1
|
Davoudi M, Gavlighi HA, Javanmardi F, Benjakul S, Nikoo M. Antimicrobial peptides derived from food byproducts: Sources, production, purification, applications, and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13422. [PMID: 39245910 DOI: 10.1111/1541-4337.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Food wastes can be a valuable reservoir of bioactive substances that can serve as natural preservatives in foods or as functional ingredients with potential health benefits. The antimicrobial properties of protein hydrolysates, especially antimicrobial peptides (AMPs) derived from food byproducts (FBs), have been extensively explored. These protein fragments are defined by their short length, low molecular weight, substantial content of hydrophobic and basic amino acids, and positive net charge. The intricate mechanisms by which these peptides exert their antimicrobial effects on microorganisms and pathogens have been elaborately described. This review also focuses on techniques for producing and purifying AMPs from diverse FBs, including seafood, livestock, poultry, plants, and dairy wastes. According to investigations, incorporating AMPs as additives and alternatives to chemical preservatives in food formulations and packaging materials has been pursued to enhance both consumer health and the shelf life of foods and their products. However, challenges associated with the utilization of AMPs derived from food waste depend on their interaction with the food matrix, acceptability, and commercial viability. Overall, AMPs can serve as alternative safe additives, thereby ensuring the safety and prolonging the storage duration of food products based on specific regulatory approvals as recommended by the respective safety authorities.
Collapse
Affiliation(s)
- Mahshad Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
El-Didamony SE, Kalaba MH, Sharaf MH, El-Fakharany EM, Osman A, Sitohy M, Sitohy B. Melittin alcalase-hydrolysate: a novel chemically characterized multifunctional bioagent; antibacterial, anti-biofilm and anticancer. Front Microbiol 2024; 15:1419917. [PMID: 39091304 PMCID: PMC11293514 DOI: 10.3389/fmicb.2024.1419917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalent life-threatening microbial and cancer diseases and lack of effective pharmaceutical therapies created the need for new molecules with antimicrobial and anticancer potential. Bee venom (BV) was collected from honeybee workers, and melittin (NM) was extracted from BV and analyzed by urea-polyacrylamide gel electrophoresis (urea-PAGE). The isolated melittin was hydrolyzed with alcalase into new bioactive peptides and evaluated for their antimicrobial and anticancer activity. Gel filtration chromatography fractionated melittin hydrolysate (HM) into three significant fractions (F1, F2, and F3), that were characterized by electrospray ionization mass spectrometry (ESI-MS) and evaluated for their antimicrobial, anti-biofilm, antitumor, and anti-migration activities. All the tested peptides showed antimicrobial and anti-biofilm activities against Gram-positive and Gram-negative bacteria. Melittin and its fractions significantly inhibited the proliferation of two types of cancer cells (Huh-7 and HCT 116). Yet, melittin and its fractions did not affect the viability of normal human lung Wi-38 cells. The IC50 and selectivity index data evidenced the superiority of melittin peptide fractions over intact melittin. Melittin enzymatic hydrolysate is a promising novel product with high potential as an antibacterial and anticancer agent.
Collapse
Affiliation(s)
- Samia E. El-Didamony
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University (Girls), Nasr City, Egypt
| | - Mohamed H. Kalaba
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| | - Mohamed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, Egypt
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Department of Clinical Microbiology, Infection, and Immunology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection, and Immunology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Wei M, Ning C, Ren Y, Hu F, Wang M, Li W. Characterisation and comparison of enzymatically prepared donkey milk whey protein hydrolysates. Food Chem X 2024; 22:101360. [PMID: 38699589 PMCID: PMC11063390 DOI: 10.1016/j.fochx.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
This study evaluated the structural characteristics, processing properties, and antioxidant properties of hydrolysates prepared from donkey milk (DM) whey protein using different proteases (Alcalase, Neutrase, papain, and Flavourzyme). The results showed that enzymatic hydrolysis significantly increased hydrolysate solubility and reduced average particle size compared to those of DM whey protein. Neutrase and Flavourzyme hydrolysates exhibited higher degrees of hydrolysis (DH), along with elevated emulsification properties and surface hydrophobicity. The choice of protease influenced secondary and tertiary protein structures and amino acid composition. Enzymatic hydrolysis led to decreased molecular weight of DM whey proteins. Moreover, all hydrolysates exhibited higher fluorescence intensity at λmax compared to DM whey protein, implying distinct properties due to the varied impacts of the four proteases on DM whey protein structure. The preparation of hydrolysates from DM whey proteins using proteases contributes to the development of integrated-value DM products.
Collapse
Affiliation(s)
- Mingming Wei
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
| | - Chong Ning
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
| | - Yifei Ren
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
| | - Fengqing Hu
- School of Life Sciences, Liaoning University, Shenyang 110036, PR China
| | - Mingxia Wang
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
| | - Weixuan Li
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
4
|
Kamal H, Jafar S, Mudgil P, Hamdi M, Ayoub MA, Maqsood S. Camel whey protein with enhanced antioxidative and antimicrobial properties upon simulated gastro-intestinal digestion. Nutr Health 2024; 30:371-379. [PMID: 36065597 DOI: 10.1177/02601060221122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Whey proteins and their peptide derivatives have attracted a great attention of researchers in the pharmaceutical and nutritional fields, due to their numerous bio-functionalities. Aim: In the present research study, enzymatic protein hydrolysates (CWPHs) from camel whey proteins (CWPs) were produced and investigated for their antioxidant and antimicrobial potentials. Methods: Herein, Pepsin (gastric), and Trypsin and Chymotrypsin (pancreatic) enzymes were used to produce CWPHs. The obtained hydrolysates were characterize to ascertain the level of protein degradation and studies on their antimicrobial and antioxidant potential were conducted. Results: Among all CWPHs, a complete degradation of all different protein bands was perceived with Chymotrypsin-derived CWPHs, whereas, light bands of serum albumin and α-lactalbumin were observed with Trypsin and Pepsin-derived CWPHs. After enzymatic degradation, both CWPHs antioxidant and antimicrobial activities were improved. Chymotrypsin-derived CWPHs demonstrated higher DPPH and ABTS radical scavenging activities, anent the increase in proteolysis time. Compared to unhydrolyzed CWPs, higher metal chelating activities were displayed by Trypsin-derived CWPHs. No significant increase in the FRAP activities was noticed after CWPs hydrolysis using Trypsin and Chymotrypsin, while Pepsin-derived CWPHs showed higher reducing power. In terms of antimicrobial activity, significantly higher bacterial growth inhibition rates were exhibited by CWPHs compared to the unhydrolyzed CWP. Conclusion: Overall, CWPHs displayed enhanced antioxidative and antimicrobial properties.
Collapse
Affiliation(s)
- Hina Kamal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sabika Jafar
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Marwa Hamdi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Sapkota R, Munt DJ, Kincaid AE, Dash AK. Liposomes and transferosomes in the delivery of papain for the treatment of keloids and hypertrophic scars. PLoS One 2023; 18:e0290224. [PMID: 38100466 PMCID: PMC10723692 DOI: 10.1371/journal.pone.0290224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/04/2023] [Indexed: 12/17/2023] Open
Abstract
Hypertrophic scars and keloids are characterized by an excessive collagen deposition. The available treatment options are invasive and can result in recurrence of scar formation. Using liposomes and transferosomes for the topical delivery of papain, a proteolytic enzyme, can be effective treatment. The objective of the study is to formulate papain-loaded liposomes and transferosomes, characterize the formulations, and study in vitro permeation using shed snake skin and Sprague-Dawley rat skin as models for stratum corneum and full thickness skin. Papain-loaded liposomes and transferosomes were formulated using the thin-film hydration method for the delivery of papain across the stratum corneum barrier. An in vitro permeation study carried out using shed-snake skin and Sprague-Dawley rat skin models showed that transferosomes were able to deliver papain across the stratum corneum barrier, while papain solution and papain liposomes were not able to cross the barrier. However, transferosomes were not able to deliver papain across the full thickness rat skin model suggesting the deposition of papain loaded transferosomes in the epidermal or dermal layer of skin. In addition, an ex-vivo model was used to analyze the effect of papain exposure on the morphology of the epidermis taken from rat skin exposed to papain solution, papain in transferosomes and papain in liposomes. Papain in solution resulted in a noticeable degradation of the epidermis, but when embedded in either transferosomes or liposomes there was no noticeable change when compared to control animals. The cytotoxicity study performed using HeLa cells showed that the cells were viable at papain concentrations lower than 0.01 mg/ml.
Collapse
Affiliation(s)
- Rachana Sapkota
- Department of Pharmacy Sciences, School of Pharmacy and Health Profession, Creighton University, Omaha, Nebraska, United States of America
| | - Daniel J. Munt
- Department of Pharmacy Sciences, School of Pharmacy and Health Profession, Creighton University, Omaha, Nebraska, United States of America
| | - Anthony E. Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Profession, Creighton University, Omaha, Nebraska, United States of America
| | - Alekha K. Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Profession, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
6
|
Enan G, Abdel-Shafi S, El-Nemr M, Shehab W, Osman A, Sitohy M, Sitohy B. Controlling bacterial biofilm formation by native and methylated lupine 11S globulins. Front Microbiol 2023; 14:1259334. [PMID: 37822740 PMCID: PMC10562546 DOI: 10.3389/fmicb.2023.1259334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
The antibacterial and anti-biofilm activities of the 11S globulins isolated from lupin seeds (Lupinus termis), and its methylated derivative (M11S), were investigated against seven pathogenic gram-positive and gram-negative bacteria. The MIC of 11S ranged from 0.1 to 4.0 μg/ml against 0.025 to 0.50 μg/ml for M11S, excelling some specific antibiotics. The MICs of M11S were 40-80 times lower than some specific antibiotics against gram-positive bacteria and 2-60 times lower than some specific antibiotics against gram-negative bacteria. One MIC of 11S and M11S highly reduced the liquid growth of all tested bacteria during 24 h at 37°C. They also inhibited biofilm formation by 80%-86% and 85%-94%, respectively (gram-positive), and 29%-44% and 43%-50%, respectively (gram-negative). M11S prevented biofilm formation by gram-positive bacteria at minimum biofilm inhibitory concentration (MBIC), 0.025-0.1 μg/ml against 0.1-0.5 μg/ml for gram-negative bacteria, i.e., 4-20 times and 4-7 times anti-biofilm inhibitory action compared with 11S, respectively. Biofilm formation of two bacteria revealed no adhered cells on glass slides for 24 h at 37°C, i.e., was entirely prevented by one MBIC of 11S and M11S. Scanning electron microscopy indicated microbial biofilm deformation under the action of 11S and M11S, indicating their broad specificity and cell membrane-targeted action.
Collapse
Affiliation(s)
- Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Seham Abdel-Shafi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mona El-Nemr
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Wesam Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Qi S, Zhao S, Zhang H, Liu S, Liu J, Yang J, Qi Y, Zhao Q, Jin Y, Wang F. Novel casein antimicrobial peptides for the inhibition of oral pathogenic bacteria. Food Chem 2023; 425:136454. [PMID: 37276666 DOI: 10.1016/j.foodchem.2023.136454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Milk casein is a rich source of antimicrobial peptides (AMPs) and the most common way to produce AMPs is enzymatic hydrolysis in vitro. In this study, active casein antimicrobial peptide (CAMPs) mixtures were generated by optimized proteolytic cleavage of milk casein. These natural-safe CAMPs mixtures exhibited high activity in the inhibition of Streptococcus mutans and Porphyromonas gingivalis. Morphological characterization suggested the pathogenic bacteria presented incomplete or irregular collapsed membrane surface after the treatment with active CAMPs mixtures. The CAMPs inhibition activity was also effective in the attachment and development of microbial biofilm. Potential CAMPs sequences were unambiguously determined by unbiased proteomic analysis and 301 potential CAMPs were obtained. The activity of 4 novel CAMPs was successfully confirmed by using synthetic standards. This study provides a promising milk CAMPs resource for the development of safe agents in oral bacteria inhibition and functional foods.
Collapse
Affiliation(s)
- Shizhe Qi
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Huiyan Zhang
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Shiwen Liu
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Jiaxin Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Jian Yang
- Shubeideng (Hangzhou) Technology Co. Ltd, No.1818-2 Wenyi Road, Hangzhou, Zhejiang Province 311121, China
| | - Yanxia Qi
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China.
| | - Qiancheng Zhao
- College of Food Science and Engineering, Ocean University of Dalian, No. 52 Heishijiao Street, Dalian, Liaoning Province 116023, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning Province 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Mudgil P, Redha A, Nirmal NP, Maqsood S. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds. J Dairy Sci 2023; 106:3098-3108. [PMID: 36935238 DOI: 10.3168/jds.2022-22701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 03/19/2023]
Abstract
Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
9
|
Zhou J, Han Q, Koyama T, Ishizaki S. Preparation, Purification and Characterization of Antibacterial and ACE Inhibitory Peptides from Head Protein Hydrolysate of Kuruma Shrimp, Marsupenaeus japonicus. Molecules 2023; 28:molecules28020894. [PMID: 36677951 PMCID: PMC9861681 DOI: 10.3390/molecules28020894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Kuruma shrimp (Marsupenaeus japonicus) heads, as the main by-product of the seafood processing industry, are rich in underutilized high-quality protein. After papain hydrolysis at 50 °C for 4 h, the protein hydrolysate of shrimp heads was found to show notable antibacterial and angiotensin I-converting enzyme (ACE) inhibitory activities. After purification using two stages of revered-phase high-performance liquid chromatography (RP-HPLC), the antibacterial peptide VTVP and the ACE inhibitory peptide ARL/I were successfully identified from most active fractions by LC-MS/MS. Peptide VTVP was a desirable hydrophobic peptide, with a MIC value in the range from 1.62 to 8.03 mM against all tested pathogens. Peptide ARL/I exhibited potent ACE inhibitory activity, with an IC50 value of 125.58 µM, and was found to be a competitive inhibitor based on the Lineweaver-Burk plot. Moreover, the result of the molecular docking simulation indicated that the interaction binding between ARL/I and ACE was mainly stabilized by hydrogen bonds, as well as forming a coordinate bond with the Zn2+ site. The purified peptides did not show hemolytic activity toward rabbit erythrocytes. To sum up, the bioactive peptides isolated from shrimp heads could be applicable for food or pharmaceutical areas as promising ingredients.
Collapse
Affiliation(s)
- Jie Zhou
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiuyu Han
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Tomoyuki Koyama
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Shoichiro Ishizaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
- Correspondence: ; Tel.: +81-3-5463-0614
| |
Collapse
|
10
|
Wang X, He L, Huang Z, Zhao Q, Fan J, Tian Y, Huang A. Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption. Food Chem 2023; 398:133923. [DOI: 10.1016/j.foodchem.2022.133923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
|
11
|
Abdel-Shafi S, El-Nemr M, Enan G, Osman A, Sitohy B, Sitohy M. Isolation and Characterization of Antibacterial Conglutinins from Lupine Seeds. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010035. [PMID: 36615230 PMCID: PMC9822312 DOI: 10.3390/molecules28010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The main target of this work is to discover new protein fractions from natural resources with high antibacterial action. The 7S and 11S globulin fractions, as well as the basic subunit (BS), were isolated from lupine seeds (Lupinus termis), chemically characterized, and screened for antibacterial activity against seven pathogenic bacteria. SDS-PAGE revealed molecular weights ranging from 55 to 75 kDa for 7S globulin, 20-37 kD for 11S globulin, and 20 kD for the BS. 11S globulin and the BS migrated faster on Urea-PAGE toward the cathode compared to 7S globulin. FTIR and NMR showed different spectral patterns between the 7S and 11S globulins but similar ones between 11S globulin and the BS. The MICs of the BS were in the range of 0.05-2 μg/mL against Listeria monocytogenes, Klebsiella oxytoca, Proteus mirabilis, Staphylococcus aureus, Listeria ivanovii, Salmonella typhimurium, and Pseudomonas aeruginosa compared to higher values for 11S globulin. The BS surpassed 11S globulin in antibacterial action, while 7S globulin showed no effect. The MICs of 11S globulin and the BS represented only 5% and 2.5% of the specific antibiotic against L. monocytogenes, respectively. Scanning electron microscopy (SEM) demonstrated different signs of cellular deformation and decay in the protein-treated bacteria, probably due to interaction with the bacterial cell wall and membranes. 11S globulin and the BS can be nominated as effective food biopreservatives.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona El-Nemr
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
- Correspondence: (B.S.); or (M.S.); Tel.: +20-1065272667 (M.S.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (B.S.); or (M.S.); Tel.: +20-1065272667 (M.S.)
| |
Collapse
|
12
|
Hassanin AA, Osman A, Atallah OO, El-Saadony MT, Abdelnour SA, Taha HSA, Awad MF, Elkashef H, Ahmed AE, Abd El-Rahim I, Mohamed A, Eldomiaty AS. Phylogenetic comparative analysis: Chemical and biological features of caseins (alpha-S-1, alpha-S-2, beta- and kappa-) in domestic dairy animals. Front Vet Sci 2022; 9:952319. [PMID: 36187819 PMCID: PMC9519386 DOI: 10.3389/fvets.2022.952319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Caseins determine the physicochemical, physiological, and biological characteristics of milk. Four caseins—alpha-S-1, alpha-S-2, beta, and kappa—were analyzed phylogenetically and in silico and characterized regarding chemical, antimicrobial, and antioxidant features in five dairy animals: Arabian camels, sheep, goats, cattle, and water buffalos. The sequence of full-length amino acids of the four caseins for the five species was retracted from the NCBI GenBank database. Multiple sequence alignment is used to examine further the candidate sequences for phylogenetic analysis using Clustal X and NJ-Plot tools. The results revealed that sheep and goats possess strong similarities (98.06%) because of their common ancestor. The same was observed with cattle and water buffalos (96.25%). The Arabian camel was located in a single subclade due to low similarity in casein residues and compositions with other dairy animals. Protein modeling showed that alpha-S1- and alpha-S2-caseins possess the highest number of phosphoserine residues. The in silico computed chemical properties showed that β-casein recorded highest hydrophobicity index and lowest basic amino acid content, while α-S2-casein showed the opposite. The computed biological parameters revealed that α-S2-casein presented the highest bactericidal stretches. Only Arabian camel β-casein and k-casein showed one bactericidal stretches. The analysis also revealed that β-casein, particularly in Arabian camels, possesses the highest antioxidant activity index. These results support the importance of the bioinformatics resources to determine milk casein micelles' chemical and biological activities.
Collapse
Affiliation(s)
- Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Abdallah A. Hassanin
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Osama Osman Atallah
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hany Elkashef
- Dairy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ibrahim Abd El-Rahim
- Department of Environmental and Health Research, Umm Al-Qura University, Mecca, Saudi Arabia
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | | | - Ahmed S. Eldomiaty
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Peslerbes M, Fellenberg A, Jardin J, Deglaire A, Ibáñez RA. Manufacture of Whey Protein Hydrolysates Using Plant Enzymes: Effect of Processing Conditions and Simulated Gastrointestinal Digestion on Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity. Foods 2022; 11:2429. [PMID: 36010429 PMCID: PMC9407499 DOI: 10.3390/foods11162429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Hydrolysis of proteins leads to the release of bioactive peptides with positive impact on human health. Peptides exhibiting antihypertensive properties (i.e., inhibition of angiotensin-I-converting enzyme) are commonly found in whey protein hydrolysates made with enzymes of animal, plant or microbial origin. However, bioactive properties can be influenced by processing conditions and gastrointestinal digestion. In this study, we evaluated the impact of three plant enzymes (papain, bromelain and ficin) in the manufacture of whey protein hydrolysates with varying level of pH, enzyme-to-substrate ratio and time of hydrolysis, based on a central composite design, to determine the degree of hydrolysis and antihypertensive properties. Hydrolysates made on laboratory scales showed great variation in the type of enzyme used, their concentrations and the pH level of hydrolysis. However, low degrees of hydrolysis in papain and bromelain treatments were associated with increased antihypertensive properties, when compared to ficin. Simulated gastrointestinal digestion performed for selected hydrolysates showed an increase in antihypertensive properties of hydrolysates made with papain and bromelain, which was probably caused by further release of peptides. Several peptides with reported antihypertensive properties were found in all treatments. These results suggest plant enzymes used in this study can be suitable candidates to develop ingredients with bioactive properties.
Collapse
Affiliation(s)
- Marie Peslerbes
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
- École Supérieure D’agricultures Angers Loire, 49000 Angers, France
| | - Angélica Fellenberg
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
| | | | | | - Rodrigo A. Ibáñez
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 2022; 13:100183. [PMID: 35499000 PMCID: PMC9039911 DOI: 10.1016/j.fochx.2021.100183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed and edible insects are considered new sources of bioactive peptides. Conventional approaches are necessary to validate the bioactivity of peptides. Bioinformatics tools accelerate the obtaining of bioactive peptides. The integrated approach is a promising strategy to obtain bioactive peptides.
The interest for food-derived bioactive peptides, either from common or unconventional sources, has increased due to their potential therapeutic effect against a wide range of diseases. The study of such bioactive peptides using conventional methods is a long journey, expensive and time-consuming. Hence, bioinformatic approaches, which can not only help to predict the formation of bioactive peptides from any known protein source, but also to analyze the protein structure/function relationship, have gained a new meaning in this scientific field. Therefore, this review aims to provides an overview of conventional characterization methods and the most recent advances in the field of in silico approaches for predicting and screening promising food-derived bioactive peptides.
Collapse
|
16
|
León-López A, Pérez-Marroquín XA, Estrada-Fernández AG, Campos-Lozada G, Morales-Peñaloza A, Campos-Montiel RG, Aguirre-Álvarez G. Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers (Basel) 2022; 14:polym14061258. [PMID: 35335587 PMCID: PMC8955172 DOI: 10.3390/polym14061258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
There are two types of milk whey obtained from cheese manufacture: sweet and acid. It retains around 55% of the nutrients of the milk. Milk whey is considered as a waste, creating a critical pollution problem, because 9 L of whey are produced from every 10 L of milk. Some treatments such as hydrolysis by chemical, fermentation process, enzymatic action, and green technologies (ultrasound and thermal treatment) are successful in obtaining peptides from protein whey. Milk whey peptides possess excellent functional properties such as antihypertensive, antiviral, anticancer, immunity, and antioxidant, with benefits in the cardiovascular, digestive, endocrine, immune, and nervous system. This review presents an update of the applications of milk whey hydrolysates as a high value-added peptide based on their functional properties.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico;
| | - Gieraldin Campos-Lozada
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Alejandro Morales-Peñaloza
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan s/n, Colonia Chimalpa Tlalayote, Apan C.P. 43920, Hidalgo, Mexico;
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
- Correspondence: ; Tel.: +52-775-145-9265
| |
Collapse
|
17
|
The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants (Basel) 2022; 11:antiox11020333. [PMID: 35204214 PMCID: PMC8868115 DOI: 10.3390/antiox11020333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Diet is an essential factor determining the ratio of pathogenic and beneficial gut microbiota. Hydrolysates and bioactive peptides have been described as crucial ingredients from food protein that potentially impact human health beyond their roles as nutrients. These compounds can exert benefits in the body, including modulation of the gut microbiota, and thus, they can reduce metabolic disorders. This review summarized studies on the interaction between hydrolysates/peptides, gut microbes, and obesity, focusing on how hydrolysates/peptides influence gut microbiota composition and function that improve body weight. Findings revealed that gut microbes could exert anti-obesity effects by controlling the host’s energy balance and food intake. They also exhibit activity against obesity-induced inflammation by changing the expression of inflammatory-related transcription factors. Protein hydrolysates/peptides can suppress the growth of pro-obesity gut bacteria but facilitate the proliferation of those with anti-obesity effects. The compounds provide growth factors to the beneficial gut bacteria and also improve their resistance against extreme pH. Hydrolysates/peptides are good candidates to target obesity and obesity-related complications. Thus, they can allow the development of novel strategies to fight incidences of obesity. Future studies are needed to understand absorption fate, utilization by gut microbes, and stability of hydrolysates/peptides in the gut under obesity.
Collapse
|
18
|
Zeidan R, Ul Hassan Z, Al‐Naimi N, Al‐Thani R, Jaoua S. Detection of multimycotoxins in camel feed and milk samples and their comparison with the levels in cow milk. Food Sci Nutr 2022; 10:609-616. [PMID: 35154696 PMCID: PMC8825718 DOI: 10.1002/fsn3.2677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Camel milk has been considered as an important source of nutrients and is commercialized in many countries of the world including the Middle East. This study aimed to investigate the presence of mycotoxins in camel feed and milk samples in comparison with the cow milk. Fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEN) were detected in 14%, 39%, and 39% of the tested camel feed samples, respectively. Among the tested camel feed samples, 8.3% and 5.6% were co-contaminated with OTA+FUM and FUM+ZEN, respectively. In the case of milk samples, 46.15% of camel and 63.63% of cow were found contaminated with aflatoxin M1 (AFM1). In total, 16.2% and 8.1% of the milk samples were simultaneously contaminated with two and three mycotoxins, respectively. Although the levels of individual mycotoxins in the camel feed and milk samples were within the European Union (EU) permissible limits, their co-occurrence may pose severe risk to human and animal health due to possible additive and/or synergistic toxicities.
Collapse
Affiliation(s)
- Randa Zeidan
- Environmental Science ProgramDepartment of Biological and Environmental SciencesCollege of Arts and SciencesQatar UniversityDohaQatar
| | - Zahoor Ul Hassan
- Environmental Science ProgramDepartment of Biological and Environmental SciencesCollege of Arts and SciencesQatar UniversityDohaQatar
| | | | - Roda Al‐Thani
- Environmental Science ProgramDepartment of Biological and Environmental SciencesCollege of Arts and SciencesQatar UniversityDohaQatar
| | - Samir Jaoua
- Environmental Science ProgramDepartment of Biological and Environmental SciencesCollege of Arts and SciencesQatar UniversityDohaQatar
| |
Collapse
|
19
|
Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2008953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. Selva Muthukumaran
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, India
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| |
Collapse
|
20
|
Sitohy M, Al-Mohammadi AR, Osman A, Abdel-Shafi S, El-Gazzar N, Hamdi S, Ismail SH, Enan G. Silver-Protein Nanocomposites as Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3006. [PMID: 34835774 PMCID: PMC8617916 DOI: 10.3390/nano11113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023]
Abstract
The use of nanomaterials alone or in composites with proteins is a promising alternative to inhibit pathogenic bacteria. In this regard, this study used seed proteins from both fenugreek (Trigonella foenum-graecum L.) (FNP) and mung bean (Viga radiate) (MNP), with silver nanoparticles (Ag-NPs) and nanocomposites of either Ag-NPs plus FNP (Ag-FNP) or Ag-NPs plus MNP (Ag-MNP) as inhibitory agents against pathogenic bacteria. FNP and MNP were isolated from fenugreek seeds and mung bean seeds, respectively, and fractionated using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Both FNP and MNP were immobilized with Ag-NPs to synthesize the nanocomposites Ag-FNP and Ag-MNP, respectively. The physicochemical characteristics of Ag-NPs and their composites with proteins were studied by X-ray Diffraction (XRD), dynamic light scattering (DLS), the zeta potential, Scanning and Transmission Electron Microscopy (SEM and TEM, respectively), Atomic Force Microscopy (AFM), and the Brunauer-Emmett-Teller isotherm (BET), elucidating their structural parameters, size distribution, size charges, size surface morphology, particle shape, dimensional forms of particles, and specific surface area, respectively. The sole proteins, Ag-NPs, and their nanocomposites inhibited pathogenic Gram-positive and Gram-negative bacteria. The inhibitory activities of both nanocomposites (Ag-FNP and Ag-MNP) were more than those obtained by either Ag-NPs or proteins (FNP, MNP). Minimum inhibitory concentrations (MICs) of Ag-FNP were very low (20 and 10 µg mL-1) against Salmonellatyphimurium and Pseudomonasaerugenosa, respectively, but higher (162 µg mL-1) against E. coli and Listeriamonocytogenes. MICs of Ag-MNP were also very low (20 µg mL-1) against Staphylococcusaureus but higher (325 µg mL-1) against Listeriamonocytogenes. TEM images of Staphylococcusaureus and Salmonellatyphimurium, treated with Ag-FNP and Ag-MNP, at their MIC values, showed asymmetric, wrinkled exterior surfaces, cell deformations, cell depressions, and diminished cell numbers.
Collapse
Affiliation(s)
- Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Abdul-Raouf Al-Mohammadi
- Department of Science, King Khalid Military Academy, P.O. Box 22140, Riyadh 11495, Saudi Arabia;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Sara Hamdi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate, Cairo University, Zayed City 12588, Egypt;
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| |
Collapse
|
21
|
Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021; 373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
The generation of camel milk derived bioactive peptides (CM-BAPs) have started to grab keen interest of many researchers during the past decade. CM-BAPs have shown more significant bioactive properties in comparison to camel milk intact proteins. CM-BAPs can be obtained using enzyme hydrolysis to form hydrolysates, or by the fermentation process. In this systematic review, 46 research articles exploring the health-related bioactive properties of CM-BAPs through in-vitro and in-vivo studies have been included. CM-BAPs have been reported for their antioxidant, anti-diabetic, anti-obesity, antihypertensive, antibacterial, antibiofilm, anticancer, anti-inflammatory, anti-haemolytic, and anti-hyperpigmentation activities. The effects of factors such as molecular weight of peptides, type of enzyme, enzyme to substrate ratio, hydrolysis temperature and duration have been analysed. The in-vitro studies have provided enough evidence on certain aspects of the pharmacological actives of camel milk bioactive peptides. Nevertheless, the in-vivo studies are very limited, and no clinical studies on CM-BAPs have been reported.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamidreza Valizadenia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Semnan Province, Iran
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; DIL e.V. - German Institute of Food Technologies, D-Quakenbrück, Germany
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
22
|
Atallah AA, Osman A, Sitohy M, Gemiel DG, El-Garhy OH, Azab IHE, Fahim NH, Abdelmoniem AM, Mehana AE, Imbabi TA. Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis. Foods 2021; 10:2493. [PMID: 34681542 PMCID: PMC8535214 DOI: 10.3390/foods10102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The present study examines the impacts of supplementing yogurt with 1% whey protein concentrate (WPC), Ca-caseinate (Ca-CN) and Spirulina platensis on the physiological performance of V-line rabbits receiving diets containing yogurt (at a dose of 5 g/kg body weight/day) and the different meat quality aspects. The results show that fat content was highest (p < 0.05) in yogurt fortified with Spirulina powder, but protein (%) was highest in yogurt enriched with WPC. Yogurt containing Spirulina powder showed a significant (p < 0.05) increase in total antioxidant activity. The final live body weight for G1 was higher than the other groups. However, additives affected the saddle, hind legs, liver and neck percentages significantly (p < 0.05). There were not significant differences for all groups in the forelegs, lung and heart percentages. LDL-cholesterol, total protein, globulin, albumin, creatinine and immunoglobulin M values were lowest (p < 0.05) in the WPC group. Significant improvements appeared in the small intestinal wall, microbiology, growth performance, serum biochemistry, organ histology and meat quality of the group receiving enriched yogurt. Yogurts enriched with WPC, Ca-CN and Spirulina platensis can be used as functional foods.
Collapse
Affiliation(s)
- Atallah A. Atallah
- Department of Dairy Science, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Dalia G. Gemiel
- Department of Dairy Science, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| | - Osams H. El-Garhy
- Animal Production Departments, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; (O.H.E.-G.); (T.A.I.)
| | - Islam H. El Azab
- Food Science & Nutrition Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nadia. H. Fahim
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | | | - Amir E. Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41611, Egypt;
| | - Tharwat A. Imbabi
- Animal Production Departments, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; (O.H.E.-G.); (T.A.I.)
| |
Collapse
|
23
|
Osman A, Enan G, Al-Mohammadi AR, Abdel-Shafi S, Abdel-Hameid S, Sitohy MZ, El-Gazzar N. Antibacterial Peptides Produced by Alcalase from Cowpea Seed Proteins. Antibiotics (Basel) 2021; 10:870. [PMID: 34356791 PMCID: PMC8300757 DOI: 10.3390/antibiotics10070870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cowpea seed protein hydrolysates (CPH) were output from cowpea seeds applying alcalase® from Bacillus licheniformis. CPH with an elevated level of hydrolysis was fractionated by size exclusion chromatography (SEC). Both CPH and SEC-portions showed to contain antimicrobial peptides (AMPs) as they inhibited both Gram-positive bacteria, such as Listeria monocytogenes LMG10470 (L. monocytogenes), Listeria innocua. LMG11387 (L. innocua), Staphylococcus aureus ATCC25923 (S.aureus), and Streptococcus pyogenes ATCC19615 (St.pyogenes), and Gram-negative bacteria, such as Klebsiella pnemoniae ATCC43816 (K. pnemoniae), Pseudomonas aeroginosa ATCC26853 (P. aeroginosa), Escherichia coli ATCC25468) (E.coli) and Salmonella typhimurium ATCC14028 (S. typhimurium).The data exhibited that both CPH and size exclusion chromatography-fraction 1 (SEC-F1) showed high antibacterial efficiency versus almost all the assessed bacteria. The MIC of the AMPs within SEC-F1 and CPHs were (25 µg/mL) against P. aeruginosa, E.coli and St. pyogenes. However, higher MICsof approximately 100-150 µg/mL showed for both CPHs and SEC-F1 against both S. aureus and L. innocua; it was 50 µg/mL of CPH against S.aureus. The Electro-spray-ionization-mass-spectrometry (ESI-MS) of fraction (1) revealed 10 dipeptides with a molecular masses arranged from 184 Da to 364 Da and one Penta peptide with a molecular mass of approximately 659 Da inthe case of positive ions. While the negative ions showed 4 dipeptides with the molecular masses that arranged from 330 Da to 373 Da. Transmission electron microscope (TEM) demonstrated that the SEC-F1 induced changes in the bacterial cells affected. Thus, the results suggested that the hydrolysis of cowpea seed proteins by Alcalase is an uncomplicated appliance to intensify its antibacterial efficiency.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | | | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Samar Abdel-Hameid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.Z.S.)
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig44519, Egypt; (S.A.-S.); (S.A.-H.); (N.E.-G.)
| |
Collapse
|
24
|
Osman A, Imbabi TA, El-Hadary A, Sabeq II, Edris SN, Merwad AR, Azab E, Gobouri AA, Mohammadein A, Sitohy M. Health Aspects, Growth Performance, and Meat Quality of Rabbits Receiving Diets Supplemented with Lettuce Fertilized with Whey Protein Hydrolysate Substituting Nitrate. Biomolecules 2021; 11:835. [PMID: 34205142 PMCID: PMC8227087 DOI: 10.3390/biom11060835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lettuce (Lactuca sativa) was grown using a foliar spray with whey protein hydrolysate (WPH) as opposed to normal nitrate fertilization. Lettuce juice was prepared from lettuce cultivated without any fertilization, nitrate fertilization, or WPH. Sixty weaned, 4-week-old male V-line rabbits with an average 455 ± 6 g body weight were randomly divided into 4 groups (n = 15) and administered different lettuce juices. Rabbits administered WPH-fertilized lettuce showed significantly higher (n = 5, p < 0.05) body weight and carcass weight than those receiving nitrate-fertilized lettuce. Rabbits administered nitrate-fertilized lettuce were associated with significantly (p < 0.05) higher levels of liver enzyme activities (AST, ALT, and ALP), bilirubin (total, direct, and indirect), and kidney biomarkers (creatinine, urea, and uric acid). Rabbits administered WPH-fertilized lettuce avoided such increases and exhibited normal levels of serum proteins. Rabbits administered nitrate-fertilized lettuce manifested significantly (p < 0.05) lower RBCs and Hb levels than that of the other groups, while those receiving WPH-fertilized lettuce showed the highest levels. Liver and kidney sections of rabbits receiving WPH-fertilized lettuce witnessed the absence of the histopathological changes induced by feeding on nitrate-fertilized lettuce and produced higher quality meat. WPH-lettuce can substitute nitrate-fertilized lettuce in feeding rabbits for better performance and health aspects.
Collapse
Affiliation(s)
- Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Tharwat A. Imbabi
- Department of Animal Production, Faculty of Agriculture, Benha Univerisity, Benha 13736, Egypt;
| | - Abdalla El-Hadary
- Department of Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Islam Ibrahim Sabeq
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (I.I.S.); (S.N.E.)
| | - Shimaa N. Edris
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (I.I.S.); (S.N.E.)
| | - Abdel-Rahaman Merwad
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ehab Azab
- Department of Nutrition and Food Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amaal Mohammadein
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
25
|
El-Saadony MT, Abd El-Hack ME, Swelum AA, Al-Sultan SI, El-Ghareeb WR, Hussein EOS, Ba-Awadh HA, Akl BA, Nader MM. Enhancing quality and safety of raw buffalo meat using the bioactive peptides of pea and red kidney bean under refrigeration conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1926346] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Saad I. Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Waleed R. El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed O. S. Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hani A. Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Behairy A. Akl
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Maha M. Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Osman A, Merwad ARM, Mohamed AH, Sitohy M. Foliar Spray with Pepsin-and Papain-Whey Protein Hydrolysates Promotes the Productivity of Pea Plants Cultivated in Clay Loam Soil. Molecules 2021; 26:2805. [PMID: 34068570 PMCID: PMC8126062 DOI: 10.3390/molecules26092805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Papain and pepsin-hydrolyzed whey protein (PAH and PEH, respectively) were prepared and characterized for its degree of hydrolysis, chemical constituents (amino acid and peptides) and antioxidant activity. A field experiment was conducted at El Salheya El Gedida City, Sharqia, Egypt, during the seasons 2019 and 2020, to investigate the biological action of the foliar spray of PAH and PEH on the growth and yield of pea plants cultivated in a clay loam soil. Foliar application of the papain and pepsin-hydrolyzed whey protein (PAH and PEH, respectively) at 1000 and 2000 mg/L was applied three times after 25, 35 and 45 days from planting. All protein foliar spray treatments had significant positive effects on the uptake of N, P and K, simultaneously increasing the contents of all the photosynthetic pigments (Chlorophyll a, Chlorophyll b and Carotenoids) in a concentration-dependent manner. The most conspicuous increase was seen in Chlorophyll b (105% increase), followed by Carotenoids (91% increase). Generally, the favorable increases caused by the second level of application (2000 mg/L) were nearly 2-3 times that of the low level (1000 mg/L). Pod growth and formation indicators, e.g., no. of pod/plant, pod length and no. of seeds/pod, responded more evidently to the hydrolyzed than the intact form of whey protein treatments. Hydrolyzed whey protein foliar spray treatments achieved significantly higher increases in the global field yield components of Pisum sativum plants than the intact form, where peptic hydrolysates were significantly superior to papain hydrolysate. The treatment PEH (2000 mg/L) can be recommended as the most effective bio-stimulating foliar spray treatment for higher plant productivity when applied 25, 35 and 45 days after planting.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdel-Rahaman M Merwad
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Azza H Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
27
|
Angiotensin-I Converting Enzyme Inhibition and Antioxidant Activity of Papain-Hydrolyzed Camel Whey Protein and Its Hepato-Renal Protective Effects in Thioacetamide-Induced Toxicity. Foods 2021; 10:foods10020468. [PMID: 33672579 PMCID: PMC7924048 DOI: 10.3390/foods10020468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Papain hydrolysis of camel whey protein (CWP) produced CWP hydrolysate (CWPH). Fractionation of CWPH by the size exclusion chromatography (SEC) generated fractions (i.e., SEC-F1 and SEC-F2). The angiotensin converting enzyme inhibitory activity (ACE-IA) and free radical scavenging actions were assessed for CWP, CWPH, SEC-F1, and SEC-F2. The SEC-F2 exerted the highest ACE-IA and scavenging activities, followed by CWPH. The protective effects of CWPH on thioacetamide (TAA)-induced toxicity were investigated in rats. The liver enzymes, protein profile, lipid profile, antioxidant enzyme activities, renal functions, and liver histopathological changes were assessed. Animals with TAA toxicity showed impaired hepatorenal functions, hyperlipidemia, and decreased antioxidant capacity. Treatment by CWPH counteracted the TAA-induced oxidative tissue damage as well as preserved the renal and liver functions, the antioxidative enzyme activities, and the lipid profile, compared to the untreated animals. The current findings demonstrate that the ACE-IA and antioxidative effects of CWPH and its SEC-F2 fraction are worth noting. In addition, the CWPH antioxidative properties counteracted the toxic hepatorenal dysfunctions. It is concluded that the hydrolysis of CWP generates a wide range of bioactive peptides with potent antihypertensive, antioxidant, and hepatorenal protective properties. This opens up new prospects for the therapeutic utilization of CWPH and its fractions in the treatment of oxidative stress-associated health problems, e.g., hypertension and hepatorenal failure.
Collapse
|
28
|
Osman A, El-Gazzar N, Almanaa TN, El-Hadary A, Sitohy M. Lipolytic Postbiotic from Lactobacillus paracasei Manages Metabolic Syndrome in Albino Wistar Rats. Molecules 2021; 26:molecules26020472. [PMID: 33477482 PMCID: PMC7831067 DOI: 10.3390/molecules26020472] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The current study investigates the capacity of a lipolytic Lactobacillus paracasei postbiotic as a possible regulator for lipid metabolism by targeting metabolic syndrome as a possibly safer anti-obesity and Anti-dyslipidemia agent replacing atorvastatin (ATOR) and other drugs with proven or suspected health hazards. The high DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2'-azino-bis (3-ethyl benzothiazoline-6-sulphonic acid)] scavenging activity and high activities of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) of the Lactobacillus paracasei postbiotic (cell-free extract), coupled with considerable lipolytic activity, may support its action against metabolic syndrome. Lactobacillus paracasei isolate was obtained from an Egyptian cheese sample, identified and used for preparing the postbiotic. The postbiotic was characterized and administered to high-fat diet (HFD) albino rats (100 and 200 mg kg-1) for nine weeks, as compared to atorvastatin (ATOR; 10 mg kg-1). The postbiotic could correct the disruption in lipid metabolism and antioxidant enzymes in HFD rats more effectively than ATOR. The two levels of the postbiotic (100 and 200 mg kg-1) reduced total serum lipids by 29% and 34% and serum triglyceride by 32-45% of the positive control level, compared to only 25% and 35% in ATOR's case, respectively. Both ATOR and the postbiotic (200 mg kg-1) equally decreased total serum cholesterol by about 40% and 39%, while equally raising HDL levels by 28% and 30% of the positive control. The postbiotic counteracted HFD-induced body weight increases more effectively than ATOR without affecting liver and kidney functions or liver histopathology, at the optimal dose of each. The postbiotic is a safer substitute for ATOR in treating metabolic syndrome.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdalla El-Hadary
- Biochemistry Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: ; Tel.: +20-106-527-2667
| |
Collapse
|
29
|
Al-Mohammadi AR, Osman A, Enan G, Abdel-Shafi S, El-Nemer M, Sitohy M, Taha MA. Powerful Antibacterial Peptides from Egg Albumin Hydrolysates. Antibiotics (Basel) 2020; 9:antibiotics9120901. [PMID: 33322196 PMCID: PMC7763489 DOI: 10.3390/antibiotics9120901] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
Native egg albumin (NEA) was isolated from hen eggs and hydrolyzed by pepsin to produce hydrolyzed egg albumin (HEA). HEA was chemically characterized and screened for its antibacterial activity against 10 pathogenic bacteria (6 Gram (+) and 4 Gram (−)). The SDS-PAGE pattern of NEA showed molecular weights of hen egg albumin subunits ranging from 30 to 180 kDa. The highest intensive bands appeared at a molecular mass of about 50 and 97 kDa. Ultra-performance liquid chromatography (UPLC) of the peptic HEA revealed 44 peptides, 17 of them were dipeptides, and the other 27 fractions corresponded to bigger peptides (3–9 amino acids). The dipeptides and big peptides represented 26% and 74% of the total hydrolysate, respectively. The MIC of HEA was about 100 μg/L for Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella typhimurium, Streptococcus pyogenes, and Klebsiella oxytoca and 150 μg/L for Pseudomonas aeruginosa, Bacillus subtilis, and Listeria ivanovii and 200 μg/L for Escherichia coli. L. monocytogenes was the most sensitive organism to HEA. Mixtures of HEA with antibiotics showed more significant antibacterial activity than individually using them. Transmission electron microscopy (TEM) revealed various signs of cellular deformation in the protein-treated bacteria. HEA may electrostatically and hydrophobically interact with the cell wall and cell membrane of the susceptible bacteria, engendering large pores and pore channels leading to cell wall and cell membrane disintegration. Higher cell permeability may, thus, occur, leading to cell emptiness, lysis, and finally death. Alternatively, no toxicity signs appeared when HEA was administrated to Wistar Albino rats as one single dose (2000, 5000 mg/kg body weight) or repeated daily dose (500 and 2500 mg/kg body weight/day) for 28 days to disclose the possible toxicity hazards. HEA did not produce any death.
Collapse
Affiliation(s)
- Abdul-Raouf Al-Mohammadi
- Department of Science, King Khalid Military Academy, P.O. Box 22140, Riyadh 11495, Saudi Arabia;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.S.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-N.); (M.A.T.)
- Correspondence: (G.E.); (S.A.-S.); Tel.: +20-1009877015 (G.E.); +20-1289600036 (S.A.-S.)
| | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-N.); (M.A.T.)
- Correspondence: (G.E.); (S.A.-S.); Tel.: +20-1009877015 (G.E.); +20-1289600036 (S.A.-S.)
| | - Mona El-Nemer
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-N.); (M.A.T.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.S.)
| | - Mohamed A. Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.E.-N.); (M.A.T.)
| |
Collapse
|
30
|
Zhao Q, Shi Y, Wang X, Huang A. Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. J Dairy Sci 2020; 103:11116-11128. [DOI: 10.3168/jds.2020-18577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022]
|
31
|
Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides with multiple activities extracted from Barley (
Hordeum vulgare
L.) grain protein hydrolysates: Biochemical analysis and computational identification. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Tok
- Department of Biochemistry Ege University Bornova‐Izmir Turkey
| | | | | | - Figen Zihnioglu
- Department of Biochemistry Ege University Bornova‐Izmir Turkey
| |
Collapse
|
32
|
Amouheydari M, Ehsani MR, Javadi I. Effect of a dietary supplement composed of hydrolyzed milk proteins and vanillin on the reduction of infection and oxidative stress induced by chemotherapy. J Food Biochem 2020; 44:e13434. [PMID: 32794207 DOI: 10.1111/jfbc.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
This study evaluates the antioxidant and antibacterial activity of a mixture of lactoferrin hydrolysate (LfH), whey protein hydrolysate (WPH) and vanillin in vitro and in vivo to design a chemoprotective supplement for reducing the infection and oxidative stress induced by chemotherapy. The designed supplement showed significant antibacterial activity against E. coli. The supplement with the highest concentration exhibited considerable antioxidant activity in (2,2-diphenyl-1-picrylhydrazyl) DPPH free radicals, (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ABTS, and reducing power assays. In the biochemical analysis of liver homogenate, the supplement 3 increased the level of enzymes Catalase (CAT), Glutathione peroxidase (GPx), Superoxide dismutase (SOD), and also the Ferric Reducing Ability of Plasma (FRAP) while decreased thiobarbituric acid reactive substances (TBARS) in comparison to paclitaxel group, indicative of activity against oxidative stress. Antibacterial and antioxidant activity of the designed supplement makes it a good candidate for use as a functional food to reduce the side effects of chemotherapy. PRACTICAL APPLICATIONS: A dietary supplement composed of lactoferrin hydrolysate (LfH), whey protein hydrolysate (WPH) and vanillin showed antibacterial activity against E. coli and S. aureus in vitro. The studied supplement also exhibited significant antioxidant properties in the model system and anti-oxidative stress activity in mice exposed to paclitaxel. This supplement has a potential for use in the food matrix to reduce the chemotherapy side effects and to act as a chemoprotective agent.
Collapse
Affiliation(s)
- Mehdi Amouheydari
- Department of Food Science and Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mohammad Reza Ehsani
- Department of Food Science and Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Iraj Javadi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Catfish Glycoprotein, a Highly Powerful Safe Preservative of Minced Beef Stored at 4 °C for 15 Days. Foods 2020; 9:foods9081115. [PMID: 32823600 PMCID: PMC7465422 DOI: 10.3390/foods9081115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
Minced beef is a very perishable food product, due to its vulnerability to microbial contamination and its fast quality deterioration. In the current study, the biological efficiency of different concentrations (0, 50 and 100 µg g−1) of the antibacterial catfish glycoprotein (CFG) was estimated as a possible improver of the storability and safety of minced beef preserved at 4 °C for 15 days. CFG (50 and 100 µg g−1) could efficiently control the changes in meat pH during 15 days storage at 4 °C to be within the normal, acceptable levels (6.4 and 6.2, respectively), equalizing the level of the control for minced beef after 6 days of storage under similar conditions. Likewise, the level of metmyoglobin in minced beef stored at the same conditions was maintained at 53.67 and 46.67% by CFG supplementation at 50 and 100 µg g−1, respectively, at the 15th day of storage, which is comparable to the 6th day in case of the control samples. However, the antioxidant effect of CFG against lipid peroxidation was less effective. The antibacterial action of CFG was most pronouncedly powerful and efficient. Supplementation of minced beef with CFG at 50 and 100 µg g−1 significantly (p < 0.05) decreased the bacterial counts at all the time inspection points as compared to the control. After 15 days of storage, the total viable bacteria, psychrotrophic bacterial count and coliforms count were reduced to 3.12, 2.65 and 0.0 log CFU g−1, respectively, in response to CFG (50 µg g−1), and 2.41, 2.04 and 0.0 log CFU g−1, respectively, in response to CFG (100 µg g−1); this compared to 5.13, 4.78 and 2.5 in the control samples after only six days cold storage. Using CFG at 50, 100 and 200 µg g−1 in rat diets did not affect their liver or kidney functions, reflecting the non-toxicity of this substance. Substantiating the antioxidant and antimicrobial potential of CFG in minced beef storage may support its use as a naturally powerful and safe food preservative, as well as a shelf-life extender.
Collapse
|
34
|
Tong X, Prasanna G, Zhang N, Jing P. Spectroscopic and molecular docking studies on the interaction of phycocyanobilin with peptide moieties of C-phycocyanin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118316. [PMID: 32344374 DOI: 10.1016/j.saa.2020.118316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The binding of C-phycocyanin (CPC), a light harvesting pigment with phycocyanobilin (PCB), a chromophore is instrumental for the coloration and bioactivity. In this study, structure-mediated color changes of CPC from Spirulina platensis during various enzymatic hydrolysis was investigated based on UV-visible, circular dichroism, infra-red, fluorescence, mass spectrometry, and molecular docking. CPC was hydrolyzed using 7.09 U/mg protein of each enzyme at their optimal hydrolytic conditions for 3 h as follows: papain (pH 6.6, 60 °C), dispase (pH 6.6, 50 °C), and trypsin (pH 7.8, 37 °C). The degree of hydrolysis was in the order of papain (28.4%) > dispase (20.8%) > trypsin (7.3%). The sequence of color degradation rate and total color difference (ΔE) are dispase (82.9% and 40.37), papain (72.4% and 24.70), and trypsin (58.7% and 25.43). The hydrolyzed peptides were of diverse sequence length ranging from 8 to 9 residues (papain), 7-12 residues (dispase), and 9-63 residues (trypsin). Molecular docking studies showed that key amino acid residues in the peptides interacting with chromophore. Amino acid residues such as Arg86, Asp87, Tyr97, Asp152, Phe164, Ala167, and Val171 are crucial in hydrogen bonding interaction. These results indicate that the color properties of CPC might associate with chromopeptide sequences and their non-covalent interactions.
Collapse
Affiliation(s)
- Xueyu Tong
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Camel milk whey hydrolysate inhibits growth and biofilm formation of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob Proteins 2020; 11:1015-1022. [PMID: 30415461 DOI: 10.1007/s12602-018-9483-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, yellowfin tuna (Thunnus albacores) viscera were hydrolyzed with protamex to obtain hydrolysate that is separated by a membrane ultrafiltration into four molecular size fractions (< 3, 3-10, 10-30, and 30 kDa <). Antibacterial and antioxidant properties of the resulting hydrolysates and membrane fractions were characterized, and results showed that the lowermost molecular weight fraction (< 3 kDa) had significantly the highest (P < 0.05) percentage of bacteria inhibition against Gram-positive (Listeria and Staphylococcus) and Gram-negative (E. coli and Pseudomonas) pathogenic and fish spoilage-associated microorganisms and scavenging activity against DPPH and ABTS radical and ferric reducing antioxidant power among the fractionated enzymatic hydrolysates. These results suggest that the protein hydrolysate derived from yellowfin tuna by-products and its peptide fractions could be used as an antimicrobial and antioxidant ingredient in both nutraceutical applications and functional food.
Collapse
|
37
|
Antibacterial Activity of Trypsin-Hydrolyzed Camel and Cow Whey and Their Fractions. Animals (Basel) 2020; 10:ani10020337. [PMID: 32093356 PMCID: PMC7070643 DOI: 10.3390/ani10020337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Camels are an important part of the ecosystem in desert areas. Camels can survive well under difficult conditions, therefore, they play a key role in local herdsmen’s production, life, and economic structure. China’s Inner Mongolia region has unique environmental and geographical advantages, making it suitable for camel breeding. Camel milk has high nutritional value and unique functional characteristics. It not only has low sensitization, but also contains various immune active factors with high medicinal value. Currently, there are various products derived from cow and goat milk, but few related to camel milk, providing an opportunity for development. This study used trypsin to hydrolyze the whey proteins of camel milk, separated and purified peptide fragments with antibacterial activity, and conducted a comparative study with cow milk. The present study provided new ideas for the use and development of camel whey protein hydrolysates and their dextran purification fractions, and indicated the future development of these peptides as nutritional additives or food preservatives. Abstract Antibacterial peptides were isolated and purified from whey proteins of camel milk (CaW) and cow milk (CoW) and their antimicrobial activities were studied. The whey proteins were hydrolyzed using trypsin, and the degree of hydrolysis was identified by gel electrophoresis. The whey hydrolysate (WH) was purified using ultrafiltration and Dextran gel chromatography to obtain small peptides with antibacterial activity. The effect of the antimicrobial peptides on the morphology of bacterial strains was investigated using transmission electron microscopy. Their amino acid composition and antimicrobial activities were then determined. Polypeptides CaWH-III (<3 kDa) and CoWH-III (<3 kDa) had the strongest antibacterial activity. Both Fr.A2 (CaWH-Ⅲ’s fraction 2) and Fr.B1 (CoWH-Ⅲ’s fraction 1) had antibacterial effects toward Escherichia coli and Staphylococcus aureus, with minimum antimicrobial mass concentrations of 65 mg/mL and 130 mg/mL for Fr.A2, and 130 mg/mL and 130 mg/mL for Fr.B1, respectively. The highly active antimicrobial peptides had high amounts of alkaline amino acids (28.13% in camel milk Fr.A2 and 25.07% in the cow milk Fr.B1) and hydrophobic amino acids. (51.29% in camel milk Fr.A2 and 57.69% in the cow milk Fr.B1). This results showed that hydrolysis of CaW and CoW using trypsin produced a variety of effective antimicrobial peptides against selected pathogens, and the antibacterial activity of camel milk whey was slightly higher than that of cow milk whey.
Collapse
|
38
|
Abdel-Hamid M, Osman A, El-Hadary A, Romeih E, Sitohy M, Li L. Hepatoprotective action of papain-hydrolyzed buffalo milk protein on carbon tetrachloride oxidative stressed albino rats. J Dairy Sci 2019; 103:1884-1893. [PMID: 31837790 DOI: 10.3168/jds.2019-17355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Buffalo skim milk retentate was hydrolyzed with papain for 4 h (enzyme:substrate, 1:200), resulting in a retentate hydrolysate (RH) with a degree of hydrolysis of 23%. We then investigated the potential hepatoprotective activity of RH at 250 and 500 mg/kg of body weight per day on carbon tetrachloride (CCl4)-induced oxidative stress in albino rats. Liver biomarkers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase), kidney biomarkers (urea, creatinine), and serum lipid profile (total lipids and triglycerides) were measured, in addition to histopathological status. Injection of CCl4 significantly increased all liver and kidney biomarkers compared with the negative control. In contrast, CCl4 injection significantly reduced hepatic antioxidant enzyme activities; that is, glutathione peroxidase and superoxide dismutase. Oral administration of RH for 28 d effectively maintained a physiologically normal range of liver and kidney biomarkers compared with the positive control. Furthermore, RH administration significantly increased activities of glutathione peroxidase and superoxide dismutase. Histopathological sections of CCl4-stressed rats treated with RH were different from that of the positive control and were similar to those of the negative control, in a concentration-dependent manner. Our results demonstrated the antihepatotoxic activities of buffalo milk RH and demonstrated that the higher RH concentration (500 mg/kg of body weight per day) could maintain the healthy biological status of the CCl4-injected rats.
Collapse
Affiliation(s)
- M Abdel-Hamid
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - A Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - A El-Hadary
- Biochemistry Department, Faculty of Agriculture, Banha University, Banha 13736, Egypt
| | - E Romeih
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - M Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - L Li
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
39
|
Abdel-Shafi S, Al-Mohammadi AR, Sitohy M, Mosa B, Ismaiel A, Enan G, Osman A. Antimicrobial Activity and Chemical Constitution of the Crude, Phenolic-Rich Extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 2019; 24:E4280. [PMID: 31771271 PMCID: PMC6930538 DOI: 10.3390/molecules24234280] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Crude, phenolic-rich extracts (CPREs) were isolated from different sources, such as Hibiscus sabdariffa (H. sabdariffa), Brassica oleracea var. capitata f. rubra (B. oleracea) and Beta vulgaris (B. vulgaris) and characterized. These CPREs showed potential antibacterial and antifungal activities. H. sabdariffa CPRE (HCPRE) is the most potent, as it inhibited all tested bacteria and fungi. Total anthocyanins content (TAC), total phenolic content (TPC) and total flavonoid content (TFC) were estimated in all three CPREs. H. sabdariffa contained 4.2 mg/100 g TAC, 2000 mg/100 g of TPC and 430 mg/100 g of TFC in a dry weight sample. GC-MS analysis of HCPRE showed 10 different active compounds that have antimicrobial effects against pathogenic bacteria and fungi, especially alcoholic compounds, triazine derivatives and esters. Scanning and transmission electron microscopy images of Staphylococcus aureus DSM 1104 and Klebsiella pneumonia ATCC 43816 treated with HCPRE (50 μg/mL) exhibited signs of asymmetric, wrinkled exterior surfaces, cell deformations and loss of cell shapes; and adherence of lysed cell content led to cell clumping, malformations, blisters, cell depressions and diminished cell numbers. This indicates death of bacterial cells and loss of cell contents. Aspergillus ochraceus EMCC516 (A. ochraceus, when treated with 100 μg/mL of HCPRE showed irregular cell organelles and cell vacuolation.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | | | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Basma Mosa
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Ahmed Ismaiel
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| |
Collapse
|
40
|
Amer SA, Osman A, Al-Gabri NA, Elsayed SAM, Abd El-Rahman GI, Elabbasy MT, Ahmed SAA, Ibrahim RE. The Effect of Dietary Replacement of Fish Meal with Whey Protein Concentrate on the Growth Performance, Fish Health, and Immune Status of Nile Tilapia Fingerlings, Oreochromis niloticus. Animals (Basel) 2019; 9:ani9121003. [PMID: 31756970 PMCID: PMC6941161 DOI: 10.3390/ani9121003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Although fish meal is considered the main animal protein source in fish diets, its high cost and unavailability limit its use in aquafeed. Recently, the search for other high-quality replacers of fish meal in aquatic feeds is being carried out with increased attentiveness. However, very few investigations have been performed to assess the possible use of whey protein concentrates (WPC) in Nile tilapia feeds. Five replacement percentages of fish meal with WPC (0%, 13.8%, 27.7%, 41.6%, and 55.5%) were assessed. WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with Aeromonas hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Abstract The present study was conducted to assess the effect of replacing fish meal with whey protein concentrate (WPC) on the growth performance, histopathological condition of organs, economic efficiency, disease resistance to intraperitoneal inoculation of Aeromonas hydrophila, and the immune response of Oreochromis niloticus. The toxicity of WPC was tested by measuring the activity of caspase 3 as an indicator of cellular apoptosis. Oreochromis niloticus fingerlings with average initial weight 18.65 ± 0.05 gm/fish (n = 225) for a 10-week feeding trial. The fish were randomly allocated to five experimental groups, having five replacement percentages of fish meal with WPC: 0%, 13.8%, 27.7%, 41.6%, and 55.5% (WPC0, WPC13.8, WPC27.7, WPC41.6, and WPC55.5); zero percentage represented the control group. The results show that the fish fed WPC had the same growth performance as the WPC0. The total weight of bacterially challenged surviving fish increased linearly and quadratically (p ≤ 0.05) by increasing the replacement percentage of fish meal with WPC. The growth hormone, nitric oxide, IgM, complement 3, and lysozyme activity were seen to increase significantly in WPC27.7, especially after a bacterial challenge. The phagocytic percentage and phagocytic index increased significantly in WPC27.7, WPC41.6, and WPC55.5 groups. Histopathological examination of liver sections was badly affected by high replacement in WPC41.6–55.5. The activity of caspase 3 in the immunohistochemical stained sections of the intestine was increased significantly by increasing the inclusion level of WPC. Economically, the total return of the total surviving fish after the bacterial challenge was increased significantly by fish meal replacement with WPC. It could be concluded that WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with A. hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Further researches are recommended to evaluate the effect of fish meal replacement with WPC on the histopathological examination of the kidney and to test the capacity of serum IgM to clot the bacteria used for the challenge.
Collapse
Affiliation(s)
- Shimaa A. Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: or
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 4451, Egypt
| | - Naif A. Al-Gabri
- Pathology Department, Faculty of Veterinary Medicine, Thamar University, Dahamar 1519, Yemen
| | - Shafika A. M. Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Hail University, Hail 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shaimaa A. A. Ahmed
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rowida E. Ibrahim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
41
|
Abdel-Shafi S, Osman A, Al-Mohammadi AR, Enan G, Kamal N, Sitohy M. Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int J Biol Macromol 2019; 138:773-780. [PMID: 31351952 DOI: 10.1016/j.ijbiomac.2019.07.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
Abstract
Catfish glycoprotein (CFG) was extracted from the cutaneous mucus of Egyptian catfish by ammonium sulphate precipitation and purified on gel filtration column (sephadex G-50). After purification, CFG produced one band on SDS-PAGE (22 kDa). Urea-PAGE and the pH-solubility of CFG indicated its positive charge (IEP 8). CFG contained 12 saccharides. FTIR spectrum shows 3 groups of bands at 1800-2900, 1100-1700 and 700-1100 cm-1. CFG exhibited antibacterial activity against 9 pathogenic bacteria with low MIC (50 μg/mL), where two Gram+ bacteria, i.e.; Streptococcus pyogenes (St. pyogenes) and Listeria ivanovii (L. ivanovii) were the most sensitive. The growth curves of the bacteria subjected to 1 MIC of CFG during 30 h showed general growth inhibition, particularly in case of Gram- bacteria such as E. coli. TEM images showed evidently reduced relative content of the intact cells and clear incurred cellular malformations. Combining CFG with specific antibiotic at equal ratios induced synergistic antibacterial actions, amounting to 40% of the mathematical sum of the combination. Substituting the antibiotic chloramphenicol with gradual increasing ratios of CFG of its starting concentration (30 μg/mL), produced proportionally bigger antibacterial actions against St. pyogenes growth and increasing synergistic effect up to 37% at 80% of CFG substitution.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Gamal Enan
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nehal Kamal
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
42
|
Enzymatic Hydrolysis of Phaseolus vulgaris Protein Isolate: Characterization of Hydrolysates and Effect on the Quality of Minced Beef During Cold Storage. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09863-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Characterization and Antibacterial Activity of 7S and 11S Globulins Isolated from Cowpea Seed Protein. Molecules 2019; 24:molecules24061082. [PMID: 30893826 PMCID: PMC6471422 DOI: 10.3390/molecules24061082] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/21/2023] Open
Abstract
The present work was carried out to determine the characteristics and antibacterial activity of 7S and 11S globulins isolated from cowpea seed (Vigna unguiculata (L.) Walp.). The molecular mass of 7S globulin was demonstrated by SDS-PAGE bands to be of about 132, 129 and 95 kDa corresponding the α/, α and β subunits. The molecular mass of 11S globulin was demonstrated by SDS-PAGE bands to be existed between 28 and 52 kDa corresponding the basic and acidic subunits. The minimum inhibitory concentrations MICs of 7S and 11S globulins isolated from cowpea seed were determined against Gram positive bacteria viz: Listeria monocytogenes LMG 10470, Listeria ivanovii FLB 12, Staphylococcus aureus ATCC 25923 and Streptococcus pyogenes ATCC 19615, and Gram negative bacteria such as Klebsiella pneumonia ATCC 43816, Pseudomonas aeruginosa ATCC 26853, Escherichia coli ATCC 25922 and Salmonella ATCC 14028 using disc diffusion assay; they were showed to be in the range 10 to 200 µg/mL. Transmission electron microscope (TEM) examination of the protein-treated bacteria showed the antibacterial action of 11S globulin against S. typhimurium and P. aeruginosa was manifested by signs of cellular deformation, partial and complete lysis of cell components. Adding 11S globulin at both concentrations 50 and 100 µg/g to minced meat showed considerable decreases in bacterial counts of viable bacteria, psychrotrophs and coliforms compared to controls during 15 days storage at 4 °C, reflecting a promising perspective to use such globulin as a meat bio-preservative.
Collapse
|
44
|
Coelho MS, Soares-Freitas RAM, Arêas JAG, Gandra EA, Salas-Mellado MDLM. Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:101-107. [PMID: 29679358 DOI: 10.1007/s11130-018-0668-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In previous studies, it has not been reported that protein isolated from chia interferes favorably with antibacterial activity, and reduces cholesterol synthesis. The objective of this study was to determine whether commonly used commercial microbial proteases can be utilized to generate chia protein-based antibacterial and hypocholesterolemic hydrolysates/peptides, considering the effects of protein extraction method. Alcalase, Flavourzyme and sequential Alcalase-Flavourzyme were used to produce hydrolysates from chia protein (CF), protein-rich fraction (PRF) and chia protein concentrates (CPC1 and CPC2). These hydrolysates were evaluated for their antimicrobial activity against Gram-positive (G+) and Gram-negative (G-) microorganisms. The protein hydrolysates were purified by ultrafiltration through a membrane with 3 kDa nominal molecular weight, for evaluation of hypocholesterolemic activity. An inhibition zone was observed when the hydrolysate was tested against S. aureus, and minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were obtained. Peptides from chia protein with molecular mass lower than 3 kDa reduced up to 80.7% of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) enzymatic reaction velocity. It was also observed that, independent of the method used to obtain chia proteins, the fractions showed relevant bioactivity. Moreover, the intensity of the bioactivity varied with the method for obtaining the protein and with the enzyme used in the hydrolysis process. This is the first report to demonstrate that chia peptides are able to inhibit cholesterol homeostasis.
Collapse
Affiliation(s)
- Michele Silveira Coelho
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av. Italy 8 km, Carreiros, Rio Grande, RS, 96203-900, Brazil.
| | | | - José Alfredo Gomes Arêas
- Faculty of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, 01246-904, Brazil
| | - Eliezer Avila Gandra
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus do Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Myriam de Las Mercedes Salas-Mellado
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av. Italy 8 km, Carreiros, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
45
|
Atacan K, Özacar M, Özacar M. Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles. Int J Biol Macromol 2018; 109:720-731. [DOI: 10.1016/j.ijbiomac.2017.12.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
46
|
Ghelichi S, Shabanpour B, Pourashouri P, Hajfathalian M, Jacobsen C. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1407-1415. [PMID: 28771748 DOI: 10.1002/jsfa.8608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). RESULTS Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. CONCLUSION Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Bahareh Shabanpour
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mona Hajfathalian
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Mati A, Senoussi-Ghezali C, Si Ahmed Zennia S, Almi-Sebbane D, El-Hatmi H, Girardet JM. Dromedary camel milk proteins, a source of peptides having biological activities – A review. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|