C. sinensis NPC2-like protein-coding domains clustered into four distinct phylogenetic groups with members of a group frequently encoded on the same genome scaffolds. Interestingly, NPC2-like protein-encoding genes were predicted to be variably transcribed in different developmental stages and adult tissues, with most being transcribed in the metacercarial stage. Conclusions The results of the present investigation confirms an expansion of NPC2-like proteins in C. sinensis, suggesting a diverse array of functions beyond sterol binding and transport. Functional explorations of this protein family should elucidate the mechanisms enabling the establishment and survival of C. sinensis and related flukes in the biliary systems of mammalian hosts.![]()
Collapse
|
19
|
Eliash N, Thangarajan S, Goldenberg I, Sela N, Kupervaser M, Barlev J, Altman Y, Knyazer A, Kamer Y, Zaidman I, Rafaeli A, Soroker V. Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. INSECT MOLECULAR BIOLOGY 2019; 28:321-341. [PMID: 30444567 DOI: 10.1111/imb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The tight synchronization between the life cycle of the obligatory parasitic mite Varroa destructor (Varroa) and its host, the honeybee, is mediated by honeybee chemical stimuli. These stimuli are mainly perceived by a pit organ located on the distal part of the mite's foreleg. In the present study, we searched for Varroa chemosensory molecular components by comparing transcriptomic and proteomic profiles between forelegs from different physiological stages, and rear legs. In general, a comparative transcriptomic analysis showed a clear separation of the expression profiles between the rear legs and the three groups of forelegs (phoretic, reproductive and tray-collected mites). Most of the differentially expressed transcripts and proteins in the mite's foreleg were previously uncharacterized. Using a conserved domain approach, we identified 45 transcripts with known chemosensory domains belonging to seven chemosensory protein families, of which 14 were significantly upregulated in the mite's forelegs when compared to rear legs. These are soluble and membrane bound proteins, including the somewhat ignored receptors of degenerin/epithelial Na+ channels and transient receptor potentials. Phylogenetic clustering and expression profiles of the putative chemosensory proteins suggest their role in chemosensation and shed light on the evolution of these proteins in Chelicerata.
Collapse
Affiliation(s)
- N Eliash
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - S Thangarajan
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Goldenberg
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - N Sela
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - M Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - J Barlev
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Y Altman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - A Knyazer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Y Kamer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Zaidman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
20
|
Xiu C, Xiao Y, Zhang S, Bao H, Liu Z, Zhang Y. Niemann-Pick proteins type C2 are identified as olfactory related genes of Pardosa pseudoannulata by transcriptome and expression profile analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:320-329. [PMID: 30669056 DOI: 10.1016/j.cbd.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been mainly focused on insects, whereas little on Arachnida, even though olfaction is very important in arachnid behavior. Pardosa pseudoannulata is one of the most common wandering spiders in rice fields, as the important natural enemy against a range of pests. However, little is known about the potential chemosensory proteins involved in olfactory behavior of these spiders. Niemann-Pick proteins type C2 (NPC2) as a new class of binding and transport proteins for semiochemicals in arthropods especially ticks and mites has received more attention in recent years. In this study, six NPC2s namely PpseNPC1-6 were newly identified in the appendages of P. pseudoannulata based on transcriptome data. A phylogenetic analysis indicated that all of P. pseudoannulata NPC2s were clustered together forming one clade with high posterior probability values. In addition, the sequences shared the same subclade with the NPC2 sequences of ticks and scorpion. The motif-patterns indicated that PpseNPC2-5 had the common pattern with the two-spotted spider mite Tetranychus urticae and the ant Trachymyrmex cornetzi. Furthermore, quantitative real-time PCR (qPCR) measurements were conducted to evaluate the expression profile of these genes in various tissues of P. pseudoannulata. It was found that most NPC2s (PpseNPC2-1, PpseNPC2-2, PpseNPC2-5 and PpseNPC2-6) were highly expressed in adult pedipalps and chelicerae. Owing to the functional olfactory organs in Chelicerata of pedipalps, our results supported a putative role of NPC2s as new odorant carriers in P. pseudoannulata.
Collapse
Affiliation(s)
- Chunli Xiu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Xiao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Song Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Zheng Y, Wang SN, Peng Y, Lu ZY, Shan S, Yang YQ, Li RJ, Zhang YJ, Guo YY. Functional characterization of a Niemann-Pick type C2 protein in the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2018; 25:765-777. [PMID: 28459128 DOI: 10.1111/1744-7917.12473] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/25/2017] [Accepted: 03/29/2017] [Indexed: 05/12/2023]
Abstract
Niemann-Pick type C2 (NPC2) is a type of small soluble protein involved in lipid metabolism and triglyceride accumulation in vertebrates and arthropods. Recent studies have determined that NPC2 also participates in chemical communication of arthropods. In this work, two novel NPC2 proteins (MmedNPC2a and MmedNPC2b) in Microplitis mediator were identified. Real-time quantitative PCR (qPCR) analysis revealed that MmedNPC2a was expressed higher in the antennae than in other tissues of adult wasps compared with MmedNPC2b. Subsequent immunolocalization results demonstrated that NPC2a was located in the lymph cavities of sensilla placodea. To further explore the binding characterization of recombinant MmedNPC2a to 54 candidate odor molecules, a fluorescence binding assay was performed. It was found MmedNPC2a could not bind with selected fatty acids, such as linoleic acid, palmitic acid, stearic acid and octadecenoic acid. However, seven cotton volatiles, 4-ethylbenzaldehyde, 3,4-dimethylbenzaldehyde, β-ionone, linalool, m-xylene, benzaldehyde and trans-2-hexen-1-al showed certain binding abilities with MmedNPC2a. Moreover, the predicted 3D model of MmedNPC2a was composed of seven β-sheets and three pairs of disulfide bridges. In this model, the key binding residues for oleic acid in CjapNPC2 of Camponotus japonicus, Lue68, Lys69, Lys70, Phe97, Thr103 and Phe127, are replaced with Phe85, Ser86, His87, Leu113, Tyr119 and Ile143 in MmedNPC2a, respectively. We proposed that MmedNPC2a in M. mediator may play roles in perception of plant volatiles.
Collapse
Affiliation(s)
- Yao Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei Province, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ye-Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Pelosi P, Zhu J, Knoll W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. SENSORS 2018; 18:s18103248. [PMID: 30262737 PMCID: PMC6210013 DOI: 10.3390/s18103248] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Odour perception has been the object of fast growing research interest in the last three decades. Parallel to the study of the corresponding biological systems, attempts are being made to model the olfactory system with electronic devices. Such projects range from the fabrication of individual sensors, tuned to specific chemicals of interest, to the design of multipurpose smell detectors using arrays of sensors assembled in a sort of artificial nose. Recently, proteins have attracted increasing interest as sensing elements. In particular, soluble olfaction proteins, including odorant-binding proteins (OBPs) of vertebrates and insects, chemosensory proteins (CSPs) and Niemann-Pick type C2 (NPC2) proteins possess interesting characteristics for their use in sensing devices for odours. In fact, thanks to their compact structure, their soluble nature and small size, they are extremely stable to high temperature, refractory to proteolysis and resistant to organic solvents. Moreover, thanks to the availability of many structures solved both as apo-proteins and in complexes with some ligands, it is feasible to design mutants by replacing residues in the binding sites with the aim of synthesising proteins with better selectivity and improved physical properties, as demonstrated in a number of cases.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| |
Collapse
|
23
|
Pelosi P, Zhu J, Knoll W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 2018; 102:8213-8227. [PMID: 30054700 DOI: 10.1007/s00253-018-9253-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
In this paper, we critically review the binding protocols currently reported in the literature to measure the affinity of odorants and pheromones to soluble olfactory proteins, such as odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick class C2 (NPC2) proteins. The first part contains a brief introduction on the principles of binding and a comparison of the techniques adopted or proposed so far, discussing advantages and problems of each technique, as well as their suitable application to soluble olfactory proteins. In the second part, we focus on the fluorescent binding assay, currently the most widely used approach. We analyse advantages and drawbacks, trying to identify the causes of anomalous behaviours that have been occasionally observed, and suggest how to interpret the experimental data when such events occur. In the last part, we describe the state of the art of biosensors for odorants, using soluble olfactory proteins immobilised on biochips, and discuss the possibility of using such approach as an alternative way to measure binding events and dissociation constants.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430, Tulln, Austria
| |
Collapse
|
24
|
Iovinella I, Cappa F, Cini A, Petrocelli I, Cervo R, Turillazzi S, Dani FR. Antennal Protein Profile in Honeybees: Caste and Task Matter More Than Age. Front Physiol 2018; 9:748. [PMID: 29973886 PMCID: PMC6019485 DOI: 10.3389/fphys.2018.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Reproductive and task partitioning in large colonies of social insects suggest that colony members belonging to different castes or performing different tasks during their life (polyethism) may produce specific semiochemicals and be differently sensitive to the variety of pheromones involved in intraspecific chemical communication. The main peripheral olfactory organs are the antennal chemosensilla, where the early olfactory processes take place. At this stage, members of two different families of soluble chemosensory proteins [odorant-binding proteins (OBPs) and chemosensory proteins (CSPs)] show a remarkable affinity for different odorants and act as carriers while a further family, the Niemann-Pick type C2 proteins (NPC2) may have a similar function, although this has not been fully demonstrated. Sensillar lymph also contains Odorant degrading enzymes (ODEs) which are involved in inactivation through degradation of the chemical signals, once the message is conveyed. Despite their importance in chemical communication, little is known about how proteins involved in peripheral olfaction and, more generally antennal proteins, differ in honeybees of different caste, task and age. Here, we investigate for the first time, using a shotgun proteomic approach, the antennal profile of honeybees of different castes (queens and workers) and workers performing different tasks (nurses, guards, and foragers) by controlling for the potential confounding effect of age. Regarding olfactory proteins, major differences were observed between queens and workers, some of which were found to be more abundant in queens (OBP3, OBP18, and NPC2-1) and others to be more abundant in workers (OBP15, OBP21, CSP1, and CSP3); while between workers performing different tasks, OBP14 was more abundant in nurses with respect to guards and foragers. Apart from proteins involved in olfaction, we have found that the antennal proteomes are mainly characterized by castes and tasks, while age has no effect on antennal protein profile. Among the main differences, the strong decrease in vitellogenins found in guards and foragers is not associated with age.
Collapse
Affiliation(s)
| | - Federico Cappa
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Alessandro Cini
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.,Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Iacopo Petrocelli
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Rita Cervo
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Stefano Turillazzi
- Department of Biology, Università degli Studi di Firenze, Florence, Italy
| | - Francesca R Dani
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.,Mass Spectrometry Centre, Centro di Servizi di Spettrometria di Massa, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
25
|
A foreleg transcriptome for Ixodes scapularis ticks: Candidates for chemoreceptors and binding proteins that might be expressed in the sensory Haller's organ. Ticks Tick Borne Dis 2018; 9:1317-1327. [PMID: 29886186 DOI: 10.1016/j.ttbdis.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/02/2023]
Abstract
Little is known about the molecular basis for the olfactory capabilities of the sensory Haller's organ on the forelegs of ticks. We first expanded the known repertoire of Ionotropic Receptors (IRs), a variant lineage of the ionotropic glutamate receptors, encoded by the black-legged Ixodes scapularis genome from 15 to 125. We then undertook a transcriptome study of fore- and hind-legs of this tick in an effort to identify candidate chemoreceptors differentially expressed in forelegs as likely to be involved in Haller's organ functions. We primarily identified members of the IR family, specifically Ir25a and Ir93a, as highly and differentially expressed in forelegs. Several other IRs, as well as a few members of the gustatory receptor family, were expressed at low levels in forelegs and might contribute to the sensory function of Haller's organ. In addition, we identified eight small families of secreted proteins, with sets of conserved cysteines, which might function as binding proteins. The genes encoding these Microplusin-Like proteins and two previously described Odorant Binding Protein-Like proteins share a common exon-intron structure, suggesting that they all evolved from a common ancestor and represent an independent origin of binding proteins with potential roles comparable to the ChemoSensory Proteins and Odorant Binding Proteins of insects. We also found two Niemann-Pick Type C2 proteins with foreleg-biased expression, however we were unable to detect foreleg-biased expression of a G-Protein-Coupled pathway previously proposed to mediate olfaction in the tick Haller's organ.
Collapse
|
26
|
Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: A comprehensive examination of the potential carriers for semiochemicals. J Proteomics 2018; 181:131-141. [PMID: 29653265 DOI: 10.1016/j.jprot.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
Abstract
We have performed a proteomic analysis on chemosensory organs of Varroa destructor, the honey bee mite, in order to identify putative soluble carriers for pheromones and other olfactory cues emitted by the host. In particular, we have analysed forelegs, mouthparts (palps, chelicera and hypostome) and the second pair of legs (as control tissue) in reproductive and phoretic stages of the Varroa life cycle. We identified 958 Varroa proteins, most of them common to the different organs and stages. Sequence analysis shows that four proteins can be assigned to the odorant-binding protein (OBP)-like class, which bear some similarity to insect OBPs, but so far have only been reported in some Chelicerata. In addition, we have detected the presence of two proteins belonging to the Niemann-Pick family, type C2 (NPC2), which have also been suggested as semiochemical carriers. Biological significance: The mite Varroa destructor is the major parasite of the honey bee and is responsible for great economical losses. The biochemical tools used by Varroa to detect semiochemicals produced by the host are still largely unknown. This work contributes to understand the molecular basis of olfaction in Varroa and, more generally, how detection of semiochemicals has evolved in terrestrial non-hexapod Arthropoda. Moreover, the identification of molecular carriers involved in olfaction can contribute to the development of control strategies for this important parasite.
Collapse
|
27
|
Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, Wang G. Niemann-Pick C2 Proteins: A New Function for an Old Family. Front Physiol 2018; 9:52. [PMID: 29472868 PMCID: PMC5810286 DOI: 10.3389/fphys.2018.00052] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick proteins type C2 (NPC2) are carriers of cholesterol in vertebrates, with a single member in each species. The high sequence conservation between mammals and across vertebrates is related to their common function. In contrast, NPC2 proteins in arthropods have undergone extensive duplication and differentiation, probably under environmental pressure, and are likely to have different functions. Recent studies have suggested that in arthropods these proteins might act as carriers for semiochemicals and other hydrophobic compounds. In this study we focused on the function of a specific NPC2 gene in the moth Helicoverpa armigera (HarmNPC2-1). This protein binds several flavonoids with micromolar dissociation constants. The best ligand was gossypol, present in cotton, one of the main host plants for H. armigera. Western blot revealed the presence of HarmNPC2-1 in different parts of the body, including the antennae, proboscis, and abdomen. In the antennae, in situ hybridization experiments produced strong staining in auxiliary cells at the base of sensilla trichodea, basiconica, coeloconica, and chaetica. Immunocytochemistry confirmed the expression of the protein in sensilla chaetica. Our results support a role of semiochemical carriers for NPC2 proteins in insects and indicate such proteins as new targets for insecticide-free pest population control.
Collapse
Affiliation(s)
- Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengbuo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li-Mei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Eliash N, Singh NK, Thangarajan S, Sela N, Leshkowitz D, Kamer Y, Zaidman I, Rafaeli A, Soroker V. Chemosensing of honeybee parasite, Varroa destructor: Transcriptomic analysis. Sci Rep 2017; 7:13091. [PMID: 29026097 PMCID: PMC5638865 DOI: 10.1038/s41598-017-13167-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/04/2017] [Indexed: 01/05/2023] Open
Abstract
Chemosensing is a primary sense in nature, however little is known about its mechanism in Chelicerata. As a model organism we used the mite Varroa destructor, a key parasite of honeybees. Here we describe a transcriptomic analysis of two physiological stages for the Varroa foreleg, the site of primary olfactory organ. The transcriptomic analysis revealed transcripts of chemosensory related genes belonging to several groups. These include Niemann-Pick disease protein, type C2 (NPC2), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant binding proteins (OBP). However, no insect odorant receptors (ORs) and odorant co-receptors (ORcos) were found. In addition, we identified a homolog of the most ancient IR co-receptor, IR25a, in Varroa as well as in other members of Acari. High expression of this transcript in the mite's forelegs, while not detectable in the other pairs of legs, suggests a function for this IR25a-like in Varroa chemosensing.
Collapse
Affiliation(s)
- Nurit Eliash
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Nitin K Singh
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Starlin Thangarajan
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Noa Sela
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Dena Leshkowitz
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Yosi Kamer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ilia Zaidman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Ada Rafaeli
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Victoria Soroker
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|