1
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Tiwary BK, Mankad M, Patil GB, Gawai K, Sarkar P, Hati S. Peptidomics and molecular dynamics on bioactive peptides produced and characterized from the fermented whey of "Panchali" sheep of West India. Food Chem 2025; 468:142466. [PMID: 39689486 DOI: 10.1016/j.foodchem.2024.142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
The study assessed the peptide production by using potent Lactiplantibacillus plantarum KGL3A (MG722814) culture to ferment the sheep milk for evaluation of α-glucosidase inhibition, ACE inhibition, α-amylase inhibition, & inhibiting lipase activities. The maximal ACE inhibitory, α-amylase, α-glucosidase, & lipase inhibiting actions were 71.69 %, 71.32 %, 67.14 %, and 64.15 %, respectively, at 37 °C after 48 h. Proteolytic activity was tested at various incubation times & inoculation rates to maximise the conditions for growth and the greatest action (9.38 mg/mL) was reported at 2.5 % rate of inoculation after incubation of 48 h. The anti-diabetic as well as ACE inhibitory properties of less than 3 kDa were maximum in contrast to >3 kDa, <10 kDa, and > 10 kDa cut-off fractions. Further, when LPS stimulation is applied to RAW 267.4 macrophage cells, the overabundance generation of IL-6, IL-1β, NO, and TNF-α is greatly reduced by using KGL3A to ferment sheep milk. 2D gel electrophoresis & SDS-PAGE were utilized in relation to protein purifications. Maximum numbers of sheep milk's fermented protein bands were present, about 10 to 124 kDa by SDS-PAGE, and 38 spots of protein were discovered using 2D gel chromatography. Ultra-filtered fractions water soluble extracts (WSEs) were employed in RP-HPLC to differentiate between various peptide fractions. The peptide sequences produced were matched using the databases of AHTPDB and BIOPEP to match hypertensive peptides & antidiabetic peptides, respectively. Furthermore, the discovered peptide sequences from the fermenting sheep milk was studied due to their penchant for binding against the active locations of human bile salt activated lipase (hBAL); human maltase-glucoamylase (hMGA); human pancreatic alpha-amylase (hPAM); & human angiotensin-converting enzyme (hACE) through molecular docking.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand 388110, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Chasingre, Meghalaya, India
| | - Amar A Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand 388110, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana 121001, India; Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India
| | - Bipransh Kumar Tiwary
- Department of Microbiology, North Bengal St. Xavier's College, North Bengal University, West Bengal, India
| | - Maunil Mankad
- Department of Tissue Culture, Anand Agricultural University, Anand 388110, Gujarat, India
| | - G B Patil
- Department of Tissue Culture, Anand Agricultural University, Anand 388110, Gujarat, India
| | - Kunal Gawai
- Department of Dairy Microbiology, College of Dairy Science, Kamdhenu University, Amreli, Gujarat, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand 388110, Gujarat, India.
| |
Collapse
|
2
|
Król J, Brodziak A, Ślusarczyk L, Matwijczuk A, Chwil M, Matraszek-Gawron R. Yogurt with cornflower (Centaurea cyanus L.) petals as a source of antioxidant compounds and dietary fiber: physicochemical and spectroscopic research during storage. J Dairy Sci 2024:S0022-0302(24)01362-6. [PMID: 39662809 DOI: 10.3168/jds.2024-25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
An extensive study was undertaken using the petals of cornflower (Centaurea cyanus (Cyani flos)) flowers in yogurt production as a source of dietary fiber and antioxidant compounds, and as a natural dye, taking into account a 21-d refrigerated storage period. An additional aim of the study was to use cornflower petals in natural form rather than an extract. Four forms of cornflower petals: fresh, dried, frozen, and freeze-dried, were tested. In terms of physicochemical properties, including the content of dietary fiber and bioactive compounds, and antioxidant status, the freeze-dried form proved most beneficial. Two variants of yogurts were made, i.e., without the addition of cornflower petals (control) and with cornflower. The yogurts were stored for 21 d and analyzed every 7 d (at 0, 7, 14 and 21 d). In total 4 forms of petals of cornflower flowers, 3 batches of bulk cow milk and 288 yogurt samples were covered by research. Freeze-dried cornflower petals added to yogurt contributed to a significant increase in the content of total protein (by approx. 4%), fiber (form 0.00 to 0.56 g/100 g), and selected bioactive compounds, including amino acids (by approx. 2% in total), vitamin C (over 3-fold), and phenolic (by approx. 16% in total) and mineral (on average by 8%) compounds, as well antioxidant activity. The presence of antioxidant compounds not only in the processed milk (sulfur amino acids, whey proteins (especially β-lactoglobulin), vitamins A, E, and C, or β-carotene) but also in the petals (sulfur amino acids, vitamin C, and phenolic compounds) contributed to a significant increase in the antioxidant activity of fresh yogurt with cornflower (day "0" of storage), i.e., FRAP - by 18%, DPPH - 50%, and ABTS - 60%, in comparison with the control yogurt. Significant changes in the content of selected bioactive compounds occurred during 21-d storage, which effected on the antioxidant activity, i.e., increased of FRAP and ABTS by 20%. In addition, FTIR infrared spectra were taken for the yogurts. The spectroscopic analyses showed mainly changes in the intensity of vibrations characteristic of this type of product, associated with polysaccharide structures, as well as vibrations associated with protein structures contained in dietary fiber. The regions with the most pronounced changes in the intensity of the bands were ~3300, 1640, 1550, 1240, and noticeable at ~1030 cm-1. The maxima also correspond to the vibrations of C = O groups, amide bands, and the polysaccharide fraction, as well as stretching vibrations of the hydroxylic group. The analyses conducted using FTIR spectroscopy demonstrated that the product was highly stable during the refrigerated storage, as reflected in particular by the vibrations in the spectral region below 1000 cm-3.
Collapse
Affiliation(s)
- J Król
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - A Brodziak
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| | - L Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - A Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; Department of Cell Biology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - M Chwil
- Department of Plant Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - R Matraszek-Gawron
- Department of Plant Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
3
|
Rodrigues MHP, Gräff CA, Tupuna-Yerovi DS, Schmitz C, Camargo de Lima J, Timmers LFSM, Lehn DN, Volken de Souza CF. The bioactive potential of cheese whey peptides from different animal origins (bovine, goat, sheep, buffalo, and camel): A systematic review and meta-analysis. Food Res Int 2024; 196:115053. [PMID: 39614489 DOI: 10.1016/j.foodres.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
A systematic review and meta-analysis were conducted to compile information on the bioactive potential of peptides derived from cheese whey from various animal sources, including cattle, sheep, goats, buffaloes, and camels. The systematic search yielded 955 results, with the primary reasons for exclusion being studies that did not utilize cheese whey as a product or did not assess key bioactivities such as antioxidant, antihypertensive, antimicrobial, and anti-aging effects. Ultimately, 36 articles met the inclusion criteria. Among the methods used to evaluate the antioxidant potential of protein hydrolysates, the 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay was identified as the most effective. Peptides derived from cheese whey proteins demonstrated antimicrobial activity against both filamentous fungi and bacteria. However, the review revealed a significant gap in studies investigating the anti-aging properties of these peptides. Notably, β-lactoglobulin contains peptide sequences embedded within its three-dimensional structure that may exhibit various bioactive properties. Overall, the findings highlight that cheese whey, irrespective of its animal origin, is a high-value co-product with excellent potential for biotechnological applications, particularly in the production of bioactive peptides.
Collapse
Affiliation(s)
| | - Cláudia Andréia Gräff
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Jeferson Camargo de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
4
|
Mudgil P, Gan CY, Yap PG, Redha AA, Alsaadi RHS, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. Exploring the dipeptidyl peptidase IV inhibitory potential of probiotic-fermented milk: An in vitro and in silico comprehensive investigation into peptides from milk of different farm animals. J Dairy Sci 2024:S0022-0302(24)01060-9. [PMID: 39122154 DOI: 10.3168/jds.2024-25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Bioactive peptides produced via enzymatic hydrolysis have been widely investigated for their dipeptidyl peptidase-IV (DPP-IV) inhibitory properties. However, deficit of studies on fermentation as a mean to produce DPP-IV inhibitory peptides prompted us to draw a comparative study on DPP-IV inhibitory peptides generated from cow, camel, goat, and sheep milk using probiotic fermentation. Further, peptide identification, in silico molecular interactions with DPP-IV, and ensemble docking were performed. Results obtained suggested that goat milk consistently exhibited higher hydrolysis than other milk types. Further, Pediococcus pentosaceus (PP-957) emerged as a potent probiotic, with significantly lower DPP-IV-IC50 values 0.17, 0.12, and 0.25 µg/mL protein equivalent in fermented cow, camel, and goat milk, respectively. Overall, peptides (RPPPPVAM, CHNLDELKDTR, and VLSLSQPK) exhibited strong binding affinity with binding energies of -9.31, -9.18 and -8.9 Kcal·mol-1, respectively, suggesting their potential role as DPP-IV inhibitors. Overall, this study, offers valuable information toward antidiabetic benefits of fermented milk products via inhibition of DPP-IV.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates..
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2 LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QDPP-IVFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reem H Sultan Alsaadi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación. División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
5
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
6
|
Kamal H, Jafar S, Mudgil P, Hamdi M, Ayoub MA, Maqsood S. Camel whey protein with enhanced antioxidative and antimicrobial properties upon simulated gastro-intestinal digestion. Nutr Health 2024; 30:371-379. [PMID: 36065597 DOI: 10.1177/02601060221122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Whey proteins and their peptide derivatives have attracted a great attention of researchers in the pharmaceutical and nutritional fields, due to their numerous bio-functionalities. Aim: In the present research study, enzymatic protein hydrolysates (CWPHs) from camel whey proteins (CWPs) were produced and investigated for their antioxidant and antimicrobial potentials. Methods: Herein, Pepsin (gastric), and Trypsin and Chymotrypsin (pancreatic) enzymes were used to produce CWPHs. The obtained hydrolysates were characterize to ascertain the level of protein degradation and studies on their antimicrobial and antioxidant potential were conducted. Results: Among all CWPHs, a complete degradation of all different protein bands was perceived with Chymotrypsin-derived CWPHs, whereas, light bands of serum albumin and α-lactalbumin were observed with Trypsin and Pepsin-derived CWPHs. After enzymatic degradation, both CWPHs antioxidant and antimicrobial activities were improved. Chymotrypsin-derived CWPHs demonstrated higher DPPH and ABTS radical scavenging activities, anent the increase in proteolysis time. Compared to unhydrolyzed CWPs, higher metal chelating activities were displayed by Trypsin-derived CWPHs. No significant increase in the FRAP activities was noticed after CWPs hydrolysis using Trypsin and Chymotrypsin, while Pepsin-derived CWPHs showed higher reducing power. In terms of antimicrobial activity, significantly higher bacterial growth inhibition rates were exhibited by CWPHs compared to the unhydrolyzed CWP. Conclusion: Overall, CWPHs displayed enhanced antioxidative and antimicrobial properties.
Collapse
Affiliation(s)
- Hina Kamal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sabika Jafar
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Marwa Hamdi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
7
|
Mudgil P, Al Dhaheri MKO, Alsubousi MSM, Khan H, Redha AA, Yap PG, Gan CY, Maqsood S. Molecular docking studies on α-amylase inhibitory peptides from milk of different farm animals. J Dairy Sci 2024; 107:2633-2652. [PMID: 38101739 DOI: 10.3168/jds.2023-24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Milk-derived peptides have emerged as a popular mean to manage various lifestyle disorders such as diabetes. Fermentation is being explored as one of the faster and efficient way of producing peptides with antidiabetic potential. Therefore, in this study, an attempt was made to comparatively investigate the pancreatic α-amylase (PAA) inhibitory properties of peptides derived from milk of different farm animals through probiotic fermentation. Peptide's identification was carried out using liquid chromatography-quadrupole time-of-flight mass spectrometry and inhibition mechanisms were characterized by molecular docking. Results obtained showed a PAA-IC50 value (the amount of protein equivalent needed to inhibit 50% of enzymes) between 2.39 and 36.1 µg protein equivalent for different fermented samples. Overall, Pediococcus pentosaceus MF000957-derived fermented milk from all animals indicated higher PAA inhibition than other probiotic derived fermented milk (PAA-IC50 values of 6.01, 3.53, 15.6, and 10.8 µg protein equivalent for bovine, camel, goat, and sheep fermented milk). Further, molecular docking analysis indicated that camel milk-derived peptide IMEQQQTEDEQQDK and goat milk-derived peptide DQHQKAMKPWTQPK were the most potent PAA inhibitory peptides. Overall, the study concluded that fermentation derived peptides may prove useful in for managing diabetes via inhibition of carbohydrate digesting enzyme PAA.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mouza Khamis Obaid Al Dhaheri
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Maitha Saif Mohammed Alsubousi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hina Khan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
8
|
Flis Z, Szatkowski P, Pielichowska K, Molik E. The Potential of Sheep or Camel Milk Constituents to Contribute to Novel Dressings for Diabetic Wounds. Int J Mol Sci 2023; 24:17551. [PMID: 38139380 PMCID: PMC10744295 DOI: 10.3390/ijms242417551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Impaired wound healing is a complication of diabetes, which constitutes a serious problem in clinical practice. Currently, there is a high demand on the market for local treatment options for difficult-to-heal wounds caused by diabetes. The development of dressings that accelerate wound healing has recently been the subject of much research. Sheep and camel milk is gaining importance due to the content of many bioactive substances with health-promoting effects, such as insulin, LF, proline, or CLA. Sheep and camel milk proteins are a promising source of insulin, antidiabetic, and antihypertensive peptides. Numerous studies show that local administration of insulin has a significant impact on the healing of diabetic wounds. Sheep and camel milk, due to the highest LF content among ruminants, reduces autoimmune inflammatory processes and protects against bacterial and viral infections in the wound environment. Sheep's milk has the highest content of proline and CLA, and their addition to a hydrogel dressing can help in the development of an effective dressing material. The production of hydrogel dressings containing sheep and camel milk, which are naturally rich in the bioactive substances presented in this review, may be a promising step in the market of specialized dressings for difficult-to-heal diabetic wounds.
Collapse
Affiliation(s)
- Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| |
Collapse
|
9
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
10
|
Ali AH, Alsalmi M, Alshamsi R, Tarique M, Bamigbade G, Zahid I, Nazir MH, Waseem M, Abu-Jdayil B, Kamal-Eldin A, Huppertz T, Ayyash M. Effect of whey protein isolate addition on set-type camel milk yogurt: Rheological properties and biological activities of the bioaccessible fraction. J Dairy Sci 2023; 106:8221-8238. [PMID: 37641311 DOI: 10.3168/jds.2023-23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/18/2023] [Indexed: 08/31/2023]
Abstract
The manufacture of camel milk (CM) yogurt has been associated with several challenges, such as the weak structure and watery texture, thereby decreasing its acceptability. Therefore, this study aimed to investigate the effect of whey protein isolate (WPI) addition on the health-promoting benefits, texture profile, and rheological properties of CM yogurt after 1 and 15 d of storage. Yogurt was prepared from CM supplemented with 0, 3, and 5% of WPI and compared with bovine milk yogurt. The results show that the water holding capacity was affected by WPI addition representing 31.3%, 56.8%, 64.7%, and 45.1% for yogurt from CM containing 0, 3 or 5% WPI, and bovine milk yogurt, respectively, after 15 d. The addition of WPI increased yogurt hardness, adhesiveness, and decreased the resilience. CM yogurt without WPI showed lower apparent viscosity, storage modulus, and loss modulus values compared with other samples. The supplementation of CM with WPI improved the rheological properties of the obtained yogurt. Furthermore, the antioxidant activities of yogurt before and after in vitro digestion varied among yogurt treatments, which significantly increased after digestion except the superoxide anion scavenging and lipid oxidation inhibition. After in vitro digestion at d 1, the superoxide anion scavenging of the 4 yogurt treatments respectively decreased from 83.7%, 83.0%, 79.1%, and 87.4% to 36.7%, 38.3%, 44.6%, and 41.3%. The inhibition of α-amylase and α-glucosidase, angiotensin-converting enzyme inhibition, cholesterol removal, and degree of hydrolysis exhibited different values before and after in vitro digestion.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maitha Alsalmi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Rodah Alshamsi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Imtisal Zahid
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Muhammad Waseem
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Basim Abu-Jdayil
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE
| | - Thom Huppertz
- FrieslandCampina, Amersfoort 1551 3800 BN, the Netherlands; Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, UAE.
| |
Collapse
|
11
|
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Anim Biotechnol 2023; 34:1988-2005. [PMID: 35389299 DOI: 10.1080/10495398.2022.2059490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Camel milk (CM) is the key component of human diet specially for the population belongs to the arid and semi-arid regions of the world. CM possess unique composition as compare to the cow milk with abundant amount of medium chain fatty acids in fat low lactose and higher concentration of whey protein and vitamin C. Besides the nutritional significance of CM, it also contains higher concentration of bioactive compounds including bioactive peptides, lactic acid bacteria (LAB), lactoferrin (LF), lactoperoxidase, lysozyme casein and immunoglobulin. Recently, CM and their bioactive compounds gaining more attention toward scientific community owing to their multiple health benefits, especially in the current era of emerging drug resistance and untold side effects of synthetic medicines. Consumption of fresh or fermented CM and its products presumed exceptional nutraceutical and medicinal properties, including antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, hepatoprotective, nephroprotective, anticancer and immunomodulatory activities. Moreover, CM isolated LAB exhibit antioxidant and probiotic effects leading to enhance the innate and adaptive immune response against both gram-negative and gram-positive pathogenic bacteria. The main objective of this review is to highlight the nutritional significance, pharmaceutical potential, medicinal value and salient beneficial health aspect of CM for human and animals.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
12
|
Marcia JA, Aleman RS, Kazemzadeh S, Manrique Fernández V, Martín Vertedor D, Kayanush A, Montero Fernández I. Isolated Fraction of Gastric-Digested Camel Milk Yogurt with Carao ( Cassia grandis) Pulp Fortification Enhances the Anti-Inflammatory Properties of HT-29 Human Intestinal Epithelial Cells. Pharmaceuticals (Basel) 2023; 16:1032. [PMID: 37513943 PMCID: PMC10383137 DOI: 10.3390/ph16071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Functional foods have recently generated a lot of attention among consumers looking for healthy options. Studies have examined yogurt with carao to increase health benefits and probiotic characteristics. It has been determined that carao fruit and camel milk have high phenolic compound and antioxidant activity concentrations. The objective of this study was to examine if carao (0, 1.3, 2.65, and 5.3 g/L) incorporated into yogurt enhances anti-inflammatory stimulus and antioxidant activity and impacts the physio-chemical and sensory properties of camel milk yogurt. HT-29 cells were used as a model of anti-inflammatory response, including cytokine responses of IL-8 and mRNA production of IL-1β and TNF-α in gastric digested isolated fraction. In addition, pH, titratable acidity, Streptococcus thermophilus counts and Lactobacillus bulgaricus counts of camel yogurts were examined during the fermentation process in 0, 2.5, 5, and 7 h whereas viscosity, syneresis, and radical scavenging assay evaluations were determined at hour 7. Furthermore, a consumer study was performed. Compared to control samples, the incorporation of carao into yogurts did not lead to a significant (ρ > 0.05) difference in the pH. In contrast, titratable acidity (TA), viscosity, syneresis, and antioxidant capacity significantly increased with the inclusion of 2.65 and 5.3 g/L carao, while 5.3 g/L carao significantly (ρ < 0.05) increased the counts of both bacteria. The inflammatory response of IL-8 and the level of mRNA production of IL-1β and TNF-α was significantly (ρ < 0.05) lower with 2.65 and 5.3 g/L carao yogurt compared to control camel yogurt. Sensory attributes were not impacted by the addition of 1.3 and 2.65 g/L carao. Carao could be a possible ingredient to consider when improving the nutrition value of yogurt.
Collapse
Affiliation(s)
- Jhunior Abrahan Marcia
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Road to Dulce Nombre de Culmí, Km 215, Barrio El Espino, Catacamas 16201, Honduras
- Doctorate Program in Food Science, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Shirin Kazemzadeh
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Víctor Manrique Fernández
- Nutrition and Bromatology Area, Department of Animal Production and Food Science, University of Extremadura, Avda. Adolfo Suárez, s/n, 06004 Badajoz, Spain
| | - Daniel Martín Vertedor
- Department of Nature Conservation and Protected Areas, Government of Extremadura, 06800 Mérida, Spain
| | - Aryana Kayanush
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ismael Montero Fernández
- Department of Chemical Engineering and Physical Chemistry, Area of Chemical Engineering, Faculty of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
13
|
Nicosia FD, Pino A, Maciel GLR, Sanfilippo RR, Caggia C, de Carvalho AF, Randazzo CL. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods 2023; 12:foods12061154. [PMID: 36981081 PMCID: PMC10048630 DOI: 10.3390/foods12061154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
A total of 26 lactic acid bacteria isolates from both Italian and Brazilian cheeses were tested for their use in cheesemaking. Isolates were screened for salt tolerance, exopolysaccharide and diacetyl production, lipolytic, acidifying, and proteolytic activities. In addition, the aminopeptidase (Pep N and Pep X) activities, were evaluated. Most of the strains demonstrated salt tolerance to 6% of NaCl, while only two L. delbruekii (P14, P38), one L. rhamnosus (P50) and one L. plantarum (Q3C4) were able to grow in the presence of 10% (w/v) of NaCl. Except for 2 L. plantarum (Q1C6 and Q3C4), all strains showed low or medium acidifying activity and good proteolytic features. Furthermore, lipolytic activity was revealed in none of the strains, while the production of EPS and diacetyl was widespread and variable among the tested strains. Finally, regarding aminopeptidase activities, 1 L. delbrueckii (P10), 1 L. rhamnosus (P50), and 1 L. lactis (Q5C6) were considered as the better performing, showing high values of both Pep N and Pep X. Based on data presented here, the aforementioned strains could be suggested as promising adjunct cultures in cheesemaking.
Collapse
Affiliation(s)
- Fabrizio Domenico Nicosia
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
| | - Guilherme Lembi Ramalho Maciel
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570900, MG, Brazil
| | | | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
| | - Antonio Fernandes de Carvalho
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570900, MG, Brazil
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +390957580218
| |
Collapse
|
14
|
Liu C, Liu LX, Yang J, Liu YG. Exploration and analysis of the composition and mechanism of efficacy of camel milk. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
Iwamoto N, Sasaki A, Maizawa T, Hamada-Sato N. Abalone Viscera Fermented with Aspergillus oryzae 001 Prevents Pressure Elevation by Inhibiting Angiotensin Converting Enzyme. Nutrients 2023; 15:nu15040947. [PMID: 36839305 PMCID: PMC9967480 DOI: 10.3390/nu15040947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Abalone viscera, which accounts for more than 20% of the total weight of abalone, is generally regarded as waste in the food industry, and effective methods are required to utilize it productively. In this study, the viscera were fermented with Aspergillus oryzae 001 to add functionality. Fermented abalone viscera exhibited increased angiotensin I-converting enzyme (ACE) inhibitory activity and enhanced inhibition of blood pressure elevation in spontaneously hypertensive rats (SHRs). Abalone viscera administration had no significant effect on body weight, food intake, liver and kidney weights, or serum components in SHRs. ACE inhibitors specific to fermented abalone viscera were identified through extraction, fractionation, purification, and analysis. The identified substance was L-m-tyrosine, which non-competitively inhibited ACE and, in a single oral administration, significantly reduced blood pressure in SHRs compared to that in the control. This study identified that abalone viscera fermented by A. oryzae 001 has an inhibitory effect on blood pressure elevation, suggesting its potential use as a functional food. In addition, L-m-tyrosine, a unique substance in fermented abalone viscera, was isolated for the first time as a single ACE-inhibitory amino acid.
Collapse
Affiliation(s)
- Natsumi Iwamoto
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Asahi Sasaki
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoaki Maizawa
- Research and Development Department, Bull-Dog Sauce Co., Ltd., 3-6-1, Mitsuwa, Kawaguchi-shi, Saitama 334-0011, Japan
| | - Naoko Hamada-Sato
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
- Correspondence: ; Tel./Fax: +81-3-5463-0389
| |
Collapse
|
16
|
Patel D, Sakure A, Lodha D, Basaiawmoit B, Maurya R, Das S, Bishnoi M, Kondepudi KK, Hati S. Significance of Lactobacillus fermentum on Antioxidative and Anti-Inflammatory Activities and Ultrafiltration Peptide Fractions as Potential Sources of Antioxidative Peptides from Fermented Camel Milk (Indian Breed). JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:75-84. [PMID: 34605750 DOI: 10.1080/07315724.2021.1983485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present study aimed to assess the bio-functional analysis of camel milk viz. anti-oxidative, anti-inflammatory activities using potent Lactobacillus fermentum (KGL4) strain through fermentation and also to release the bioactive peptides during fermentation. METHOD The antioxidant and proteolytic activities of the fermented camel milk were studied followed by SDS-PAGE analysis and 2 D PAGE. The separations of the bioactive peptides of water-soluble extract (WSE) of 3 and 10 kDa (Permeates & Retentates) were achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS and the effect of WSE of camel milk fermented with KGL4 on lipopolysaccharide (LPS)/endotoxin-induced inflammation in RAW 264.7 macrophages were also studied. RESULTS The maximal activity was observed in ABTS assay (64.03%), then in hydroxyl free radical scavenging assay, and minimal activity was observed in superoxide free radical assay (57.75%). ABTS assay was significantly (P < 0.05) higher than other assays. MTT assay was performed on WSE of camel milk fermented with KGL4 using treated macrophage cells with different concentrations and found the decreasing range of cell viability at 0.25 mg/mL treatment which was non-significant. 7.80 mg/ml peptide production was found after 48 h of fermentation using the OPA method. Further, WSE of fermented camel milk was separated and analyzed their protein profiles using SDS-PAGE and 2 D-PAGE techniques. Here, many new peptides were found in camel milk when fermented with KGL4 strain. Each protein sequence was characterized through bioinformatic tools, including SWISS-PROT & PIR protein databases. Novel bioactive anti-oxidative peptides were found by searching in the BIOPEP database. CONCLUSIONS The present study suggests that the L. fermentum KGL4 strain could be explored to produce novel antioxidative peptides from fermented camel milk (Indian breed).
Collapse
Affiliation(s)
- Dharmisthaben Patel
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat, India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Dikshita Lodha
- Department of Research and Development, Meril Life Science Pvt. Ltd, Vapi, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India.,Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
17
|
Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R, Bishnoi M, Kondepudi KK, Hati S. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem 2022; 46:e14449. [PMID: 36206543 DOI: 10.1111/jfbc.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The goal of this investigation was to find antidiabetic peptides and inhibit angiotensin converting enzyme (ACE) in Lacticaseibacillus paracasei (M11) fermented dromedary camel milk (Camelus dromedaries). According to the findings, the rate of antidiabetic activity increased along with the incubation periods and reached its peak after 48 hr of fermentation. The inhibitions of α-amylase, α-glucosidase, and lipase were 80.75, 59.62, and 65.46%, respectively. The inhibitory activity of ACE was 78.33%, and the proteolytic activity was 8.90 mg/mL. M11 at 0.25 mg/mL effectively suppressed LPS-induced pro-inflammatory cytokines and their mediators such as NO, TNF-α, IL-6, and IL-1β in RAW 264.7 cells. The rate of inoculum in the optimization phase was 1.5-2.5%, and the greatest proteolytic activity was observed after 48 hr of fermentation. The investigation of the above property in the ultrafiltered fermented milk exhibited the highest antidiabetic and ACE inhibition activities in the 3 kDa than 10 kDa fractions. The molecular weight was determined employing SDS-PAGE, and the six-peptide sequences were identified using 2D gel electrophoresis. Due to its high proteolytic activity, the L. paracasei strain has been reported to be useful in the production of ACE-inhibitory and antidiabetic peptides. Amino acid sequences such from ɑ1, ɑ2, and β-caseins have been identified within fermented camel milk by searching on online databases, including BIOPEP (for antidiabetic peptides) and AHTPDB (for hypertension peptides) to validate the antidiabetic and ACE-inhibitory actions of several peptides. PRACTICAL APPLICATIONS: The study aims to identify antidiabetic peptides and inhibit ACE in dromedary camel milk fermented with Lacticaseibacillus paracasei M11. Maximum antidiabetic and ACE-inhibitory actions of the fermented camel milk were observed in 3 kDa permeate fractions. Fermented camel milk significantly reduced the excessive TNF-α, IL-6, and IL-1β production in LPS-activated RAW 264.7 cells. RP-LC/MS was used to identify 6 bioactive peptides from dromedary fermented camel milk. This fermented camel milk could be used for the management of hypertension and diabetic related problems.
Collapse
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science, Anand, Gujarat, India
| | - Amar Sakure
- Department of Plant Biotechnology, B.A College of Agriculture, Anand, Gujarat, India
| | - Rinkal Pipaliya
- Dairy Microbiology Department, SMC College of Dairy Science, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Chasingre, Meghalaya, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Anand, Gujarat, India
| |
Collapse
|
18
|
Dual Bioactivity of Angiotensin Converting Enzyme Inhibition and Antioxidant Novel Tripeptides from Sipunculus nudus L. and Their Related Mechanism Analysis for Antihypertention. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science Anand Agricultural University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Plant Biotechnology B.A College of Agriculture Anand 388110 Gujarat India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus Chasingre 794002 Meghalaya India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology 18 Xi'an 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science Kamdhenu University Anand ‐388110 Gujarat India
| |
Collapse
|
20
|
Nutritional and Therapeutic Properties of Fermented Camel Milk Fortified with Red Chenopodium quinoa Flour on Hypercholesterolemia Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227695. [PMID: 36431797 PMCID: PMC9698061 DOI: 10.3390/molecules27227695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Quinoa is a nutrient-dense food that lowers chronic disease risk. This study evaluated the physicochemical and sensory qualities of fermented camel milk with 1, 2, 3, and 4% quinoa. The results showed that improvement in camel's milk increased the total solids, protein, ash, fiber, phenolic content, and antioxidant activity more effectively. Fermented camel milk with 3% of quinoa flour exhibited the highest sensory characteristics compared to other treatments. Fermented camel milk enriched with 3% red quinoa flour was studied in obese rats. Forty male Wistar rats were separated into five groups: the first group served as a normal control, while groups 2-4 were fed a high-fat, high-cholesterol (HF)-diet and given 2 mL/day of fermented milk and quinoa aqueous extract. Blood glucose, malondialdehyde (MDA), low-density lipoprotein (LDL), cholesterol, triglyceride, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), creatinine, and urea levels decreased dramatically in comparison to the positive control group, while high-density lipoprotein (HDL), albumin, and total protein concentrations increased significantly. Fortified fermented camel milk decreased the number of giant adipocytes while increasing the number of tiny adipocytes in the body. The results showed that the liver and renal functions of hypercholesterolemic rats were enhanced by consuming fermented milk and quinoa. These results demonstrated the ability of quinoa and camel milk to protect rats from oxidative stress and hyperlipidemia. Further studies are needed to clarify the mechanisms behind the metabolic effects of fermented camel milk and quinoa.
Collapse
|
21
|
Ashokbhai JK, Basaiawmoit B, Sakure A, Das S, Patil GB, Mankad M, Hati S. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4262-4272. [PMID: 36193483 PMCID: PMC9525493 DOI: 10.1007/s13197-022-05493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
This study aims to identify antioxidant and antimicrobial peptides from sheep milk produced using Lactobacillus plantarum (KGL3A). It was inferred that antioxidative and antimicrobial activities increased with increasing incubation time, and antioxidative properties (ABTS assay, superoxide free radical & hydroxyl free radical scavenging activity were 34.5, 34.7, and 29.2% respectively) and antimicrobial properties against Escherichia coli, S. typhimurium, E. faecalis, & B. cereus were 11.3, 12.7, 13.3, & 12.3 mm. However, inoculation of culture at a level of 2.5% and 48 h fermentation give the highest proteolysis activities. Fermented sheep milk fractions of 3 & 10 kDa were analysed for antioxidative and antimicrobial activity, and the 10 kDa permeate showed the highest ABTS assay. The hydroxyl free radical scavenging activity was greatest in 10 kDa retentate and superoxide free radical scavenging activity was observed in 3 kDa permeate (34.7, 43.4, and 34.6%, respectively). Antimicrobial activity of 10 kDa retentate against B. cereus & E. coli (13.3 mm) was greater than 3 and 10 kDa retentate against S. typhimurium (13 mm) and 3 kDa retentate against E. faecalis (13.7 mm). The molecular weight of the protein was estimated using SDS-PAGE. On electrophoresis on a 2-D gel, 6 peptides were identified using RP-LC/MS. BIOPEP, a database for antioxidative and antimicrobial peptides, validated the antioxidative & antimicrobial activities of several peptides in sheep's milk that has been fermented. Sheep milk fermented using Lactobacillus could be considered a novel source of antioxidative and antimicrobial proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05493-2.
Collapse
Affiliation(s)
- Jodhani Keyur Ashokbhai
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura campus, Tura, 794002 Meghalaya India
| | - G. B. Patil
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Maunil Mankad
- Department of Tissue Culture, Anand Agricultural University, Anand, 388110 Gujarat India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, 388110 Gujarat India
| |
Collapse
|
22
|
Wang L, Wu T, Zhang Y, Yang K, He Y, Deng K, Liang C, Gu Y. Comparative studies on the nutritional and physicochemical properties of yoghurts from cows’, goats’, and camels’ milk powder. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Dharmisthaben P, Sakure A, Liu Z, Maurya R, Das S, Basaiawmoit B, Kumari R, Bishnoi M, Kondepudi KK, Gawai KM, Baba WN, Maqsood S, Hati S. Identification and molecular mechanisms of novel antioxidative peptides from fermented camel milk (Kachchi breed, India) with anti‐inflammatory activity in raw macrophages cell lines. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patel Dharmisthaben
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Agriculture Biotechnology Anand Agricultural University Anand 388110 Gujarat India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ruchika Maurya
- Regional Centre for Biotechnology Faridabad Haryana 121001 India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Reena Kumari
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura campus Tura 794001 Meghalaya India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division National Agri‐Food Biotechnology Institute Knowledge City, Sector 81 SAS Nagar Punjab 140306 India
| | - Kunal M. Gawai
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| | - Waqas N. Baba
- Food Science Department, College of Agriculture and Veterinary Medicine United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science Kamdhenu University Anand 388110 Gujarat India
| |
Collapse
|
24
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Tryptamine, a Microbial Metabolite in Fermented Rice Bran Suppressed Lipopolysaccharide-Induced Inflammation in a Murine Macrophage Model. Int J Mol Sci 2022; 23:ijms231911209. [PMID: 36232510 PMCID: PMC9570467 DOI: 10.3390/ijms231911209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fermentation is thought to alter the composition and bioavailability of bioactive compounds in rice bran. However, how this process affects the anti-inflammatory effects of rice bran and the bioactive compounds that might participate in this function is yet to be elucidated. This study aimed to isolate bioactive compounds in fermented rice bran that play a key role in its anti-inflammatory function. The fermented rice bran was fractionated using a succession of solvent and solid-phase extractions. The fermented rice bran fractions were then applied to lipopolysaccharide (LPS)-activated murine macrophages to evaluate their anti-inflammatory activity. The hot water fractions (FRBA), 50% ethanol fractions (FRBB), and n-hexane fractions (FRBC) were all shown to be able to suppress the pro-inflammatory cytokine expression from LPS-stimulated RAW 264.7 cells. Subsequent fractions from the hot water fraction (FRBF and FRBE) were also able to reduce the inflammatory response of these cells to LPS. Further investigation revealed that tryptamine, a bacterial metabolite of tryptophan, was abundantly present in these extracts. These results indicate that tryptamine may play an important role in the anti-inflammatory effects of fermented rice bran. Furthermore, the anti-inflammatory effects of FRBE and tryptamine may depend on the activity of the aryl hydrocarbon receptor.
Collapse
|
26
|
Felfoul I, Bouazizi A, Burgain J, Perroud C, Gaiani C, Scher J, Attia H, Petit J. Enzymatic coagulation of raw and reconstituted skim dromedary and cows’ milk powders: kinetics, rheological and morphological properties. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Solanki D, Sakure A, Prakash S, Hati S. Characterization of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides produced in fermented camel milk (Indian breed) by Lactobacillus acidophilus NCDC-15. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3567-3577. [PMID: 35875214 PMCID: PMC9304531 DOI: 10.1007/s13197-022-05357-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Fermented camel milk provides many health benefits like antidiabetic activity, anti-hypertensive activity etc. Fermented camel milk contains IPP or VPP rich ACE inhibitory peptides. The aim of this study was to spot the novel Angiotensin I-Converting Enzyme inhibitory peptides liberated by the potent proteolytic Lactobacillus acidophilus NCDC-15 from camel milk (Indian breed). NCDC-15 had exhibited maximum PepX activity (0.655) and ACE-inhibitory activity (78.33%) at 12 and 48 h of incubation at 37 °C respectively. Proteolytic activity was measured using o-phthaldialdehyde method and observed maximum (0.976 OD) at 2% of inoculation for 12 h of incubation at 37 °C. Water soluble extracts derived from fermented camel milk were ultrafiltered through 3 kDa, 5 kDa and 10 kDa membrane filters from which 3 kDa permeates (48.01% peptides production & 49.46% ACE-inhibition) and 10 kDa permeates (55.04% peptides production & 42.40% ACE-inhibition) had shown maximum peptides production and ACE-inhibitory activity. Overall, 24 peptides were identified from the samples of 3 kDa permeates [6 fractions (K1, L1, M1, N1, O1 and P1)] and 10 permeates [5 fractions (S, T, U, V and W)]. Novel peptide (AIGPVADLHI) was matched with k-casein in AHTPDB database and other peptides were also found matched with α and β-caseins of camel milk. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05357-9.
Collapse
Affiliation(s)
- Divyang Solanki
- Dairy Microbiology Department, SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat 388110 India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, Gujarat 388110 India
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Anand Agricultural University, Anand, Gujarat 388110 India
| |
Collapse
|
28
|
Shori AB, Tin YP, Baba AS. Codonopsis pilosula and fish collagen yogurt: Proteolytic, potential Angiotensin-I converting enzyme (ACE) inhibitory activity and sensory properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Abbasi S, Moslehishad M, Salami M. Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int J Biol Macromol 2022; 213:602-609. [PMID: 35659938 DOI: 10.1016/j.ijbiomac.2022.05.189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
The quinoa protein is gaining global attraction due to high content of gluten-free protein. It is a rich source of high-quality protein with all essential amino acids. The objective of this study was to evaluate the antioxidant activity and alpha-glucosidase inhibition effect of bioactive peptides obtained from quinoa protein that was hydrolyzed by alcalase and trypsin. Peptides were fractionated using ultrafiltration with MW cut-off = 3, 10 kDa. The peptide concentration was evaluated using OPA solution and peptide bonds were studied by SDS-PAGE. The highest antioxidant activity obtained from quinoa bioactive peptides by alcalase and trypsin was observed after 0.5 h (10 kDa≤) and 4 h (3 kDa≥), respectively. The highest α-glucosidase inhibition activity was observed in peptides with MW 3 kDa ≥ when hydrolyzed by trypsin. The amino acid composition of the most effective samples has been determined. Comparing the results showed that MW and the composition of peptides influenced the studied traits. From the result of this study, it concluded that bioactive peptides obtained from quinoa protein could be used in functional food and supplements formulation.
Collapse
Affiliation(s)
- Shiva Abbasi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Moslehishad
- Department of Food Science and Technology, Safadasht Branch, Islamic Azad University, Tehran, Iran.
| | - Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
30
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
31
|
Camels, Camel Milk, and Camel Milk Product Situation in Kenya in Relation to the World. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:1237423. [PMID: 35299617 PMCID: PMC8923781 DOI: 10.1155/2022/1237423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Kenya is the leading camel milk producer globally, with an annual production volume of 1.165 MMT, followed by Somalia (0.958 MMT) and Mali (0.271 MMT). In Kenya, pastoral tribes in North-Eastern parts rear about 4.722 million camels accounting for about 80% of all camels. Camels offer locals various benefits, including transportation of goods across the deserts, meat, fur, and milk. Camel milk contains natural therapeutically and immunity-boosting properties due to the higher concentration of lactoferrin, lactoglobulins, and lysozyme than bovine milk. Camel milk has been shown to have hypoallergenicity properties compared to bovine milk. Camel and human milk are similar in nutritional composition and therapeutic properties. Camel milk is known to fight various diseases, including cancer, diabetes, autism, hypertension, and skin diseases. Despite the standing of Kenya in the world in terms of camel milk production, Kenya lags considering the camel milk products, industries, and marketing. This paper reviews recent literature on camels and camel milk production trends in Kenya in relation to the world. The review also discusses various camel milk properties (nutritional and therapeutic) as well as the camel milk sector situation in Kenya.
Collapse
|
32
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
33
|
Bekiroglu H, Bozkurt F, Karadag A, Ahhmed AM, Sagdic O. The effects of different protease treatments on the techno-functional, structural, and bioactive properties of bovine casein. Prep Biochem Biotechnol 2022; 52:1097-1108. [PMID: 35171080 DOI: 10.1080/10826068.2022.2033988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, bovine sodium caseinate (NaCas) was hydrolyzed with four proteases, alcalase, savinase, subtilisin A, and flavourzyme. In addition to the structural changes occurred through the enzymatic hydrolysis, the solubility, oil binding capacity, zeta potential, emulsification properties, and in vitro antioxidant capacity, anti-carcinogenic and antidiabetic properties of hydrolysates were determined. FTIR combined with hierarchical cluster analysis (HCA) made in Amide I region enable to classification of the samples based on the changes of the secondary structure depending on the enzyme type and degree of fragmentation. Technological properties of NaCas were enhanced through the enzymatic hydrolysis, and those were more prominent in serine-type enzymes, regardless of the enzyme type, all hydrolysates showed high antioxidant capacities. All hydrolysates, specifically those produced by savinase and alcalase, reduced the viability of the carcinogenic Caco-2 cells in a dose-dependent manner and showed a very low level of cytotoxicity against healthy HEK-293 cells. The hydrolysis treatment made a significant contribution to the antidiabetic activity of NaCas. Particularly alcalase and savinase hydrolysates suppressed the activity of α- amylase and α- glucosidase. Therefore, the generated milk protein hydrolysates could be used in functional food developments for specific dietary purposes.
Collapse
Affiliation(s)
- Hatice Bekiroglu
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Fatih Bozkurt
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey.,Food Engineering Department, Mus Alparslan University, Mus, Turkey
| | - Ayse Karadag
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Abdulatef M Ahhmed
- Life Science Department, School of Basic Sciences, The Libyan Academy for Graduate Studies, Tripoli, Libya
| | - Osman Sagdic
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
34
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Rendón-Rosales MÁ, Torres-Llanez MJ, Mazorra-Manzano MA, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Rubak YT, Nuraida L, Iswantini D, Prangdimurti E. Angiotensin-I-Converting Enzyme Inhibitory Peptides in Goat Milk Fermented by Lactic Acid Bacteria Isolated from Fermented Food and Breast Milk. Food Sci Anim Resour 2022; 42:46-60. [PMID: 35028573 PMCID: PMC8728504 DOI: 10.5851/kosfa.2021.e55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, angiotensin-I-converting enzyme inhibitory (ACEI) activity was evaluated in fermented goat milk fermented by lactic acid bacteria (LAB) from fermented foods and breast milk. Furthermore, the potential for ACEI peptides was identified in fermented goat milk with the highest ACEI activity. The proteolytic specificity of LAB was also evaluated. The 2% isolate was inoculated into reconstituted goat milk (11%, w/v), then incubated at 37°C until pH 4.6 was reached. The supernatant produced by centrifugation was analyzed for ACEI activity and total peptide. Viable cell counts of LAB and titratable acidity were also evaluated after fermentation. Peptide identification was carried out using nano liquid chromatography mass spectrometry (LC-MS/MS), and potential as an ACEI peptide was carried out based on a literature review. The result revealed that ACEI activity was produced in all samples (20.44%-60.33%). Fermented goat milk of Lc. lactis ssp. lactis BD17 produced the highest ACEI activity (60.33%; IC50 0.297±0.10 mg/mL) after 48 h incubation, viable cell counts >8 Log CFU/mL, and peptide content of 4.037±0.27/mL. A total of 261 peptides were released, predominantly derived from casein (93%). The proteolytic specificity of Lc. lactis ssp. lactis BD17 through cleavage on the amino acid tyrosine, leucine, glutamic acid, and proline. A total of 21 peptides were identified as ACEI peptides. This study showed that one of the isolates from fermented food, namely Lc. lactis ssp. lactis BD17, has the potential as a starter culture for the production of fermented goat milk which has functional properties as a source of antihypertensive peptides.
Collapse
Affiliation(s)
- Yuliana Tandi Rubak
- Department of Food Science and Technology,
IPB University (Bogor Agricultural University), IPB
Dramaga Campus, Bogor 16680, Indonesia
- Agrotechnology Study Program, Faculty of
Agriculture, Universitas Nusa Cendana Kupang,
UNDANA Lasiana Campus, Kelapa Lima, Nusa Tenggara Timur (NTT)
85228, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology,
IPB University (Bogor Agricultural University), IPB
Dramaga Campus, Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural
Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural
University), IPB Dramaga Campus, Bogor 16680,
Indonesia
| | - Dyah Iswantini
- Department of Chemistry, IPB University
(Bogor Agricultural University), IPB Dramaga
Campus, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB
University (Bogor Agricultural University), IPB
Taman Kencana Campus, Bogor 16128, Indonesia
| | - Endang Prangdimurti
- Department of Food Science and Technology,
IPB University (Bogor Agricultural University), IPB
Dramaga Campus, Bogor 16680, Indonesia
- Southeast Asian Food and Agricultural
Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural
University), IPB Dramaga Campus, Bogor 16680,
Indonesia
| |
Collapse
|
37
|
Dharmisthaben P, Basaiawmoit B, Sakure A, Das S, Maurya R, Bishnoi M, Kondepudi KK, Hati S. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol 2021; 189:802-818. [PMID: 34418419 PMCID: PMC8372478 DOI: 10.1016/j.ijbiomac.2021.08.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 disease has put life of people in stress worldwide from many aspects. Since the virus has mutated in absolutely short period of time the challenge to find a suitable vaccine has become harder. Infection to COVID-19, especially at severe life threatening states is highly dependent on the strength of the host immune system. This system is partially dependent on the balance between oxidative stress and antioxidant. Besides, this virus still has unknown mechanism of action companied by a probable commune period. From another hand, some reactive oxygen species (ROS) levels can be helpful on the state determination of the disease. Thus it could be possible to use modern bioanalytical techniques for their detection and determination, which could indicate the disease state at the golden time window since they have the potential to show whether specific DNA, RNA, enzymes and proteins are affected. This also could be used as a preclude study or a reliable pathway to define the best optimized time of cure beside effective medical actions. Herein, some ROS and their relation with SARS-CoV-2 virus have been considered. In addition, modern bioelectroanalytical techniques on this approach from quantitative and qualitative points of view have been reviewed.
Collapse
Affiliation(s)
- Mehrnaz Ebrahimi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Aazami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
39
|
Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021; 373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
The generation of camel milk derived bioactive peptides (CM-BAPs) have started to grab keen interest of many researchers during the past decade. CM-BAPs have shown more significant bioactive properties in comparison to camel milk intact proteins. CM-BAPs can be obtained using enzyme hydrolysis to form hydrolysates, or by the fermentation process. In this systematic review, 46 research articles exploring the health-related bioactive properties of CM-BAPs through in-vitro and in-vivo studies have been included. CM-BAPs have been reported for their antioxidant, anti-diabetic, anti-obesity, antihypertensive, antibacterial, antibiofilm, anticancer, anti-inflammatory, anti-haemolytic, and anti-hyperpigmentation activities. The effects of factors such as molecular weight of peptides, type of enzyme, enzyme to substrate ratio, hydrolysis temperature and duration have been analysed. The in-vitro studies have provided enough evidence on certain aspects of the pharmacological actives of camel milk bioactive peptides. Nevertheless, the in-vivo studies are very limited, and no clinical studies on CM-BAPs have been reported.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamidreza Valizadenia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Semnan Province, Iran
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; DIL e.V. - German Institute of Food Technologies, D-Quakenbrück, Germany
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
40
|
Azizkhani M, Sodanlo A. Antifungal Activity of Peptides Derived From Iranian Traditional Kefir. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2021. [DOI: 10.34172/ijep.2021.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Probiotic products contain metabolites that have positive effects on the intestinal microorganisms and well-being of the host as well as possess antimicrobial properties. Objective: This study aimed to investigate the antifungal activities of the water-soluble peptides (WSPs) found in ewe and cow milk kefir fermented by the traditional kefiran of Semnan (Semnan province, Iran). Materials and Methods: Kefir samples were prepared by inoculating Iranian traditional kefiran into pasteurized milk. WPSs were extracted and antifungal activity was evaluated. Results: During the 28-day storage, the concentration of the amino acids increased except for a decrease detected in the concentration of arginine, aspartic acid, cysteine, and glycine; and the total amino acid concentration in ewe milk and kefir was higher than that in cow’s milk and kefir. The WSPs of both kefir samples showed considerable inhibitory activities against the growth of Candida albicans and Aspergillus niger, but Penicillium sp. had the lowest sensitivity when treated with WSPs. The antifungal activity of WSPs of ewe kefir was significantly higher than that of cow kefir. The highest growth inhibitory potential of WSPs between two kefir samples was found for C. albicans. The antifungal potential of WSPs of ewe kefir was considerably higher than that of cow kefir. Conclusion: The higher antifungal potential of ewe kefir was likely associated with the high concentration of protein, extensive degradation of proteins, and diversity of amino acids produced during the fermentation.
Collapse
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Azam Sodanlo
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
41
|
Algboory HL, Muhialdin BJ. Novel peptides contribute to the antimicrobial activity of camel milk fermented with Lactobacillus plantarum IS10. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Shori AB, Hong YC, Baba AS. Proteolytic profile, angiotensin-I converting enzyme inhibitory activity and sensory evaluation of Codonopsis pilosula and fish collagen cheese. Food Res Int 2021; 143:110238. [PMID: 33992351 DOI: 10.1016/j.foodres.2021.110238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Four types of cheeses were prepared included plain- cheese (control), Codonopsis pilosula (CP)- cheese, plain- cheese with fish collagen (FC; control) and CP- cheese with FC. The effects of cheese samples on acidification, proteolysis of milk proteins using three methods (cadmium-ninhydrin method, O-phthaldialdehyde (OPA) assay, and electrophoresis assay), and angiotensin-converting enzyme (ACE)-inhibitory activity were investigated during 0, 2, & 4 weeks of ripening. In addition, the sensory evaluation was also investigated during 0, 2, 4, & 8 weeks of ripening. The presence of FC in CP- cheese increased the numbers of free amino acids (FAA) at 0 and 2 weeks. The addition of CP both in the presence and absence of FC affected positively (p < 0.05) on the concentrations of OPA peptide in cheese compared to their respective controls. The presence of CP and/or FC in cheese increased the degradation of milk proteins (α-, β-, & κ- caseins, β-lactoglobulin, and α-lactalbumin) compared to their respective controls during ripening periods. The highest ACE inhibitory activity was shown at 4 weeks of ripening for CP- cheese both in the absence (67.75 ± 14.15%) and the presence (78.65 ± 2.85%) of FC. In addition, 8-week-old CP-cheese in the presence and absence of fish collagen had similar organoleptic characteristics to plain-cheese. In conclusion, C. pilosula and/or fish collagen may lead to the development in the production and formulation of cheese with anti-ACE activity.
Collapse
Affiliation(s)
- Amal Bakr Shori
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Jeddah 21589, Saudi Arabia.
| | - Yoong Chia Hong
- Biomolecular Research Group, Division of Biochemistry, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmad Salihin Baba
- Biomolecular Research Group, Division of Biochemistry, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Nikitina EV, Yurtaeva TA, Tsyganov MS, Ezhkova GO. Physico-Chemical and Antioxidant Properties of Skimmed Varenets (Slavic Baked Milk Yogurt) Mixed with Enzyme-Modified Potato Starches. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.1.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present studies have examined the effect of potato starches treated with amylase B.licheformis (Bl) (laboratory sample) or Amylosubtilin® (AM) (Berdsk Factory of Biological Preparations (now: Sibbiofarm), Russia) in different concentrations on the quality of Slavic skim milk drink Varenets made from baked milk. The baked milk is milk heated to 98 °C for 3 hours, it has a sweet aroma and taste and creamy hue. The presence of enzyme-modified potato starches (Bl or AM) has been found to promote the activation of lactic acid fermentation, the accumulation of exopolysaccharides, and such stabilized products have a higher viscosity, a lower percentage of syneresis compared to the control sample. The antioxidant capacity of the Varents samples after fermentation was evaluated by two assays: analysis of radical capture activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH •); and the ability to restore Fe + 3 (Iron Reduction Antioxidant Ability Assay, FRAP). All Varentz samples showed different values for DPPH, FRAP assays depending on the starches used. The Introduction of pre-fermented starches into defatted jam promotes formation of enhanced antioxidant properties of milk product. The use of starches modified with enzymes improves sensory characteristics, in particular, as a fat imitator, formsfull taste of the drink.
Collapse
Affiliation(s)
- Elena V. Nikitina
- Department of Meat and Milk Technology, Faculty of Food Technology, Kazan National Research Technological University, Kazan, Russia
| | - Tatiana A. Yurtaeva
- Department of Meat and Milk Technology, Faculty of Food Technology, Kazan National Research Technological University, Kazan, Russia
| | - Maxim S. Tsyganov
- Department of Meat and Milk Technology, Faculty of Food Technology, Kazan National Research Technological University, Kazan, Russia
| | - Galina O. Ezhkova
- Department of Meat and Milk Technology, Faculty of Food Technology, Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
44
|
Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021; 273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabo Mohammed Abdulkarim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
45
|
Sodanlo A, Azizkhani M. Evaluation of Antioxidant and Antimicrobial Activity of Water-Soluble Peptides Extracted from Iranian Traditional Kefir. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10181-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Angiotensin-I Converting Enzyme Inhibition and Antioxidant Activity of Papain-Hydrolyzed Camel Whey Protein and Its Hepato-Renal Protective Effects in Thioacetamide-Induced Toxicity. Foods 2021; 10:foods10020468. [PMID: 33672579 PMCID: PMC7924048 DOI: 10.3390/foods10020468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Papain hydrolysis of camel whey protein (CWP) produced CWP hydrolysate (CWPH). Fractionation of CWPH by the size exclusion chromatography (SEC) generated fractions (i.e., SEC-F1 and SEC-F2). The angiotensin converting enzyme inhibitory activity (ACE-IA) and free radical scavenging actions were assessed for CWP, CWPH, SEC-F1, and SEC-F2. The SEC-F2 exerted the highest ACE-IA and scavenging activities, followed by CWPH. The protective effects of CWPH on thioacetamide (TAA)-induced toxicity were investigated in rats. The liver enzymes, protein profile, lipid profile, antioxidant enzyme activities, renal functions, and liver histopathological changes were assessed. Animals with TAA toxicity showed impaired hepatorenal functions, hyperlipidemia, and decreased antioxidant capacity. Treatment by CWPH counteracted the TAA-induced oxidative tissue damage as well as preserved the renal and liver functions, the antioxidative enzyme activities, and the lipid profile, compared to the untreated animals. The current findings demonstrate that the ACE-IA and antioxidative effects of CWPH and its SEC-F2 fraction are worth noting. In addition, the CWPH antioxidative properties counteracted the toxic hepatorenal dysfunctions. It is concluded that the hydrolysis of CWP generates a wide range of bioactive peptides with potent antihypertensive, antioxidant, and hepatorenal protective properties. This opens up new prospects for the therapeutic utilization of CWPH and its fractions in the treatment of oxidative stress-associated health problems, e.g., hypertension and hepatorenal failure.
Collapse
|
47
|
Guha S, Sharma H, Deshwal GK, Rao PS. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00045-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Milk from different species has been exploited for the isolation of various functional ingredients for decades. Irrespective of the source, milk is considered as a complete food, as it provides essential nutrients required by the human body. Proteins and their fractions are valuable sources of bioactive peptides that might exert a health beneficial role in the human body such as immune-modulation, antioxidant activity, ACE-inhibitory activity, anti-neoplastic, anti-microbial, etc. In milk, bioactive peptides may either be present in their natural form or released from their parental proteins due to enzymatic action. The increasing interest in bioactive peptides among researchers has lately augmented the exploration of minor dairy species such as sheep, goat, camel, mithun, mare, and donkey. Alternative to cow, milk from minor dairy species have also been proven to be healthier from infancy to older age owing to their higher digestibility and other nutritive components. Therefore, realizing the significance of milk from such species and incentivized interest towards the derivatization of bioactive peptides, the present review highlights the significant research achievements on bioactive peptides from milk and milk products of minor dairy species.
Graphical abstract
Collapse
|
48
|
Cais-Sokolińska D, Walkowiak-Tomczak D. Consumer-perception, nutritional, and functional studies of a yogurt with restructured elderberry juice. J Dairy Sci 2020; 104:1318-1335. [PMID: 33309380 DOI: 10.3168/jds.2020-18770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022]
Abstract
We investigated the effects of supplementation of yogurt with elderberry juice (Sambucus nigra L.), in both natural and restructured forms, on certain technological, physicochemical, sensory, and health-promoting properties of yogurt, including antioxidant activity and inhibition of angiotensin-converting enzyme (ACE), α-amylase, and α-glucosidase activity. Consumer acceptance of the yogurt-juice products was assessed. Gel-strength restructured elderberry juice retained a spherical shape and most of the juice, despite decreasing in mass from 57.2 to 50.9 g during storage. As a result, yogurt supplemented with 10 and 25% restructured elderberry juice appeared to be more desirable from a sensory and technological perspective than yogurt with natural juice. Yogurt supplemented with restructured elderberry juice had a high water-holding capacity (94.4-96.4%), exhibited no spontaneous whey syneresis, and maintained a dense consistency (up to 5,626 g). Consumer penalty analysis of the just-about-right diagnostic attributes indicated that the flavor of these yogurts may not be sufficiently refreshing. High correlation was demonstrated between ACE inhibition, ABTS, α-amylase, and α-glucosidase in yogurt supplemented with restructured juice. An in vitro gastrointestinal simulation estimated bioaccessibility of antioxidants to be in the range of 62 to 66%. This model fermented yogurt supplemented with restructured elderberry juice is a novel dairy-juice beverage that represents a new approach for the development of functional fruit yogurt beverages.
Collapse
Affiliation(s)
- D Cais-Sokolińska
- Department of Dairy Products Quality, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - D Walkowiak-Tomczak
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
49
|
Ganzorig K, Urashima T, Fukuda K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel's Milk and Mare's Milk Made by Mongolian Nomads. Foods 2020; 9:foods9121817. [PMID: 33297514 PMCID: PMC7762409 DOI: 10.3390/foods9121817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/13/2023] Open
Abstract
To date, bioactive proteins and peptides from minor livestock milks and their fermented products have been scarcely reported. In Mongolia, nomads are commonly rearing five livestock animal species (i.e., cow, camel, goat, horse, and sheep) for milking and other purposes. In this study, we analyzed the peptide composition in fermented milks of Bactrian camels (Camelus bactrianus) and horses, produced by Mongolian nomads for self-consumption. Peptides from skimmed fermented milks were separated by ultrafiltration and reverse-phase high-performance liquid chromatography. Then, their amino acid sequences were determined by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Consequently, eleven peptides were identified in the fermented camel’s milk including four from β-casein (β-CN), three from αs1-CN, and two from both κ-CN and lactophorin. On the other hand, twenty-four peptides were identified in the fermented mare’s milk including nineteen from β-CN, three from αs1-CN, and one from both κ-CN and αs2-CN. According to previous reports on the bioactivities of milk-derived peptides, antibacterial and antihypertensive activities were promising in both the fermented camel’s milk and mare’s milk. In addition, potential antioxidant activity was conjectured in the fermented camel’s milk. Further investigations are currently needed to clarify the potential role of immunomodulatory peptides in the two fermented milks.
Collapse
Affiliation(s)
- Khuukhenbaatar Ganzorig
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Nishi, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan;
| | - Tadasu Urashima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Nishi, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan;
| | - Kenji Fukuda
- Department of Agriculture and Animal Science, Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Nishi, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
- Correspondence: ; Tel.: +81-155-49-5564; Fax: +81-155-49-5577
| |
Collapse
|
50
|
Kowalski R, Gustafson E, Carroll M, Gonzalez de Mejia E. Enhancement of Biological Properties of Blackcurrants by Lactic Acid Fermentation and Incorporation into Yogurt: A Review. Antioxidants (Basel) 2020; 9:antiox9121194. [PMID: 33261067 PMCID: PMC7759768 DOI: 10.3390/antiox9121194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Blackcurrants (BC) and yogurt are known to possess several health benefits. The objective of this review was to compile the latest information on the effect of lactic acid fermentation on BC and their incorporation into yogurt, including the impact of this combination on chemical composition, sensory aspects, and health attributes of the blend. Google Scholar, Scopus, and PubMed were used to research the most recent literature on BC juice, the whole BC berry, and yogurt. Health benefits were assessed from human and animal studies within the last 5 years. The results suggest that BC have several health promoting compounds that ameliorate some neurological disorders and improve exercise recovery. Yogurt contains compounds that can be used to manage diseases such as type 2 diabetes (T2D) and irritable bowel disease (IBD). Fermenting BC with lactic acid bacteria (LAB) and its incorporation into yogurt products increases the polyphenol and antioxidant capacity of BC, creating a blend of prebiotics and probiotics compounds with enhanced benefits. More research is needed in the area of lactic acid fermentation of berries in general, especially BC.
Collapse
|