1
|
Sharafinia S, Rashidi A, Ebrahimi A, Babaei B, Hadizadeh MH, Esrafili MD, Pourkhalil M. Enhanced VOCs adsorption with UIO-66-porous carbon nanohybrid from mesquite grain: A combined experimental and computational study. Sci Rep 2024; 14:25177. [PMID: 39448618 PMCID: PMC11502799 DOI: 10.1038/s41598-024-74853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, adsorption of volatile organic compounds (VOCs) (here just gasoline vapor) by activated carbon- modified UIO-66 was investigated. First, activated carbon prepared from mesquite grain (ACPMG) and then UIO/ACPMG nanohybrid was synthesized by the solvothermal method. In following, the effect of main key parameters which effect on the surface and adsorption capacity such as the ratio of ACPMG to UIO-66 was studied. Physiochemical changes of as- synthesized samples were investigated by TGA, HR-TEM, PSD, SEM, EDX/MAP, BET, FT-IR, XRD, and XPS. It was found the UIO/ACPMG20% nanohybrid had the highest adsorption capacity (391.304 mg/g) for VOCs compared with the other samples, while the adsorption capacity of UIO-66, UIO/ACPMG10% nanohybrid, and UIO/ACPMG30% nanohybrid was 298.871, 309.523, and 320 mg/g respectively. UIO/ACPMG20% nanohybrid desorbed 285.71 mg/g of the adsorbed gasoline, which is an excellent result in desorption. So, the sample of UIO/ACPMG20% nanohybrid was selected as the optimum nano-adsorbent. In other hand, all the nano-adsorbent showed a rapid kinetic behavior for gasoline vapor adsorption and the maximum time for reaching a high adsorption capacity approximately was obtained in 20 min. Density functional theory calculations also performed to understand the adsorption characteristics of gasoline vapor on activated carbon-modified UIO-66.
Collapse
Affiliation(s)
- Soheila Sharafinia
- Department of chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Ahmad Ebrahimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Behnam Babaei
- Department of Chemistry, Faculty of Basic Science, University of Mohaghegh, Ardabili, Iran
| | | | - Mehdi D Esrafili
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Mahnaz Pourkhalil
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
2
|
Li Z, Lei Y, Dong L, Yu L, Yin C. Enhanced Ni(II) Removal from Wastewater Using Novel Molecular Sieve-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3211. [PMID: 38998294 PMCID: PMC11242230 DOI: 10.3390/ma17133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
This study focuses on the efficient removal of Ni(II) from spent lithium-ion batteries (LIBs) to support environmental conservation and sustainable resource management. A composite material, known as molecular sieve (MS)-based metal-organic framework (MOF) composites (MMCs), consisting of a synthesized MS matrix with integrated MOFs, was developed for the adsorption of Ni(II). The structural and performance characteristics of the MMCs were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms (BET). Batch adsorption experiments were conducted to assess the Ni(II) adsorption performance of the MMCs. The results revealed that, under conditions of pH 8 and a temperature of 298 K, the MMCs achieved near-equilibrium Ni(II) adsorption within 6 h, with a maximum theoretical adsorption capacity of 204.1 mg/g. Further analysis of the adsorption data confirmed that the adsorption process followed a pseudo-second-order kinetic model and Langmuir isotherm model, indicating a spontaneous, endothermic chemical adsorption mechanism. Importantly, the MMCs exhibited superior Ni(II) adsorption compared to the MS. This study provides valuable insights into the effective recovery and recycling of Ni(II) from spent LIBs, emphasizing its significance for environmental sustainability and resource circularity.
Collapse
Affiliation(s)
- Zengjie Li
- Department of Safety Supervision and Management, Chongqing Vocational Institute of Satety Technology, Chongqing 401331, China;
| | - Yalin Lei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.L.); (L.D.)
| | - Li Dong
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.L.); (L.D.)
| | - Li Yu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (Y.L.); (L.D.)
| | - Cong Yin
- Xi’an Research Institute of Hi-Tech, Xi’an 710025, China
| |
Collapse
|
3
|
Peng Y, Pan T, Chen C, Zhang Y, Yuan G, Liu D, Pu X, Xiong W. In Situ Synthesis of NH 2-MIL-53-Al/PAN Nanofibers for Removal Co(II) through an Electrospinning Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2567-2576. [PMID: 38267385 DOI: 10.1021/acs.langmuir.3c02837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In this study, researchers developed a novel composite material called NH2-MIL-53-Al/PAN, which consists of metal-organic frameworks (MOFs) grown on electrospun PAN nanofibers (NFs). The successful formation of the composite was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR), and the hydrophilicity of NH2-MIL-53-Al/PAN was demonstrated by the water contact angle (WCA). Batch experiments were conducted to investigate the adsorption performance of Co(II) under different conditions. The maximum adsorption capacity reached 58.72 mg/g, and almost 95% of the adsorption was achieved within the first 6 h. The adsorption process was found to be spontaneous and endothermic and followed the pseudo-second-order kinetics and Langmuir models. Chemisorption and molecular layer adsorption are the main mechanisms of adsorption, and X-ray photoelectron spectroscopy (XPS) analysis further reveals that the interaction between the adsorbent and cobalt is a coordination interaction. In this study, NH2-MIL-53-Al was grown in situ on PAN to ensure effective loading of MOFs and prevent agglomeration during the NF mixing process. This approach successfully addressed the challenge of exposing active sites within the embedded MOF crystals. Additionally, it overcame the difficulty of recycling traditional MOF adsorbents. As a result, the exceptional performance of MOF NFs offers a promising solution for the efficient removal of cobalt-containing wastewater.
Collapse
Affiliation(s)
- Yinyin Peng
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Ting Pan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Chuang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yuchen Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Guoyuan Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Derong Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xiaoqin Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wei Xiong
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
4
|
Yin C, Peng Y, Li H, Yang G, Yuan G. Facile construction of ZIF-94/PAN nanofiber by electrospinning for the removal of Co(II) from wastewater. Sci Rep 2024; 14:414. [PMID: 38172559 PMCID: PMC10764911 DOI: 10.1038/s41598-023-50796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to synthesize a novel nanofiber adsorbent based on metal-organic frameworks (MOFs), ZIF-94-PAN, by incorporating ZIF-94 into polyacrylonitrile (PAN) through electrospinning. The investigation of the adsorption characteristics of ZIF-94-PAN for cobalt ions was undertaken, yielding findings that suggest an optimum ZIF-94 loading content within the ZIF-94-PAN composite of 8%. The adsorption experiments revealed that, under pH 8.3 and 298 K, ZIF-94-PAN-8% attained cobalt ion equilibrium adsorption (139.08 mg/g). Additionally, the adsorption kinetics of cobalt ions exhibited conformity with the pseudo-second-order model, whereas adherence to the Freundlich isotherm model indicated a non-homogeneous, endothermic process. XPS analysis unveiled that the adsorption mechanism was characterized by the coordination of nitrogen and oxygen atoms within ZIF-94-PAN with cobalt ions. This study effectively addressed the challenges of separating and recovering MOFs adsorbents by fabricating them as nanofibers. The remarkable adsorption performance and stability of the ZIF-94-PAN nanofibers highlight their potential for removing cobalt-contaminated wastewater.
Collapse
Affiliation(s)
- Cong Yin
- Xi'an Research Institute of Hi-Tech, Xi'an, 710025, People's Republic of China
| | - Yinyin Peng
- Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| | - Hongjiang Li
- Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Guang Yang
- Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Guoyuan Yuan
- Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
5
|
Kumaravel A, Selvamani V, Hong SH. Photocatalytic Reduction of Methylene Blue by Surface-Engineered Recombinant Escherichia coli as a Whole-Cell Biocatalyst. Bioengineering (Basel) 2023; 10:1389. [PMID: 38135980 PMCID: PMC10741084 DOI: 10.3390/bioengineering10121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
A novel Escherichia coli strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated. The modified cells were subjected to cobalt concentrations (0.25 mM to 1 mM) and pH levels (pH 3, 5, 7, and 9). When exposed to a pH of 7 and a cobalt concentration of 1 mM, the pBAD30-CP1 strain had the best cobalt recovery efficiency, measuring 1468 mol/g DCW (Dry Cell Weight). Furthermore, pBAD30-CP1 had a higher affinity for cobalt than nickel and manganese. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Energy-Dispersive X-ray Spectroscopy (EDS) were used to examine the physiochemical parameters of the recombinant cells after cobalt adsorption. These approaches revealed the presence of cobalt in a bound state on the cell surface in the form of nanoparticles. In addition, the cobalt-binding recombinant strains were used in the photocatalytic reduction of methylene blue, which resulted in a 59.52% drop in the observed percentage. This study shows that modified E. coli strains have the potential for efficient cobalt recovery and application in environmental remediation operations.
Collapse
Affiliation(s)
| | | | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (A.K.); (V.S.)
| |
Collapse
|
6
|
Wu W, Gao X, Chen B, Meng G, Lian J, Xue F, Kong Q, Yang J. Selective adsorption of tetracycline and copper(II) on ion-imprinted porous alginate microspheres: performance and potential mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105538-105555. [PMID: 37715034 DOI: 10.1007/s11356-023-29810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
A novel epichlorohydrin and thiourea grafted porous alginate adsorbent (UA-Ca/IIP) was synthesized using ion-imprinting and direct templating to remove copper ions (Cu(II)) and tetracycline (TC) in aqueous solution. UA-Ca/IIP demonstrated great selectivity for Cu(II) and TC among different coexisting anions (CO32-, PO43- and SO42-), cations (Ca2+, Mg2+ and NH4+), and antibiotics (oxytetracycline and sulfamethoxazole). The adsorption of TC and Cu(II) by UA-Ca/IIP was significantly affected by the pH of the solution, and the quantity of TC and Cu(II) adsorbed reached a maximum at pH 5. A pseudo-second-order model better fitted the kinetic data; the Langmuir model predicted the maximum adsorption quantities 3.527 mmol TC g-1 and 4.478 mmol Cu(II) g-1 at 298 K. Thermodynamic studies indicated that the TC and Cu(II) adsorption was more rapid at a higher temperature. Antagonistic and synergistic adsorption experiments showed that the adsorption capacity of TC would increase significantly with the increase of Cu(II) concentration. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that along with the influence of pH, electrostatic interaction and complexation were the main mechanisms of TC and Cu(II) adsorption. Regeneration experiments revealed that TC and Cu(II) were removed efficiently and that UA-Ca/IIP was recyclable over the long term. These results show that the modified porous alginate microsphere is a green and recyclable adsorbent, which has good selectivity and high adsorption performance for the removal of TC and Cu(II).
Collapse
Affiliation(s)
- Wenkai Wu
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Xiangpeng Gao
- School of Metallurgical Engineering, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Bo Chen
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Guanhua Meng
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Jianjun Lian
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China.
| | - Feng Xue
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Jiangsu, Nanjing, 210042, China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Shandong, Qingdao, 266033, China
| | - Jianhua Yang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| |
Collapse
|
7
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
8
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|