1
|
Haeryfar SMM. Finding a Mentor While "Storm" Chasing with Howard Young. J Interferon Cytokine Res 2022; 42:658-661. [PMID: 36070592 DOI: 10.1089/jir.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
2
|
Mata Forsberg M, Arasa C, van Zwol W, Uzunçayir S, Schönbichler A, Regenthal P, Schelin J, Lindkvist-Petersson K, Björkander S, Sverremark-Ekström E. Activation of human γδ T cells and NK cells by Staphylococcal enterotoxins requires both monocytes and conventional T cells. J Leukoc Biol 2021; 111:597-609. [PMID: 34114693 DOI: 10.1002/jlb.3a1020-630rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxins (SE) pose a great threat to human health due to their ability to bypass antigen presentation and activate large amounts of conventional T cells resulting in a cytokine storm potentially leading to toxic shock syndrome. Unconventional T- and NK cells are also activated by SE but the mechanisms remain poorly understood. In this study, the authors aimed to explore the underlying mechanism behind SE-mediated activation of MAIT-, γδ T-, and NK cells in vitro. CBMC or PBMC were stimulated with the toxins SEA, SEH, and TSST-1, and cytokine and cytotoxic responses were analyzed with ELISA and flow cytometry. All toxins induced a broad range of cytokines, perforin and granzyme B, although SEH was not as potent as SEA and TSST-1. SE-induced IFN-γ expression in MAIT-, γδ T-, and NK cells was clearly reduced by neutralization of IL-12, while cytotoxic compounds were not affected at all. Kinetic assays showed that unconventional T cell and NK cell-responses are secondary to the response in conventional T cells. Furthermore, co-cultures of isolated cell populations revealed that the ability of SEA to activate γδ T- and NK cells was fully dependent on the presence of both monocytes and αβ T cells. Lastly, it was found that SE provoked a reduced and delayed cytokine response in infants, particularly within the unconventional T and NK cell populations. This study provides novel insights regarding the activation of unconventional T- and NK cells by SE, which contribute to understanding the vulnerability of young children towards Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Manuel Mata Forsberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Arasa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Willemien van Zwol
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sibel Uzunçayir
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna Schönbichler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Paulina Regenthal
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Meilleur CE, Memarnejadian A, Shivji AN, Benoit JM, Tuffs SW, Mele TS, Singh B, Dikeakos JD, Topham DJ, Mu HH, Bennink JR, McCormick JK, Haeryfar SMM. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathog 2020; 16:e1008393. [PMID: 32433711 PMCID: PMC7239382 DOI: 10.1371/journal.ppat.1008393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Infection with (SAg)-producing bacteria may precede or follow infection with or vaccination against influenza A viruses (IAVs). However, how SAgs alter the breadth of IAV-specific CD8+ T cell (TCD8) responses is unknown. Moreover, whether recall responses mediating heterosubtypic immunity to IAVs are manipulated by SAgs remains unexplored. We employed wild-type (WT) and mutant bacterial SAgs, SAg-sufficient/deficient Staphylococcus aureus strains, and WT, mouse-adapted and reassortant IAV strains in multiple in vivo settings to address the above questions. Contrary to the popular view that SAgs delete or anergize T cells, systemic administration of staphylococcal enterotoxin B (SEB) or Mycoplasma arthritidis mitogen before intraperitoneal IAV immunization enlarged the clonal size of ‘select’ IAV-specific TCD8 and reshuffled the hierarchical pattern of primary TCD8 responses. This was mechanistically linked to the TCR Vβ makeup of the impacted clones rather than their immunodominance status. Importantly, SAg-expanded TCD8 retained their IFN-γ production and cognate cytolytic capacities. The enhancing effect of SEB on immunodominant TCD8 was also evident in primary responses to vaccination with heat-inactivated and live attenuated IAV strains administered intramuscularly and intranasally, respectively. Interestingly, in prime-boost immunization settings, the outcome of SEB administration depended strictly upon the time point at which this SAg was introduced. Accordingly, SEB injection before priming raised CD127highKLRG1low memory precursor frequencies and augmented the anamnestic responses of SEB-binding TCD8. By comparison, introducing SEB before boosting diminished recall responses to IAV-derived epitopes drastically and indiscriminately. This was accompanied by lower Ki67 and higher Fas, LAG-3 and PD-1 levels consistent with a pro-apoptotic and/or exhausted phenotype. Therefore, SAgs can have contrasting impacts on anti-IAV immunity depending on the naïve/memory status and the TCR composition of exposed TCD8. Finally, local administration of SEB or infection with SEB-producing S. aureus enhanced pulmonary TCD8 responses to IAV. Our findings have clear implications for superinfections and prophylactic vaccination. Exposure to bacterial superantigens (SAgs) is often a consequence of infection with common Gram-positive bacteria causing septic and toxic shock or food poisoning. How SAgs affect the magnitude, breadth and quality of infection/vaccine-elicited CD8+ T cell (TCD8) responses to respiratory viral pathogens, including influenza A viruses (IAVs), is far from clear. Also importantly, superinfections with IAVs and SAg-producing bacteria are serious clinical occurrences during seasonal and pandemic flu and require urgent attention. We demonstrate that two structurally distinct SAgs, including staphylococcal enterotoxin B (SEB), unexpectedly enhance primary TCD8 responses to ‘select’ IAV-derived epitopes depending on the TCR makeup of the responding clones. Intriguingly, the timing of exposure to SEB dictates the outcome of prime-boost immunization. Seeing a SAg before priming raises memory precursor frequencies and augments anamnestic TCD8 responses. Conversely, a SAg encounter before boosting renders TCD8 prone to death or exhaustion and impedes recall responses, thus likely compromising heterosubtypic immunity to IAVs. Finally, local exposure to SEB increases the pulmonary response of immunodominant IAV-specific TCD8. These findings shed new light on how bacterial infections and SAgs influence the effectiveness of anti-IAV TCD8 responses, and have, as such, wide-ranging implications for preventative vaccination and infection control.
Collapse
Affiliation(s)
- Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Adil N. Shivji
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M. Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tina S. Mele
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jack R. Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Meilleur CE, Wardell CM, Mele TS, Dikeakos JD, Bennink JR, Mu HH, McCormick JK, Haeryfar SMM. Bacterial Superantigens Expand and Activate, Rather than Delete or Incapacitate, Preexisting Antigen-Specific Memory CD8+ T Cells. J Infect Dis 2020; 219:1307-1317. [PMID: 30418594 DOI: 10.1093/infdis/jiy647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022] Open
Abstract
Superantigens (SAgs) released by common Gram-positive bacterial pathogens have been reported to delete, anergize, or activate mouse T cells. However, little is known about their effects on preexisting memory CD8+ T cell (TCD8) pools. Furthermore, whether SAgs manipulate human memory TCD8 responses to cognate antigens is unknown. We used a human peripheral blood mononuclear cell culture system and a nontransgenic mouse model in which the impact of stimulation by two fundamentally distinct SAgs, staphylococcal enterotoxin B and Mycoplasma arthritidis mitogen, on influenza virus- and/or cytomegalovirus-specific memory TCD8 could be monitored. Bacterial SAgs surprisingly expanded antiviral memory TCD8 generated naturally through infection or artificially through vaccination. Mechanistically, this was a T cell-intrinsic and T cell receptor β-chain variable-dependent phenomenon. Importantly, SAg-expanded TCD8 displayed an effector memory phenotype and were capable of producing interferon-γ and destroying target cells ex vivo or in vivo. These findings have clear implications for antimicrobial defense and rational vaccine design.
Collapse
Affiliation(s)
- Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Tina S Mele
- Division of General Surgery, Department of Surgery, Western University, London, Canada.,Division of Critical Care Medicine, Western University, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Jack R Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, Canada.,Centre for Human Immunology, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Canada.,Centre for Human Immunology, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
5
|
Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA, Tun-Abraham ME, Rossjohn J, Corbett AJ, McCluskey J, McCormick JK, Lantz O, Hernandez-Alejandro R, Haeryfar SM. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol 2017. [PMID: 28632753 PMCID: PMC5478099 DOI: 10.1371/journal.pbio.2001930] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/toxicity
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Line
- Cells, Cultured
- Clonal Anergy/drug effects
- Crosses, Genetic
- Enterotoxins/metabolism
- Enterotoxins/toxicity
- Female
- Humans
- Hybridomas
- Immunity, Innate
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Models, Immunological
- Mucosal-Associated Invariant T Cells/cytology
- Mucosal-Associated Invariant T Cells/drug effects
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Specific Pathogen-Free Organisms
- Staphylococcus aureus/immunology
- Staphylococcus aureus/metabolism
- Streptococcus pyogenes/immunology
- Streptococcus pyogenes/metabolism
- Superantigens/metabolism
- Superantigens/toxicity
- Transplantation Chimera/blood
- Transplantation Chimera/immunology
- Transplantation Chimera/metabolism
Collapse
Affiliation(s)
- Christopher R. Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Patrick T. Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Peter A. Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Mauro E. Tun-Abraham
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Olivier Lantz
- Laboratoire d'Immunologie and INSERM U932, Institut Curie, Paris, France
| | - Roberto Hernandez-Alejandro
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Transplantation, Department of Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - S.M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Priedhorsky R, Osthus D, Daughton AR, Moran KR, Generous N, Fairchild G, Deshpande A, Del Valle SY. Measuring Global Disease with Wikipedia: Success, Failure, and a Research Agenda. CSCW : PROCEEDINGS OF THE CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK. CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK 2017; 2017:1812-1834. [PMID: 28782059 PMCID: PMC5542563 DOI: 10.1145/2998181.2998183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Effective disease monitoring provides a foundation for effective public health systems. This has historically been accomplished with patient contact and bureaucratic aggregation, which tends to be slow and expensive. Recent internet-based approaches promise to be real-time and cheap, with few parameters. However, the question of when and how these approaches work remains open. We addressed this question using Wikipedia access logs and category links. Our experiments, replicable and extensible using our open source code and data, test the effect of semantic article filtering, amount of training data, forecast horizon, and model staleness by comparing across 6 diseases and 4 countries using thousands of individual models. We found that our minimal-configuration, language-agnostic article selection process based on semantic relatedness is effective for improving predictions, and that our approach is relatively insensitive to the amount and age of training data. We also found, in contrast to prior work, very little forecasting value, and we argue that this is consistent with theoretical considerations about the nature of forecasting. These mixed results lead us to propose that the currently observational field of internet-based disease surveillance must pivot to include theoretical models of information flow as well as controlled experiments based on simulations of disease.
Collapse
Affiliation(s)
| | - Dave Osthus
- Computer, Computational, and Statistical Sciences (CCS) Division
| | - Ashlynn R Daughton
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Kelly R Moran
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Nicholas Generous
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Geoffrey Fairchild
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Alina Deshpande
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Sara Y Del Valle
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| |
Collapse
|
7
|
Quantitative bias analysis in an asthma study of rescue-recovery workers and volunteers from the 9/11 World Trade Center attacks. Ann Epidemiol 2016; 26:794-801. [PMID: 27756685 DOI: 10.1016/j.annepidem.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022]
Abstract
PURPOSE When learning bias analysis, epidemiologists are taught to quantitatively adjust for multiple biases by correcting study results in the reverse order of the error sequence. To understand the error sequence for a particular study, one must carefully examine the health study's epidemiologic data-generating process. In this article, we describe the unique data-generating process of a man-made disaster epidemiologic study. METHODS We described the data-generating process and conducted a bias analysis for a study associating September 11, 2001 dust cloud exposure and self-reported newly physician-diagnosed asthma among rescue-recovery workers and volunteers. We adjusted an odds ratio (OR) estimate for the combined effect of missing data, outcome misclassification, and nonparticipation. RESULTS Under our assumptions about systematic error, the ORs adjusted for all three biases ranged from 1.33 to 3.84. Most of the adjusted estimates were greater than the observed OR of 1.77 and were outside the 95% confidence limits (1.55, 2.01). CONCLUSIONS Man-made disasters present some situations that are not observed in other areas of epidemiology. Future epidemiologic studies of disasters could benefit from a proactive approach that focuses on the technical aspect of data collection and gathers information on bias parameters to provide more meaningful interpretations of results.
Collapse
|
8
|
Szabo PA, Goswami A, Memarnejadian A, Mallett CL, Foster PJ, McCormick JK, Haeryfar SMM. Swift Intrahepatic Accumulation of Granulocytic Myeloid-Derived Suppressor Cells in a Humanized Mouse Model of Toxic Shock Syndrome. J Infect Dis 2016; 213:1990-5. [PMID: 26908735 DOI: 10.1093/infdis/jiw050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
Toxic shock syndrome (TSS) and other superantigen-mediated illnesses are associated with 'systemic' immunosuppression that jeopardizes the host's ability to fight pathogens. Here, we define a novel mechanism of 'local' immunosuppression that may benefit the host. Systemic exposure to staphylococcal enterotoxin B (SEB) rapidly and selectively recruited CD11b(+)Gr-1(high)Ly-6C(+) granulocytic myeloid-derived suppressor cells (MDSCs) to the liver of HLA-DR4 transgenic mice. Hepatic MDSCs inhibited SEB-triggered T cell proliferation in a reactive oxygen species-dependent manner, and ex vivo-generated human MDSCs also similarly attenuated the proliferative response of autologous T cells to SEB. We propose a role for MDSCs in mitigating excessive tissue injury during TSS.
Collapse
Affiliation(s)
| | | | | | | | - Paula J Foster
- Department of Medical Biophysics Robarts Research Institute
| | - John K McCormick
- Department of Microbiology and Immunology Centre for Human Immunology Lawson Health Research Institute, London, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology Centre for Human Immunology Division of Clinical Immunology and Allergy, Department of Medicine, Western University Lawson Health Research Institute, London, Canada
| |
Collapse
|
9
|
Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol 2014; 10:e1003892. [PMID: 25392913 PMCID: PMC4231164 DOI: 10.1371/journal.pcbi.1003892] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.
Collapse
Affiliation(s)
- Nicholas Generous
- Defense Systems and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Geoffrey Fairchild
- Defense Systems and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alina Deshpande
- Defense Systems and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sara Y. Del Valle
- Defense Systems and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Reid Priedhorsky
- Defense Systems and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
10
|
Biosurveillance: a review and update. Adv Prev Med 2012; 2012:301408. [PMID: 22242207 PMCID: PMC3254002 DOI: 10.1155/2012/301408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/18/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
Since the terrorist attacks and anthrax release in 2001, almost $32 billion has been allocated to biodefense and biosurveillance in the USA alone. Surveillance in health care refers to the continual systematic collection, analysis, interpretation, and dissemination of data. When attempting to detect agents of bioterrorism, surveillance can occur in several ways. Syndromic surveillance occurs by monitoring clinical manifestations of certain illnesses. Laboratory surveillance occurs by looking for certain markers or laboratory data, and environmental surveillance is the process by which the ambient air or environment is continually sampled for the presence of biological agents. This paper focuses on the ways by which we detect bioterrorism agents and the effectiveness of these systems.
Collapse
|
11
|
|
12
|
Speil C, Mushtaq A, Adamski A, Khardori N. Fever of unknown origin in the returning traveler. Infect Dis Clin North Am 2008; 21:1091-113, x. [PMID: 18061090 DOI: 10.1016/j.idc.2007.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The returning traveler with fever presents a diagnostic challenge for the health care provider. When evaluating such a patient, the highest priority should be given to diseases that are potentially fatal or may represent public health threats. A good history is paramount and needs to include destination, time and duration of travel, type of activity, onset of fever in relation to travel, associated comorbidities, and any associated symptoms. Pretravel immunizations and chemoprophylaxis may alter the natural course of disease and should be inquired about specifically. The fever pattern, presence of a rash or eschar, organomegaly, or neurologic findings are helpful physical findings. Laboratory abnormalities are nonspecific but when corroborated with clinical and epidemiologic data may offer a clue to diagnosis.
Collapse
Affiliation(s)
- Cristian Speil
- Division of Infectious Diseases, Department of Internal Medicine and Medical Microbiology/Immunology, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | |
Collapse
|