1
|
Carlino N, Blanco-Míguez A, Punčochář M, Mengoni C, Pinto F, Tatti A, Manghi P, Armanini F, Avagliano M, Barcenilla C, Breselge S, Cabrera-Rubio R, Calvete-Torre I, Coakley M, Cobo-Díaz JF, De Filippis F, Dey H, Leech J, Klaassens ES, Knobloch S, O'Neil D, Quijada NM, Sabater C, Skírnisdóttir S, Valentino V, Walsh L, Alvarez-Ordóñez A, Asnicar F, Fackelmann G, Heidrich V, Margolles A, Marteinsson VT, Rota Stabelli O, Wagner M, Ercolini D, Cotter PD, Segata N, Pasolli E. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 2024; 187:5775-5795.e15. [PMID: 39214080 DOI: 10.1016/j.cell.2024.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Collapse
Affiliation(s)
- Niccolò Carlino
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Aitor Blanco-Míguez
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Claudia Mengoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessia Tatti
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy; Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Paolo Manghi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Avagliano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Biotechnology, Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Inés Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Hrituraj Dey
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - John Leech
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | - Narciso M Quijada
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Vincenzo Valentino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Liam Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gloria Fackelmann
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Viggó Thór Marteinsson
- Microbiology Research Group, Matís, Reykjavík, Iceland; University of Iceland, Faculty of Food Science and Nutrition, Reykjavík, Iceland
| | - Omar Rota Stabelli
- Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Martin Wagner
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Finton M, Skeie SB, Aspholm ME, Franklin-Alming FV, Mekonnen YB, Kristiansen H, Porcellato D. Two-year investigation of spore-formers through the production chain at two cheese plants in Norway. Food Res Int 2024; 190:114610. [PMID: 38945575 DOI: 10.1016/j.foodres.2024.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.
Collapse
Affiliation(s)
- Misti Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Borghild Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Marina Elisabeth Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Yohannes Beyene Mekonnen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne Kristiansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Liu X, de Bakker V, Heggenhougen MV, Mårli MT, Frøynes AH, Salehian Z, Porcellato D, Morales Angeles D, Veening JW, Kjos M. Genome-wide CRISPRi screens for high-throughput fitness quantification and identification of determinants for dalbavancin susceptibility in Staphylococcus aureus. mSystems 2024; 9:e0128923. [PMID: 38837392 PMCID: PMC11265419 DOI: 10.1128/msystems.01289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen, Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | | | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Anette Heidal Frøynes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| |
Collapse
|
4
|
da Silva Duarte V, de Paula Dias Moreira L, Skeie SB, Svalestad F, Øyaas J, Porcellato D. Database selection for shotgun metaproteomic of low-diversity dairy microbiomes. Int J Food Microbiol 2024; 418:110706. [PMID: 38696985 DOI: 10.1016/j.ijfoodmicro.2024.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
The metaproteomics field has recently gained more and more interest as a valuable tool for studying both the taxonomy and function of microbiomes, including those used in food fermentations. One crucial step in the metaproteomics pipeline is selecting a database to obtain high-quality taxonomical and functional information from microbial communities. One of the best strategies described for building protein databases is using sample-specific or study-specific protein databases obtained from metagenomic sequencing. While this is true for high-diversity microbiomes (such as gut and soil), there is still a lack of validation for different database construction strategies in low-diversity microbiomes, such as those found in fermented dairy products where starter cultures containing few species are used. In this study, we assessed the performance of various database construction strategies applied to metaproteomics on two low-diversity microbiomes obtained from cheese production using commercial starter cultures and analyzed by LC-MS/MS. Substantial differences were detected between the strategies, and the best performance in terms of the number of peptides and proteins identified from the spectra was achieved by metagenomic-derived databases. However, extensive databases constructed from a high number of available online genomes obtained a similar taxonomical and functional annotation of the metaproteome compared to the metagenomic-derived databases. Our results indicate that, in the case of low-diversity dairy microbiomes, the use of publically available genomes to construct protein databases can be considered as an alternative to metagenome-derived databases.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Luiza de Paula Dias Moreira
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Siv B Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | | | - Jorun Øyaas
- TINE SA, P.O. Box 7, Kalbakken, N-0902 Oslo, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
5
|
Decadt H, Weckx S, De Vuyst L. The microbial and metabolite composition of Gouda cheese made from pasteurized milk is determined by the processing chain. Int J Food Microbiol 2024; 412:110557. [PMID: 38237418 DOI: 10.1016/j.ijfoodmicro.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024]
Abstract
Gouda cheeses of different production batches and ripening times often differ in metabolite composition, which may be due to the starter culture mixture applied or the growth of non-starter lactic acid bacteria (NSLAB) upon maturation. Therefore, a single Gouda cheese production batch was systematically investigated from the thermized milk to the mature cheeses, ripened for up to 100 weeks, to identify the main bacterial species and metabolites and their dynamics during the whole production and ripening. As this seemed to be starter culture strain- and NSLAB-dependent, it requested a detailed, longitudinal, and quantitative investigation. Hereto, microbial colony enumeration, high-throughput full-length 16S rRNA gene sequencing, and a metabolomic approach were combined. Culture-dependently, Lactococcus lactis was the most abundant species from its addition as part of the starter culture up to the first two months of cheese ripening. Afterward, the NSLAB Lacticaseibacillus paracasei became the main species during ripening. The milk was a possible inoculation source for the latter species, despite pasteurization. Culture-independently, the starter LAB Lactococcus cremoris and Lc. lactis were the most abundant species in the cheese core throughout the whole fermentation and ripening phases up to 100 weeks. The cheese rind from 40 until 100 weeks of ripening was characterized by a high relative abundance of the NSLAB Tetragenococcus halophilus and Loigolactobacillus rennini, which both came from the brine. These species were linked with the production of the biogenic amines cadaverine and putrescine. The most abundant volatile organic compound was acetoin, an indicator of citrate and lactose fermentation during the production day, whereas the concentrations of free amino acids were an indicator of the ripening time.
Collapse
Affiliation(s)
- Hannes Decadt
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
6
|
Galli BD, Nikoloudaki O, Granehäll L, Carafa I, Pozza M, De Marchi M, Gobbetti M, Di Cagno R. Comparative analysis of microbial succession and proteolysis focusing on amino acid pathways in Asiago-PDO cheese from two dairies. Int J Food Microbiol 2024; 411:110548. [PMID: 38154252 DOI: 10.1016/j.ijfoodmicro.2023.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
In this study, a comprehensive and comparative analysis was conducted on Italian Asiago-PDO cheese obtained from two different dairies named Dairy I and Dairy II using industrial and natural fermented milk, respectively. The analysis encompassed the evaluation of chemical composition, the succession of the microbiota during manufacture and ripening, and proteolysis mainly focusing on free individual amino acid (FAA) profiles. A metagenomic approach was used to investigate the cheese microbiome functionality. Differences in gross chemical composition were more evident during ripening, with Dairy II showing higher variability within batches. The microbiota varied significantly between the two dairies and ripening stages. The choice of starter culture shaped the microbiota during production and affected the microbial diversity of non-starter lactic acid bacteria (NSLAB) originated from the raw milk during ripening. Peptide chromatographic profiles and FAA concentrations increased as ripening progressed, with Dairy I showing higher production of FAA. Functional analysis of the metagenomes linked species to specific amino acid metabolism/catabolism pathways. The amino acid metabolism pathways, particularly those related to aromatic amino acids, lysine, and branched-chain amino acids, were affected by the presence of specific NSLAB species, which differed between the two dairies. The results obtained in this study reveal the impact of starter culture on peculiar cheese microbiota assemblies, which selectively targets amino acid pathways, providing insights into the potential flavor and aroma characteristics of Asiago-PDO cheese.
Collapse
Affiliation(s)
- Bruno Domingues Galli
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy
| | - Olga Nikoloudaki
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy.
| | - Lena Granehäll
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy.
| | - Ilaria Carafa
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy
| | - Marta Pozza
- University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Massimo De Marchi
- University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Marco Gobbetti
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy.
| | - Raffaella Di Cagno
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 1, 39100 Bolzano, BZ, Italy.
| |
Collapse
|
7
|
Sun L, Höjer A, Johansson M, Saedén KH, Bernes G, Hetta M, Gustafsson AH, Dicksved J, Lundh Å. Associations between the Bacterial Composition of Farm Bulk Milk and the Microbiota in the Resulting Swedish Long-Ripened Cheese. Foods 2023; 12:3796. [PMID: 37893689 PMCID: PMC10606660 DOI: 10.3390/foods12203796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The maturation of a traditional Swedish long-ripened cheese has shown increasing variation in recent years and the ripening time is now generally longer than in the past. While the cheese is reliant on non-starter lactic acid bacteria for the development of its characteristic flavour, we hypothesised that the observed changes could be due to variations in the microbiota composition and number of bacteria in the raw milk used for production of the cheese. To evaluate associations between microbiota in the raw milk and the resulting cheese, three clusters of commercial farms were created to increase variation in the microbiota of dairy silo milk used for cheese production. Cheese production was performed in three periods over one year. Within each period, milk from the three farm clusters was collected separately and transported to the cheese production facility. Following pasteurisation, the milk was processed into the granular-eyed cheese and matured at a dedicated cheese-ripening facility. For each cheese batch, farm bulk and dairy silo milk samples, a starter culture, early process samples and cheese samples from different stages of maturation (7-20 months) were collected and their microbiota characterised using 16S rRNA amplicon sequencing. The microbiota in the farm bulk milk differed significantly between periods and clusters. Differences in microbiota in dairy silo milk were observed between periods, but not between farm clusters, while the cheese microbiota differed between periods and clusters. The top 13 amplicon sequence variants were dominant in early process samples and the resulting cheese, making up at least 93.3% of the relative abundance (RA). Lactococcus was the dominant genus in the early process samples and, together with Leuconostoc, also dominated in the cheese samples. Contradicting expectations, the RA of the aroma-producing genus Lactobacillus was low in cheese during ripening and there was an unexpected dominance of starter lactic acid bacteria even at the later stages of cheese ripening. To identify factors behind the recent variations in ripening time of this cheese, future studies should address the effects of process variables and the dairy environment.
Collapse
Affiliation(s)
- Li Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.J.); (Å.L.)
| | - Annika Höjer
- Norrmejerier Ek. Förening, Mejerivägen 2, SE-906 22 Umeå, Sweden; (A.H.); (K.H.S.)
| | - Monika Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.J.); (Å.L.)
| | - Karin Hallin Saedén
- Norrmejerier Ek. Förening, Mejerivägen 2, SE-906 22 Umeå, Sweden; (A.H.); (K.H.S.)
| | - Gun Bernes
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (G.B.); (M.H.)
| | - Mårten Hetta
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (G.B.); (M.H.)
| | | | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden;
| | - Åse Lundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.J.); (Å.L.)
| |
Collapse
|
8
|
Characterization of the core microflora and nutrient composition in packaged pasteurized milk products during storage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Porcellato D, Kristiansen H, Finton MD, Leanti La Rosa S, da Silva Duarte V, Skeie SB. Composition and fate of heat-resistant anaerobic spore-formers in the milk powder production line. Int J Food Microbiol 2023; 402:110281. [PMID: 37356408 DOI: 10.1016/j.ijfoodmicro.2023.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/27/2023]
Abstract
Anaerobic spore-forming bacteria are a continuous threat to the dairy industry due to their ability to withstand processing conditions, such as those during heat treatment. These ubiquitous microorganisms have ample opportunity for multiple entry points into the milk chain, creating food quality and safety issues. Certain spore-formers, namely bacilli and clostridia, are more problematic due to their ability to spoil dairy products and pathogenicity. In this study, we investigated how milk treatment and milk powder production influenced the composition and survival of anaerobic spore-formers. Samples were obtained on three different days (replicate blocks) during the production of dairy powders and examined in a culture-dependent manner using the most probable number method coupled with 16S rRNA amplicon sequencing and metagenomic analysis of the enriched samples. Results revealed that the milk separation greatly affected the spore-former presence and composition which were detected along the entire production line from raw material to milk powders. Throughout the various points of the production line, the occurrence of species belonging to the Bacillus cereus sensu lato was higher than that of clostridia. Sequence variants (SVs) belonging to the anaerobic spore-forming genus Clostridium were taxonomically assigned to two SVs groups and were detected in all three replicate blocks. A total of 19 metagenome-assembled genomes were recovered from nine enrichments. Four near-complete and two medium-quality genomes were found in raw milk/milk powder samples and further assigned as Clostridium tyrobutyricum and Clostridium diolis, which may constitute a problem in the finished dairy product. In conclusion, our findings highlight spore-formers' importance on dairy quality and may aid in their intervention and control in the dairy production line.
Collapse
Affiliation(s)
- Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway.
| | - Hanne Kristiansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Siv Borghild Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
10
|
Coelho MC, Malcata FX, Silva CCG. Distinct Bacterial Communities in São Jorge Cheese with Protected Designation of Origin (PDO). Foods 2023; 12:foods12050990. [PMID: 36900508 PMCID: PMC10000650 DOI: 10.3390/foods12050990] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
São Jorge cheese is an iconic product of the Azores, produced from raw cow's milk and natural whey starter (NWS). Although it is produced according to Protected Designation of Origin (PDO) specifications, the granting of the PDO label depends crucially on sensory evaluation by trained tasters. The aim of this work was to characterize the bacterial diversity of this cheese using next-generation sequencing (NGS) and to identify the specific microbiota that contributes most to its uniqueness as a PDO by distinguishing the bacterial communities of PDO and non-PDO cheeses. The NWS and curd microbiota was dominated by Streptococcus and Lactococcus, whereas Lactobacillus and Leuconostoc were also present in the core microbiota of the cheese along with these genera. Significant differences (p < 0.05) in bacterial community composition were found between PDO cheese and non-certified cheese; Leuconostoc was found to play the chief role in this regard. Certified cheeses were richer in Leuconostoc, Lactobacillus and Enterococcus, but had fewer Streptococcus (p < 0.05). A negative correlation was found between contaminating bacteria, e.g., Staphylococcus and Acinetobacter, and the development of PDO-associated bacteria such as Leuconostoc, Lactobacillus and Enterococcus. A reduction in contaminating bacteria was found to be crucial for the development of a bacterial community rich in Leuconostoc and Lactobacillus, thus justifying the PDO seal of quality. This study has helped to clearly distinguish between cheeses with and without PDO based on the composition of the bacterial community. The characterization of the NWS and the cheese microbiota can contribute to a better understanding of the microbial dynamics of this traditional PDO cheese and can help producers interested in maintaining the identity and quality of São Jorge PDO cheese.
Collapse
Affiliation(s)
- Márcia C. Coelho
- School of Agrarian and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Oporto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Oporto, Portugal
| | - Célia C. G. Silva
- School of Agrarian and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence:
| |
Collapse
|
11
|
Decadt H, Weckx S, De Vuyst L. The rotation of primary starter culture mixtures results in batch-to-batch variations during Gouda cheese production. Front Microbiol 2023; 14:1128394. [PMID: 36876114 PMCID: PMC9978159 DOI: 10.3389/fmicb.2023.1128394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Industrial production of Gouda cheeses mostly relies on a rotated use of different mixed-strain lactic acid bacteria starter cultures to avoid phage infections. However, it is unknown how the application of these different starter culture mixtures affect the organoleptic properties of the final cheeses. Therefore, the present study assessed the impact of three different starter culture mixtures on the batch-to-batch variations among Gouda cheeses from 23 different batch productions in the same dairy company. Both the cores and rinds of all these cheeses were investigated after 36, 45, 75, and 100 weeks of ripening by metagenetics based on high-throughput full-length 16S rRNA gene sequencing accompanied with an amplicon sequence variant (ASV) approach as well as metabolite target analysis of non-volatile and volatile organic compounds. Up to 75 weeks of ripening, the acidifying Lactococcus cremoris and Lactococcus lactis were the most abundant bacterial species in the cheese cores. The relative abundance of Leuconostoc pseudomesenteroides was significantly different for each starter culture mixture. This impacted the concentrations of some key metabolites, such as acetoin produced from citrate, and the relative abundance of non-starter lactic acid bacteria (NSLAB). Cheeses with the least Leuc. pseudomesenteroides contained more NSLAB, such as Lacticaseibacillus paracasei that was taken over by Tetragenococcus halophilus and Loigolactobacillus rennini upon ripening time. Taken together, the results indicated a minor role of leuconostocs in aroma formation but a major impact on the growth of NSLAB. The relative abundance of T. halophilus (high) and Loil. rennini (low) increased with ripening time from rind to core. Two main ASV clusters of T. halophilus could be distinguished, which were differently correlated with some metabolites, both beneficial (regarding aroma formation) and undesirable ones (biogenic amines). A well-chosen T. halophilus strain could be a candidate adjunct culture for Gouda cheese production.
Collapse
Affiliation(s)
| | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Reuben RC, Langer D, Eisenhauer N, Jurburg SD. Universal drivers of cheese microbiomes. iScience 2023; 26:105744. [PMID: 36582819 PMCID: PMC9792889 DOI: 10.1016/j.isci.2022.105744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The culinary value, quality, and safety of cheese are largely driven by the resident bacteria, but comparative analyses of the cheese microbiota across cheese types are scarce. We present the first global synthesis of cheese microbiomes. Following a systematic literature review of cheese microbiology research, we collected 16S rRNA gene amplicon sequence data from 824 cheese samples spanning 58 cheese types and 16 countries. We found a consistent, positive relationship between microbiome richness and pH, and a higher microbial richness in cheeses derived from goat milk. In contrast, we found no relationship between pasteurization, geographic location, or salinity and richness. Milk and cheese type, geographic location, and pasteurization collectively explained 65% of the variation in microbial community composition. Importantly, we identified four universal cheese microbiome types, driven by distinct dominant taxa. Our study reveals notable diversity patterns among the cheese microbiota, which are driven by geography and local environmental variables.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Désirée Langer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Stephanie D. Jurburg
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
13
|
Cardin M, Cardazzo B, Mounier J, Novelli E, Coton M, Coton E. Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods. Foods 2022; 11:3379. [PMID: 36359992 PMCID: PMC9653732 DOI: 10.3390/foods11213379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Food fraud, corresponding to any intentional action to deceive purchasers and gain an undue economical advantage, is estimated to result in a 10 to 65 billion US dollars/year economical cost worldwide. Dairy products, such as cheese, in particular cheeses with protected land- and tradition-related labels, have been listed as among the most impacted as consumers are ready to pay a premium price for traditional and typical products. In this context, efficient food authentication methods are needed to counteract current and emerging frauds. This review reports the available authentication methods, either chemical, physical, or DNA-based methods, currently used for origin authentication, highlighting their principle, reported application to cheese geographical origin authentication, performance, and respective advantages and limits. Isotope and elemental fingerprinting showed consistent accuracy in origin authentication. Other chemical and physical methods, such as near-infrared spectroscopy and nuclear magnetic resonance, require more studies and larger sampling to assess their discriminative power. Emerging DNA-based methods, such as metabarcoding, showed good potential for origin authentication. However, metagenomics, providing a more in-depth view of the cheese microbiota (up to the strain level), but also the combination of methods relying on different targets, can be of interest for this field.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
14
|
Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. Microorganisms 2022; 10:microorganisms10051073. [PMID: 35630516 PMCID: PMC9146562 DOI: 10.3390/microorganisms10051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
Feta is the most renowned protected designation of origin (PDO) white brined cheese produced in Greece. The fine organoleptic characteristics and the quality of Feta rely on, among other factors, its overall microbial ecosystem. In this study, we employed 16S rDNA and internal transcribed spacer (ITS) amplicon sequencing, as well as shotgun metagenomics, to investigate the microbiome of artisanal homemade and industrial Feta cheese samples from different regions of Greece, which has very rarely been investigated. 16S rDNA data suggested the prevalence of the Lactococcus genus in the homemade samples, while Streptococcus and Lactobacillus genera prevailed in the industrial control samples. Species identification deriving from shotgun metagenomics corroborated these findings, as Lactococcus lactis dominated two homemade samples while Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were found to be dominating one industrial sample. ITS data revealed a complex diversity of the yeast population among the samples analyzed. Debaryomyces, Kluyveromyces, Cutaneotrichosporon, Pichia, Candida, and Rhodotorula were the major genera identified, which were distributed in a rather arbitrary manner among the different samples. Furthermore, a number of potential metagenome-assembled genomes (MAGs) could be detected among assembled shotgun bins. The overall analysis of the shotgun metagenomics supported the presence of different foodborne pathogens in homemade samples (e.g., Staphylococcus aureus, Listeria monocytogenes, Enterobacter cloacae, and Streptococcus suis), but with low to very low abundances. Concluding, the combination of both amplicon sequencing and shotgun metagenomics allowed us to obtain an in-depth profile of the artisanal homemade Feta cheese microbiome.
Collapse
|
15
|
A review of methods for the inference and experimental confirmation of microbial association networks in cheese. Int J Food Microbiol 2022; 368:109618. [DOI: 10.1016/j.ijfoodmicro.2022.109618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
16
|
Anastasiou R, Kazou M, Georgalaki M, Aktypis A, Zoumpopoulou G, Tsakalidou E. Omics Approaches to Assess Flavor Development in Cheese. Foods 2022; 11:188. [PMID: 35053920 PMCID: PMC8775153 DOI: 10.3390/foods11020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cheese is characterized by a rich and complex microbiota that plays a vital role during both production and ripening, contributing significantly to the safety, quality, and sensory characteristics of the final product. In this context, it is vital to explore the microbiota composition and understand its dynamics and evolution during cheese manufacturing and ripening. Application of high-throughput DNA sequencing technologies have facilitated the more accurate identification of the cheese microbiome, detailed study of its potential functionality, and its contribution to the development of specific organoleptic properties. These technologies include amplicon sequencing, whole-metagenome shotgun sequencing, metatranscriptomics, and, most recently, metabolomics. In recent years, however, the application of multiple meta-omics approaches along with data integration analysis, which was enabled by advanced computational and bioinformatics tools, paved the way to better comprehension of the cheese ripening process, revealing significant associations between the cheese microbiota and metabolites, as well as their impact on cheese flavor and quality.
Collapse
Affiliation(s)
- Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (M.K.); (M.G.); (A.A.); (G.Z.); (E.T.)
| | | | | | | | | | | |
Collapse
|
17
|
Diversity and potential function of bacterial communities during milk fermentation of Kazak artisanal cheese. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Porcellato D, Smistad M, Bombelli A, Abdelghani A, Jørgensen HJ, Skeie SB. Longitudinal Study of the Bulk Tank Milk Microbiota Reveals Major Temporal Shifts in Composition. Front Microbiol 2021; 12:616429. [PMID: 33708181 PMCID: PMC7940241 DOI: 10.3389/fmicb.2021.616429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction of microbial contaminations in the dairy value chain starts at the farm level and the initial microbial composition may severely affect the production of high-quality dairy products. Therefore, understanding the farm-to-farm variation and longitudinal shifts in the composition of the bulk tank milk microbiota is fundamental to increase the quality and reduce the spoilage and waste of milk and dairy products. In this study, we performed a double experiment to study long- and short-term longitudinal shifts in microbial composition using 16S rRNA gene amplicon sequencing. We analyzed milk from 37 farms, that had also been investigated two years earlier, to understand the stability and overall microbial changes over a longer time span. In addition, we sampled bulk tank milk from five farms every 1–2 weeks for up to 7 months to observe short-term changes in microbial composition. We demonstrated that a persistent and farm-specific microbiota is found in bulk tank milk and that changes in composition within the same farm are mostly driven by bacterial genera associated with mastitis (e.g., Staphylococcus and Streptococcus). On a long-term, we detected that major shift in milk microbiota were not correlated with farm settings, such as milking system, number of cows and quality of the milk but other factors, such as weather and feeding, may have had a greater impact on the main shifts in composition of the bulk tank milk microbiota. Our results provide new information regarding the ecology of raw milk microbiota at the farm level.
Collapse
Affiliation(s)
- Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Marit Smistad
- Norwegian Veterinary Institute, Oslo, Norway.,TINE SA, Oslo, Norway
| | - Alberto Bombelli
- Department of Agrotechnology and Food Science, Wageningen University and Research, Wageningen, Netherlands
| | - Ahmed Abdelghani
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Hannah Joan Jørgensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Siv B Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
19
|
Olsen MA, Vhile SG, Porcellato D, Kidane A, Skeie SB. Feeding concentrates with different protein sources to high-yielding, mid-lactation Norwegian Red cows: Effect on cheese ripening. J Dairy Sci 2021; 104:4062-4073. [PMID: 33551152 DOI: 10.3168/jds.2020-19226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Soybean meal is one of the most important protein sources in concentrate feeds for dairy cows. The objective of the present study was to provide knowledge on the effects of using a novel yeast microbial protein source (Candida utilis) in concentrate feed for dairy cows on the production and quality of a Gouda-type cheese. Forty-eight Norwegian Red dairy cows in early to mid lactation were fed a basal diet of grass silage, which was supplemented with 3 different concentrate feeds. The protein source of the concentrates was based on conventional soybean meal (SBM), novel yeast (C. utilis; YEA), or barley (BAR; used as negative control because barley has a lower protein content). The experiment was carried out for a period of 10 wk, with the first 2 wk as an adaptation period where all dairy cows were fed grass silage and the SBM concentrate. The cows were then randomly allocated to 1 of the 3 different compound feeds: SBM, yeast, or barley. Cheeses were made during wk 8 and 9 of the experiment, with 4 batches of cheese made from milk from each of the 3 groups. The cheeses made from milk from cows fed SBM concentrate (SBM cheese) had a higher content of dl-pyroglutamic acid and free amino acids than the other cheeses, indicating a faster ripening in the SBM cheeses. Despite these differences, the sensory properties, the microbiota, and the Lactococcus population at 15 wk of ripening were not significantly different between the cheeses. This experiment showed that although the raw materials used in the concentrate feed clearly influenced the ripening of the cheeses, this did not affect cheese quality. Yeast (C. utilis) as a protein source in concentrate feed for dairy cows can be used as a replacement for soybean meal without compromising the quality of Norwegian Gouda-type cheeses.
Collapse
Affiliation(s)
- M A Olsen
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - S G Vhile
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - D Porcellato
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - A Kidane
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - S B Skeie
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
20
|
Østlie HM, Porcellato D, Kvam G, Wicklund T. Investigation of the microbiota associated with ungerminated and germinated Norwegian barley cultivars with focus on lactic acid bacteria. Int J Food Microbiol 2021; 341:109059. [PMID: 33508581 DOI: 10.1016/j.ijfoodmicro.2021.109059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/23/2020] [Accepted: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The microbial community of ungerminated and germinated barley grains from three different cultivars grown at four different locations in Norway was investigated by culture dependent and culture independent methods. Lactic acid bacteria (LAB) was focused in this study and was isolated from germinated barley. The number of LAB ranged between 2.8 and 4.6 log cfu/g in ungerminated grains and between 4.9 and 6.3 log cfu/g in germinated grains. In total 66 out of 190 isolates were Gram+, catalase-negative and presumptive LAB. The LAB isolates were by 16S rRNA sequencing identified to be Carnobacterium maltaromaticum (6), Lactococcus lactis (2), Enterococcus sp. (1) and Leuconostoc sp. (57). Germination significantly influenced the bacterial composition. Regarding the different cultivars and growth places no significant difference in bacterial composition was seen. The most abundant bacterial genus was Pantoea (18.5% of the total sequences), followed by Rhizobium (10.1%) and Sphingomonas (9.9%). Fungal composition was significantly influenced by the germination process and the cultivation place, but no significant difference in fungal composition was detected between the 3 cultivars. The most abundant fungal genera were Cryptococcus (43.8% of all the sequences), Cladosporium (8.2%), Pyrenophora (7.4%) and Vagicola (6.3%). This study revealed knowledge of barley grain associated microbes of Norwegian barley that can be useful to control the malt quality. Germination affected both bacterial and fungal microbiota composition. No difference in bacterial microbiota composition was seen regarding cultivars and cultivation place, however, the fungal microbiota composition was significantly influenced by the cultivation place. Differences in fungal community of ungerminated and germinated barley samples of different geographical locations were more pronounced than differences in bacterial communities.
Collapse
Affiliation(s)
- Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Guro Kvam
- Mattilsynet avdeling Nordre Buskerud, Hadeland and Valdres, Kartverksveien 12, 3511 Hønefoss, Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
21
|
Transcriptomic Analysis of Staphylococcus xylosus in Solid Dairy Matrix Reveals an Aerobic Lifestyle Adapted to Rind. Microorganisms 2020; 8:microorganisms8111807. [PMID: 33212972 PMCID: PMC7698506 DOI: 10.3390/microorganisms8111807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.
Collapse
|
22
|
|
23
|
The Microbiota of Edam Cheeses Determined by Cultivation and High-Throughput Sequencing of the 16S rRNA Amplicon. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the microbiome of industrially produced ripened Edam cheeses by next-generation sequencing. The samples for analyses were collected in spring and autumn. Spring samples were characterized by significantly higher Lactococcus and Bacillus counts and lower counts of Enterobacteriaceae, Enterococcus, and yeasts than autumn samples. The predominant microorganisms identified by the Illumina high-throughput sequencing technology belonged to four phyla: Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes. The dominant species were starter culture bacteria. Lactobacillus rhamnosus, Lactobacillus kefiri, Lactobacillus kefiranofaciens, Lactobacillus casei, Streptococcus thermophilus, and Bifidobacterium had the highest share of microbial cheese communities. The number of γ-Proteobacteria reads was higher in autumn cheese samples. A high number of reads was also noted in the genus Clostridium. The counts of spore-forming bacteria of the genus Bacillus were higher in cheeses produced in spring. The study revealed highly similar relationships between the analyzed production periods. The present results contribute to the existing knowledge of cheese microbiota, and they can be used to improve and modify production processes based on the composition of microbial communities, as well as to improve the quality of the final product.
Collapse
|
24
|
Choi J, In Lee S, Rackerby B, Frojen R, Goddik L, Ha SD, Park SH. Assessment of overall microbial community shift during Cheddar cheese production from raw milk to aging. Appl Microbiol Biotechnol 2020; 104:6249-6260. [PMID: 32451588 DOI: 10.1007/s00253-020-10651-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Cheese is a fermented dairy product that is made from animal milk and is considered to be a healthy food due to its available nutrients and potential probiotic characteristics. Since the microbes in the cheese matrix directly contribute to the quality and physicochemical properties of cheese, it is important to understand the microbial properties of cheese. In this study, Cheddar cheeses produced on three different dates at the Arbuthnot Dairy Center at Oregon State University were collected to determine the microbial community structure. A total of 773,821 sequencing reads and 271 amplicon sequence variants (ASVs) were acquired from 108 samples. Streptococcus and Lactococcus were observed as the most abundant ASVs in the cheese, which were used as the starter lactic acid bacteria (SLAB). Escherichia coli was detected in the raw milk; however, it was not detected after inoculating with SLAB. According to an alpha diversity analysis, SLAB inoculation decreased the microbial richness by inhibiting the growth of other bacteria present in the milk. A beta diversity analysis showed that microbial communities before the addition of SLAB clustered together, as did the samples from cheese making and aging. Non-starter lactic acid bacteria (NSLAB) were detected 15 weeks into aging for the June 6th and June 26th produced cheeses, and 17 weeks into aging for the cheese produced on April 26th. These NSLAB were identified as an unidentified group of Lactobacillaceae. This study characterizes the changes in the Cheddar cheese microbiome over the course of production from raw milk to a 6-month-aged final product. KEY POINTS: • 271 ASVs were acquired from cheese production from raw milk to 6-month aging. • Addition of SLAB changed the microbial diversity during Cheddar cheese making procedure. • NSLAB were detected more than 15 weeks after aging. Graphical Abstract.
Collapse
Affiliation(s)
- Jungmin Choi
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sang In Lee
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Bryna Rackerby
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Robin Frojen
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Lisbeth Goddik
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyeonggi-Do, South Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
| |
Collapse
|
25
|
Choi J, Lee SI, Rackerby B, Goddik L, Frojen R, Ha SD, Kim JH, Park SH. Microbial communities of a variety of cheeses and comparison between core and rind region of cheeses. J Dairy Sci 2020; 103:4026-4042. [PMID: 32173012 DOI: 10.3168/jds.2019-17455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
Understanding the microbial community of cheese is important in the dairy industry, as the microbiota contributes to the safety, quality, and physicochemical and sensory properties of cheese. In this study, the microbial compositions of different cheeses (Cheddar, provolone, and Swiss cheese) and cheese locations (core, rind, and mixed) collected from the Arbuthnot Dairy Center at Oregon State University were analyzed using 16S rRNA gene amplicon sequencing with the Illumina MiSeq platform (Illumina, San Diego, CA). A total of 225 operational taxonomic units were identified from the 4,675,187 sequencing reads generated. Streptococcus was observed to be the most abundant organism in provolone (72 to 85%) and Swiss (60 to 67%), whereas Lactococcus spp. were found to dominate Cheddar cheese (27 to 76%). Species richness varied significantly by cheese. According to alpha diversity analysis, porter-soaked Cheddar cheese exhibited the highest microbial richness, whereas smoked provolone cheese showed the lowest. Rind regions of each cheese changed color through smoking and soaking for the beverage process. In addition, the microbial diversity of the rind region was higher than the core region because smoking and soaking processes directly contacted the rind region of each cheese. The microbial communities of the samples clustered by cheese, indicated that, within a given type of cheese, microbial compositions were very similar. Moreover, 34 operational taxonomic units were identified as biomarkers for different types of cheese through the linear discriminant analysis effect size method. Last, both carbohydrate and AA metabolites comprised more than 40% of the total functional annotated genes from 9 varieties of cheese samples. This study provides insight into the microbial composition of different types of cheese, as well as various locations within a cheese, which is applicable to its safety and sensory quality.
Collapse
Affiliation(s)
- Jungmin Choi
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Sang In Lee
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Bryna Rackerby
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Lisbeth Goddik
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Robin Frojen
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, South Korea 06974
| | - Jang H Kim
- School of Family and Consumer Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow 83844
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331.
| |
Collapse
|
26
|
Analysis of the Bacterial Diversity of Paipa Cheese (a Traditional Raw Cow's Milk Cheese from Colombia) by High-Throughput Sequencing. Microorganisms 2020; 8:microorganisms8020218. [PMID: 32041151 PMCID: PMC7074763 DOI: 10.3390/microorganisms8020218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Paipa cheese is a traditional, semi-ripened cheese made from raw cow’s milk in Colombia. The aim of this work was to gain insights on the microbiota of Paipa cheese by using a culture-independent approach. Method: two batches of Paipa cheese from three formal producers were sampled during ripening for 28 days. Total DNA from the cheese samples was used to obtain 16S rRNA gene sequences by using Illumina technology. Results: Firmicutes was the main phylum found in the cheeses (relative abundances: 59.2–82.0%), followed by Proteobacteria, Actinobacteria and Bacteroidetes. Lactococcus was the main genus, but other lactic acid bacteria (Enterococcus, Leuconostoc and Streptococcus) were also detected. Stapylococcus was also relevant in some cheese samples. The most important Proteobacteria were Enterobacteriaceae, Aeromonadaceae and Moraxellaceae. Enterobacter and Enterobacteriaceae (others) were detected in all cheese samples. Serratia and Citrobacter were detected in some samples. Aeromonas and Acinetobacter were also relevant. Other minor genera detected were Marinomonas, Corynebacterium 1 and Chryseobacterium. The principal coordinates analysis suggested that there were producer-dependent differences in the microbiota of Paipa cheeses. Conclusions: lactic acid bacteria are the main bacterial group in Paipa cheeses. However, other bacterial groups, including spoilage bacteria, potentially toxin producers, and bacteria potentially pathogenic to humans and/or prone to carry antimicrobial resistance genes are also relevant in the cheeses.
Collapse
|
27
|
Hoffmann W, Luzzi G, Steffens M, Clawin‐Rädecker I, Franz CMAP, Fritsche J. Salt reduction in film‐ripened, semihard Edam cheese. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wolfgang Hoffmann
- Department of Safety and Quality of Milk and Fish Products Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| | - Giuseppina Luzzi
- Department of Microbiology and Biotechnology Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| | - Marco Steffens
- Department of Safety and Quality of Milk and Fish Products Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| | - Ingrid Clawin‐Rädecker
- Department of Safety and Quality of Milk and Fish Products Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| | - Jan Fritsche
- Department of Safety and Quality of Milk and Fish Products Max Rubner‐Institut Hermann‐Weigmann‐Str. 1 24103 Kiel Germany
| |
Collapse
|
28
|
Nalepa B, Olszewska M, Markiewicz L, Aljewicz M. Composition and Significance of Bacterial Microbiota and Volatile Organic Compounds of Swiss-Dutch-Type Cheese as Determined by PCR-DGGE and HS-GC. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Milk and Dairy Products. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Skeie SB, Håland M, Thorsen IM, Narvhus J, Porcellato D. Bulk tank raw milk microbiota differs within and between farms: A moving goalpost challenging quality control. J Dairy Sci 2019; 102:1959-1971. [DOI: 10.3168/jds.2017-14083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/07/2018] [Indexed: 01/19/2023]
|
32
|
Haastrup MK, Johansen P, Malskær AH, Castro-Mejía JL, Kot W, Krych L, Arneborg N, Jespersen L. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 2018; 285:173-187. [PMID: 30176565 DOI: 10.1016/j.ijfoodmicro.2018.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.
Collapse
Affiliation(s)
- Martin Kragelund Haastrup
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Pernille Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Agnete Harboe Malskær
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Witold Kot
- Environmental Microbiology and Biotechnology, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
33
|
Gobbetti M, Di Cagno R, Calasso M, Neviani E, Fox PF, De Angelis M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Yeluri Jonnala BR, McSweeney PLH, Sheehan JJ, Cotter PD. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front Microbiol 2018; 9:1020. [PMID: 29875744 PMCID: PMC5974213 DOI: 10.3389/fmicb.2018.01020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.
Collapse
Affiliation(s)
- Bhagya R Yeluri Jonnala
- Food and Nutrition Deptartment, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Fermoy, Ireland
| | | | | | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
35
|
De Filippis F, Parente E, Ercolini D. Recent Past, Present, and Future of the Food Microbiome. Annu Rev Food Sci Technol 2018; 9:589-608. [DOI: 10.1146/annurev-food-030117-012312] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio Parente
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
36
|
Microbial diversity of consumption milk during processing and storage. Int J Food Microbiol 2018; 266:21-30. [DOI: 10.1016/j.ijfoodmicro.2017.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023]
|
37
|
Cocolin L, Mataragas M, Bourdichon F, Doulgeraki A, Pilet MF, Jagadeesan B, Rantsiou K, Phister T. Next generation microbiological risk assessment meta-omics: The next need for integration. Int J Food Microbiol 2017; 287:10-17. [PMID: 29157743 DOI: 10.1016/j.ijfoodmicro.2017.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/15/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
The development of a multi-omics approach has provided a new approach to the investigation of microbial communities allowing an integration of data, which can be used to better understand the behaviour of and interactions between community members. Metagenomics, metatranscriptomics, metaproteomics and metabolomics have the potential of producing a large amount of data in a very short time, however an important challenge is how to exploit and interpret these data to assist risk managers in food safety and quality decisions. This can be achieved by integrating multi-omics data in microbiological risk assessment. In this paper we identify limitations and challenges of the multi-omics approach, underlining promising potentials, but also identifying gaps, which should be addressed for its full exploitation. A view on how this new way of investigation will impact the traditional microbiology schemes in the food industry is also presented.
Collapse
Affiliation(s)
- Luca Cocolin
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Braccini 95, 10095 Grugliasco, Torino, Italy.
| | - Marios Mataragas
- Hellenic Agricultural Organization "DIMITRA", Institute of Agricultural Products Technology, Milk Department, Ethnikis Antistaseos 3, 45221 Ioannina, Greece
| | - Francois Bourdichon
- Groupe Danone, Food Safety@DANONE, 17 Boulevard Haussmann, 75009 Paris, France
| | - Agapi Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter, S. Venizelou 1, 14123 Lycovrissi, Greece
| | | | - Balamurugan Jagadeesan
- Nestec Ltd. (Nestlé Research Center), Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Kalliopi Rantsiou
- University of Torino, Department of Agricultural, Forest and Food Sciences, Largo Braccini 95, 10095 Grugliasco, Torino, Italy
| | - Trevor Phister
- PepsiCo international, Global Microbiological Sciences, Beaumont Park, Leicester, LE4 1ET, United Kingdom
| |
Collapse
|
38
|
Boiocchi F, Porcellato D, Limonta L, Picozzi C, Vigentini I, Locatelli D, Foschino R. Insect frass in stored cereal products as a potential source ofLactobacillus sanfranciscensisfor sourdough ecosystem. J Appl Microbiol 2017; 123:944-955. [DOI: 10.1111/jam.13546] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- F. Boiocchi
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - D. Porcellato
- Faculty of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU); Ås Norway
| | - L. Limonta
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - C. Picozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - I. Vigentini
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - D.P. Locatelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - R. Foschino
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| |
Collapse
|
39
|
Peralta GH, Bergamini CV, Audero G, Páez R, Wolf IV, Perotti MC, Hynes ER. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria. Int J Food Microbiol 2017; 255:17-24. [PMID: 28558330 DOI: 10.1016/j.ijfoodmicro.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/03/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
Abstract
Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture.
Collapse
Affiliation(s)
- Guillermo H Peralta
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.
| | - Carina V Bergamini
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina; Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Gabriela Audero
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Ruta 34 km 227, Santa Fe, Argentina
| | - Roxana Páez
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Ruta 34 km 227, Santa Fe, Argentina
| | - I Verónica Wolf
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina; Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - M Cristina Perotti
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina; Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Erica R Hynes
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina; Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| |
Collapse
|
40
|
Frantzen CA, Kot W, Pedersen TB, Ardö YM, Broadbent JR, Neve H, Hansen LH, Dal Bello F, Østlie HM, Kleppen HP, Vogensen FK, Holo H. Genomic Characterization of Dairy Associated Leuconostoc Species and Diversity of Leuconostocs in Undefined Mixed Mesophilic Starter Cultures. Front Microbiol 2017; 8:132. [PMID: 28217118 PMCID: PMC5289962 DOI: 10.3389/fmicb.2017.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Undefined mesophilic mixed (DL-type) starter cultures are composed of predominantly Lactococcus lactis subspecies and 1-10% Leuconostoc spp. The composition of the Leuconostoc population in the starter culture ultimately affects the characteristics and the quality of the final product. The scientific basis for the taxonomy of dairy relevant leuconostocs can be traced back 50 years, and no documentation on the genomic diversity of leuconostocs in starter cultures exists. We present data on the Leuconostoc population in five DL-type starter cultures commonly used by the dairy industry. The analyses were performed using traditional cultivation methods, and further augmented by next-generation DNA sequencing methods. Bacterial counts for starter cultures cultivated on two different media, MRS and MPCA, revealed large differences in the relative abundance of leuconostocs. Most of the leuconostocs in two of the starter cultures were unable to grow on MRS, emphasizing the limitations of culture-based methods and the importance of careful media selection or use of culture independent methods. Pan-genomic analysis of 59 Leuconostoc genomes enabled differentiation into twelve robust lineages. The genomic analyses show that the dairy-associated leuconostocs are highly adapted to their environment, characterized by the acquisition of genotype traits, such as the ability to metabolize citrate. In particular, Leuconostoc mesenteroides subsp. cremoris display telltale signs of a degenerative evolution, likely resulting from a long period of growth in milk in association with lactococci. Great differences in the metabolic potential between Leuconostoc species and subspecies were revealed. Using targeted amplicon sequencing, the composition of the Leuconostoc population in the five commercial starter cultures was shown to be significantly different. Three of the cultures were dominated by Ln. mesenteroides subspecies cremoris. Leuconostoc pseudomesenteroides dominated in two of the cultures while Leuconostoc lactis, reported to be a major constituent in fermented dairy products, was only present in low amounts in one of the cultures. This is the first in-depth study of Leuconostoc genomics and diversity in dairy starter cultures. The results and the techniques presented may be of great value for the dairy industry.
Collapse
Affiliation(s)
- Cyril A. Frantzen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
| | - Witold Kot
- Department of Environmental Science, Aarhus UniversityRoskilde, Denmark
| | | | - Ylva M. Ardö
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Jeff R. Broadbent
- Department of Nutrition, Dietetics and Food Sciences, Utah State UniversityLogan, UT, USA
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Lars H. Hansen
- Department of Environmental Science, Aarhus UniversityRoskilde, Denmark
| | | | - Hilde M. Østlie
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
| | - Hans P. Kleppen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
- ACD Pharmaceuticals ASLeknes, Norway
| | - Finn K. Vogensen
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Helge Holo
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
- TINE SAOslo, Norway
| |
Collapse
|