1
|
Chibrikov V, Vakuliuk P, Sobczuk H. Sweet sorghum juice clarification and concentration: a review. Crit Rev Food Sci Nutr 2024; 64:11850-11870. [PMID: 37578772 DOI: 10.1080/10408398.2023.2245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sweet sorghum is a promising biomaterial, considering its nutritional and energy value, unpretentiousness in cultivation and its promising economic parameters of processing. The concentrate of sweet sorghum juice is an outstanding material for food purposes, meeting the emerging trends of the industry. This review presents data on the physicochemical properties of sweet sorghum juice and sirup, as well as technological details on the processes of its pretreatment, clarification, and concentration. Physicochemical properties of raw juice of sweet sorghum, as well as purified juice and sirup, are discussed in terms of material pretreatment, methods of clarification and concentration, and storage conditions. Comprehensive theoretical principles, methodological details and explanations of the consistency of sweet sorghum juice processing are given. This work focuses entirely on the relationship between sweet sorghum juice treatment methods and its composition and provides versatile source of information for food science community, farmers, and entrepreneurs.
Collapse
Affiliation(s)
- Vadym Chibrikov
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | | | - Henryk Sobczuk
- Institute of Technology and Life Sciences, Falenty, Poland
| |
Collapse
|
2
|
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. MEMBRANES 2024; 14:221. [PMID: 39452833 PMCID: PMC11509221 DOI: 10.3390/membranes14100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Reverse osmosis (RO) and nanofiltration (NF) are ubiquitous technologies in modern water treatment, finding applications across various sectors. However, the availability of high-quality water suitable for RO/NF feed is diminishing due to droughts caused by global warming, increasing demand, and water pollution. As concerns grow over the depletion of precious freshwater resources, a global movement is gaining momentum to utilize previously overlooked or challenging water sources, collectively known as "marginal water". Fouling is a serious concern when treating marginal water. In RO/NF, biofouling, organic and colloidal fouling, and scaling are particularly problematic. Of these, organic fouling, along with biofouling, has been considered difficult to manage. The major organic foulants studied are natural organic matter (NOM) for surface water and groundwater and effluent organic matter (EfOM) for municipal wastewater reuse. Polymeric substances such as sodium alginate, humic acid, and proteins have been used as model substances of EfOM. Fouling by low molecular weight organic compounds (LMWOCs) such as surfactants, phenolics, and plasticizers is known, but there have been few comprehensive reports. This review aims to shed light on fouling behavior by LMWOCs and its mechanism. LMWOC foulants reported so far are summarized, and the role of LMWOCs is also outlined for other polymeric membranes, e.g., UF, gas separation membranes, etc. Regarding the mechanism of fouling, it is explained that the fouling is caused by the strong interaction between LMWOC and the membrane, which causes the water permeation to be hindered by LMWOCs adsorbed on the membrane surface (surface fouling) and sorbed inside the membrane pores (internal fouling). Adsorption amounts and flow loss caused by the LMWOC fouling were well correlated with the octanol-water partition coefficient (log P). In part 2, countermeasures to solve this problem and applications using the LMWOCs will be outlined.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
3
|
Miramontes-Escobar HA, Hengl N, Dornier M, Montalvo-González E, Chacón-López MA, Achir N, Vaillant F, Ortiz-Basurto RI. Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. MEMBRANES 2024; 14:192. [PMID: 39330533 PMCID: PMC11433797 DOI: 10.3390/membranes14090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
To reduce membrane fouling during the processing of highly pulpy fruit juices into clarified beverages, a crossflow Sono-Microfiltration (SMF) system was employed, strategically equipped with an ultrasonic probe for the direct application of low-frequency ultrasound (LFUS) to the juice just before the entrance to the ceramic membrane. Operating conditions were standardized, and the application of LFUS pulses in both corrective and preventive modes was investigated. The effect of SMF on the physicochemical properties and the total soluble phenol (TSP) content of the clarified juice was also evaluated. The distance of ultrasonic energy irradiation guided the selection of the LFUS probe. Amplitude conditions and ultrasonic pulses were more effective in the preventive mode and did not cause membrane damage, reducing the operation time of jackfruit juice by up to 50% and increasing permeability by up to 81%. The SMF did not alter the physicochemical parameters of the clarified juice, and the measured LFUS energy ranges did not affect the TSP concentration during the process. This study is the first to apply LFUS directly to the feed stream in a pilot-scale crossflow microfiltration system to reduce the fouling of ceramic membranes and maintain bioactive compounds in jackfruit juice.
Collapse
Affiliation(s)
- Herenia Adilene Miramontes-Escobar
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Nicolas Hengl
- Laboratoire Rhéologie Et Procédés, Grenoble INP (Institute of Engineering Université Grenoble Alpes), Centre National de la Recherche Scientifique, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Manuel Dornier
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Martina Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| | - Nawel Achir
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
| | - Fabrice Vaillant
- Institut Agro, Institut de Re-cherche pour le Développement, UMR Qualisud, Université de Montpellier, Université d’Avignon, Université de La Réunion, 34000 Montpellier, France; (M.D.); (N.A.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Qualisud, Agrosavia, Rionegro-Antioquia 054048, Colombia
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México—Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (H.A.M.-E.); (E.M.-G.); (M.A.C.-L.)
| |
Collapse
|
4
|
Dang Y, Zhang QA, Zhao ZH. Removal of Cu (II) by ion exchange resin and its re-utilization of the residual solution from the distilled Lycium barbarum wine. Food Chem X 2024; 22:101380. [PMID: 38665633 PMCID: PMC11043811 DOI: 10.1016/j.fochx.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In order to re-utilize the residual from the distillation of the Chinese wolfberry wine and reduce the environmental pollution, the residual is firstly filtered by the ceramic membrane of 50 nm, then the Cu (II) has transferred from the distillation is removed using the ion exchange resin, and the treated solution is recombined with the distilled liquor to make the Chinese wolfberry brandy and the comparison has conducted on the physicochemical properties, antioxidant activity and flavor compounds between the recombined brandy and the finished brandy. The results indicate that the Cu (II) was effectively removed by ceramic membrane combined with the D401 resin. Compared with finished brandy, the recombined brandy contains high contents of polysaccharides, phenols and flavonoids, thus contributing to the improvement of antioxidant capacity. The gas chromatography-ion mobility spectrometry (GC-IMS) reveals that 25 volatile compounds like esters and alcohols have identified in the brandy samples, and the differences are significant between the recombined and the finished brandy. In summary, the distilled residual from the Chinese wolfberry wine might be re-used after the appropriate treatment so as to reduce the discharge and environmental pollution.
Collapse
Affiliation(s)
- Yan Dang
- Institute of Food & Physical Field Processing, School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, PR China
| | - Qing-An Zhang
- Institute of Food & Physical Field Processing, School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, PR China
| | - Zhi-Hui Zhao
- Ningxiahong Medlar Industry Group Company Limited, Zhongwei 755100, Ningxia Province, PR China
| |
Collapse
|
5
|
Gontarek-Castro E, Castro-Muñoz R. Membrane distillation assisting food production processes of thermally sensitive food liquid items: a review. Crit Rev Food Sci Nutr 2024; 64:6073-6086. [PMID: 36606470 DOI: 10.1080/10408398.2022.2163223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Physical separation technologies have become important tool for processing in the current food manufacturing industries, especially for the products containing bioactive compounds thanks to their health benefits in costumers. As for the processing of bioactive food ingredients implies the implementation of integrated systems oriented to their separation, fractionation, and recovery. In this field, membrane distillation (MD), which is a thermally driven membrane process, has been proposed as an alternative for the separation and concentration of liquid food items. In principle, MD can separate water and volatile compounds from aqueous feed solutions through a permeate that passes across microporous hydrophobic membranes. The separation via MD is thanks to the vapor pressure difference on both membrane sides. In this review, we analyzed the ongoing experimental efforts aimed to recover and purify food bioactive compounds from the concentration of fruit juices and extracts using MD. Also, the processing of dairy products, concentration of food by-products, and ethanol production and its removal from beverages using MD have been reviewed. Additionally, a feedback on the distinct membrane module configurations and membrane requirements for successful operation is addressed.
Collapse
Affiliation(s)
| | - Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, Gdansk, Poland
- Tecnologico de Monterrey, Toluca de Lerdo, Mexico
| |
Collapse
|
6
|
Fabjanowicz M, Różańska A, Abdelwahab NS, Pereira-Coelho M, Haas ICDS, Madureira LADS, Płotka-Wasylka J. An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chem 2024; 432:137219. [PMID: 37647705 DOI: 10.1016/j.foodchem.2023.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Food products composition analysis is a prerequisite for verification of product quality, fulfillment of regulatory enforcements, checking compliance with national and international food standards, contracting specifications, and nutrient labeling requirements and providing quality assurance for use of the product for the supplementation of other foods. These aspects also apply to the berry fruit and berry juice. It also must be noted that even though fruit juices are generally considered healthy, there are many risks associated with mishandling both fruits and juices themselves. The review gathers information related with the health benefits and risk associated with the consumption of berry fruit juices. Moreover, the focus was paid to the quality assurance of berry fruit juice. Thus, the analytical methods used for determination of compounds influencing the sensory and nutritional characteristics of fruit juice as well as potential contaminants or adulterations.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina Pereira-Coelho
- Departament of Chemistry, Federal University of Santa Catarina, Des. Vitor Lima Av., Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | | | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
7
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
8
|
Sarbatly R, Sariau J, Krishnaiah D. Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices. FOOD ENGINEERING REVIEWS 2023; 15:420-437. [PMCID: PMC10257186 DOI: 10.1007/s12393-023-09346-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/21/2023] [Indexed: 11/06/2023]
Abstract
Fruit juices are traditionally processed thermally to avoid microorganisms’ growth and increase their shelf-life. The concentration of juices by thermal evaporation is carried out to reduce their volume and consequently the storage and transportation costs. However, many studies revealed that the high-temperature operation destroys many valuable nutrients and the aroma of the juice. Currently, membrane technology has emerged as an alternative to conventional processes to clarify and concentrate fruit juices due to its ability to improve juices’ safety, quality, and nutritional values. Low-cost, low-energy requirement, and minimal footprint make membrane technology an attractive choice for industrial adoption. The low-temperature operation that preserves the nutritional and sensorial quality of the juice can fulfill the market demand for healthy juice products. In this review, the pressure-driven membrane processes, including microfiltration, ultrafiltration, and reverse osmosis; osmotic distillation; membrane distillation; and forward osmosis that have been widely investigated in recent years, are discussed.
Collapse
Affiliation(s)
- Rosalam Sarbatly
- Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
- Nanofiber and Membrane Research Laboratory, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Jamilah Sariau
- Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Duduku Krishnaiah
- Department of Chemical Engineering, University of Anurag, Hyderabad, 500088 India
| |
Collapse
|
9
|
Hu Y, Wu W. Application of Membrane Filtration to Cold Sterilization of Drinks and Establishment of Aseptic Workshop. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:89-106. [PMID: 36933166 PMCID: PMC10024305 DOI: 10.1007/s12560-023-09551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Aseptic packaging of high quality beverage is necessary and its cold-pasteurization or sterilization is vital. Studies on application of ultrafiltration or microfiltration membrane to cold- pasteurization or sterilization for the aseptic packaging of beverages have been reviewed. Designing and manufacturing ultrafiltration or microfiltration membrane systems for cold-pasteurization or sterilization of beverage are based on the understanding of size of microorganisms and theoretical achievement of filtration. It is concluded that adaptability of membrane filtration, especially its combination with other safe cold method, to cold- pasteurization and sterilization for the aseptic packaging of beverages should be assured without a shadow of doubt in future.
Collapse
Affiliation(s)
- Yunhao Hu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China
| | - Wenbiao Wu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
- Research Center of Grains, Oils and Foods Engineering Design, Industrial Research Institute, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
| |
Collapse
|
10
|
Ruby-Figueroa R, Morelli R, Conidi C, Cassano A. Red Fruit Juice Concentration by Osmotic Distillation: Optimization of Operating Conditions by Response Surface Methodology. MEMBRANES 2023; 13:membranes13050496. [PMID: 37233557 DOI: 10.3390/membranes13050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osmotic distillation (OD) was implemented at laboratory scale to concentrate a red fruit juice produced from a blend of blood orange, prickly pear, and pomegranate juice. The raw juice was clarified by microfiltration and then concentrated by using an OD plant equipped with a hollow fiber membrane contactor. The clarified juice was recirculated on the shell side of the membrane module, while calcium chloride dehydrate solutions, used as extraction brine, were recirculated on the lumen side in a counter-current mode. The influence of different process parameters, such as brine concentration (20, 40, and 60% w/w), juice flow rate (0.3, 2.0, and 3.7 L min-1), and brine flow rate (0.3, 2.0, and 3.7 L min-1) on the performance of the OD process in terms of evaporation flux and increase in juice concentration, was investigated according to the response surface methodology (RSM). From the regression analysis, the evaporation flux and juice concentration rate were expressed with quadratic equations of juice and brine flow rates, as well as the brine concentration. The desirability function approach was applied to analyse the regression model equations in order to maximize the evaporation flux and juice concentration rate. The optimal operating conditions were found to be 3.32 L min-1 brine flow rate, 3.32 L min-1 juice flow rate, and an initial brine concentration of 60% w/w. Under these conditions, the average evaporation flux and the increase in the soluble solid content of the juice resulted in 0.41 kg m-2 h-1 and 12.0 °Brix, respectively. Experimental data on evaporation flux and juice concentration, obtained in optimized operating conditions, resulted in good agreement with the predicted values of the regression model.
Collapse
Affiliation(s)
- René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | - Rosanna Morelli
- Institute on Membrane Technology, ITM-CNR, Via Pietro Bucci 17/C, 87036 Rende, CS, Italy
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, Via Pietro Bucci 17/C, 87036 Rende, CS, Italy
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, Via Pietro Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
11
|
Lan T, Wang J, Bao S, Zhao Q, Sun X, Fang Y, Ma T, Liu S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res Int 2023; 168:112784. [PMID: 37120231 DOI: 10.1016/j.foodres.2023.112784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Fruit and vegetable juice (FVJ) has become a favorite beverage for all age groups because of its excellent sensory and nutritional qualities. FVJ has a series of health benefits such as antioxidant, anti-obesity, anti-inflammatory, anti-microbial and anti-cancer. Except for raw materials selection, processing technology and packaging and storage also play a vital role in the nutrition and functional components of FVJ. This review systematically reviews the important research results on the relationship between FVJ processing and its nutrition and function in the past 10 years. Based on the brief elucidation of the nutrition and health benefits of FVJ and the unit operation involved in the production process, the influence of a series of key technology units, including pretreatment, clarification, homogenization, concentration, sterilization, drying, fermentation and packaging and storage, on the nutritional function of FVJ was systematically expounded. This contribution provides an update on the impacts of technical processing units on the nutrients and functional components of FVJ and new perspectives for future studies.
Collapse
|
12
|
Application of Emerging Techniques in Reduction of the Sugar Content of Fruit Juice: Current Challenges and Future Perspectives. Foods 2023; 12:foods12061181. [PMID: 36981108 PMCID: PMC10048513 DOI: 10.3390/foods12061181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In light of the growing interest in products with reduced sugar content, there is a need to consider reducing the natural sugar concentration in juices while preserving the initial concentration of nutritional compounds. This paper reviewed the current state of knowledge related to mixing juices, membrane processes, and enzymatic processes in producing fruit juices with reduced concentrations of sugars. The limitations and challenges of these methods are also reviewed, including the losses of nutritional ingredients in membrane processes and the emergence of side products in enzymatic processes. As the existing methods have limitations, the review also identifies areas that require further improvements and technological innovations.
Collapse
|
13
|
Bardhan A, Subbiah S, Mohanty K. Modeling and Experimental Validation for the Preparation of Concentrated Tea Extract Using a Forward Osmosis Process Using a Food-Grade Inorganic Draw Solute. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ananya Bardhan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
14
|
Wu T, Sakamoto M, Phacharapan S, Inoue N, Kamitani Y. Antioxidant characteristic changes, sensory evaluation, processing and storage of functional water modified juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Unar IN, Maitlo G, Abro M, Ali I, Laghari AQ, Solangi ZA, Koondhar NA, Ansari NM, Kim JO. Modeling and simulation of juice clarifier using computational fluid dynamics for enhanced sugar quality. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Misran E, Idris A, Ya’akob H. Bromelain extraction using single stage nanofiltration membrane process. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:315-327. [PMID: 36618058 PMCID: PMC9813328 DOI: 10.1007/s13197-022-05618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/03/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022]
Abstract
Pineapple (Ananas Comosus) is a tropical fruit having exceptional juiciness, vibrant tropical flavor and immense health benefits. Pineapples are not only taken fresh but they have been commercialized in the canning industry. Morris cultivar is mostly supplied to the canning industry where only the flesh is utilized and the rest of the pineapple (50 wt%) such as the core, stem, peels and crown are discarded as wastes. In the extraction of bromelain which is a vital proteolytic enzyme the whole pineapple including its peels, core, stem and crown can be utilized. This enzyme is very valuable and considered as a food supplement with a wide range of therapeutic benefits. Thus, in this study, bromelain is extracted from the flesh, crown, stem, core and peel of pineapples using simple one stage hollow fiber nanofiltration membrane process. The different parts of the pineapple were crushed to extract the juice. The juice was then centrifuged and the supernatant was then passed through a nanofiltration membrane. Results revealed the retentates from the different pineapple parts contain high amounts of bromelain in descending order flesh > peel > core > crown > stem. The amount of bromelain activity increased after every process especially after freeze drying.
Collapse
Affiliation(s)
- Effaliza Misran
- Centre for Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - Ani Idris
- Centre for Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| | - Harisun Ya’akob
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
17
|
Synergistic effect of particle size, shear rate and driving-force during microfiltration of fruit juices: Toward a relevant choice of pretreatments and filtration conditions. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Pineapple juice clarification by continuous dead-end microfiltration using a low-cost ceramic membrane. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Production of High-Quality Red Fruit Juices by Athermal Membrane Processes. Molecules 2022; 27:molecules27217435. [DOI: 10.3390/molecules27217435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Membrane-based processes are increasingly used to clarify and concentrate thermo-sensitive fruit juices and plant extracts as alternatives to conventional processes. This work aimed to evaluate the quality of red fruit juices clarified and concentrated by an integrated membrane process with special regard to the preservation of valuable compounds. A red fruit juice obtained from a blend of pomegranate, cactus pear, and red orange juices of Sicilian origin was clarified by microfiltration (MF) and then pre-concentrated up to 33 °Brix by nanofiltration (NF). The pre-concentrated juice was finally concentrated by osmotic distillation (OD) up to 50 and 60 °Brix. Samples of clarified, pre-concentrated, and concentrated juice were analyzed for their physico-chemical composition and in terms of the antioxidant activity and inhibitory activity against α-amylase and lipase. The results clearly confirmed the assumption of a mild fruit juice processing method, allowing us to preserve the original nutritional and functional properties of the fresh juice. In particular, the OD retentate at 60 °Brix resulted the most active sample against pancreatic lipase and α-amylase inhibitory activity with IC50 values of 44.36 and 214.65 μg/mL, respectively.
Collapse
|
20
|
Gong X, Huang J, Xu Y, Li Z, Li L, Li D, Belwal T, Jeandet P, Luo Z, Xu Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, Aadil RM, Ibrahim SA. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). ULTRASONICS SONOCHEMISTRY 2022; 90:106194. [PMID: 36242792 PMCID: PMC9576986 DOI: 10.1016/j.ultsonch.2022.106194] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bilal Yaseen
- Department of Food Sciences, Government College University, Sahiwal 57000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, E. Market Street 1601, Greensboro, NC 24711, USA.
| |
Collapse
|
22
|
Siqueira dos Santos S, de Santana Magalhães F, Mendes SF, Madrona GS, Reis MHM. Purification of bioactive compounds from blackberry pomace: investigation of techniques to reduce fouling during flat membrane ultrafiltration process. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Baranlouie S, Aroujalian A, Salimi P. Effect of corona discharge treatment on the polyethersulfone microfiltration membrane surfaces to reduce fouling phenomenon during tomato juice clarification. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Saba Baranlouie
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abdolreza Aroujalian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Parisa Salimi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Fikri S, Lessard MH, Perreault V, Doyen A, Labrie S. Candida krusei is the major contaminant of ultrafiltration and reverse osmosis membranes used for cranberry juice production. Food Microbiol 2022; 109:104146. [DOI: 10.1016/j.fm.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
26
|
Yadav D, Karki S, Ingole PG. Nanofiltration (NF) Membrane Processing in the Food Industry. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Giro Maitam MV, Nicolini JV, de Araujo Kronemberger F. Anti‐fouling performance of polyamide microfiltration membrane modified with surfactants. J Appl Polym Sci 2022. [DOI: 10.1002/app.53015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - João Victor Nicolini
- Departamento de Engenharia Química, Instituto de Tecnologia Universidade Federal Rural do Rio de Janeiro Rio de Janeiro Brazil
| | | |
Collapse
|
28
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
29
|
Positive retention of bioactive compounds and biochemical components of Sathgudi sweet orange (Citrus sinensis L. Osbeck) juice concentrate by integrated membrane process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Patel VB, Chatterjee S, Dhoble AS. A review on pectinase properties, application in juice clarification, and membranes as immobilization support. J Food Sci 2022; 87:3338-3354. [PMID: 35781268 DOI: 10.1111/1750-3841.16233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Pectic substances cause haziness and high viscosity of fruit juices. Pectinase enzymes are biological compounds that degrade pectic compounds. Nontoxicity and ecofriendly nature make pectinases excellent biocatalysts for juice clarification. However, the poor stability and nonreusability of pectinases trim down the effectiveness of the operation. The immobilization techniques have gained the attention of researchers as it augments the properties of the enzymes. Literature has reported the stability improvement of enzymes like lipase, laccase, hydrogen peroxidase, and cellulase upon immobilization on the membrane. However, only a few research articles divulge pectinase immobilization using a membrane. The catalysis-separation synergy of membrane-reactor has put indelible imprints in industrial applications. Immobilization of pectinase on the membrane can enhance its performance in juice processing. This review delineates the importance of physicochemical and kinematic properties of pectinases relating to the juice processing parameters. It also includes the influence of metal-ion cofactors on enzymes' activity. Considering the support and catalytic-separation facets of the membrane, the prediction of the membrane as support for pectinase immobilization has also been carried out.
Collapse
Affiliation(s)
- Vashishtha B Patel
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, India
| | - Somak Chatterjee
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
31
|
Xie X, Wang X, Bi X, Ning N, Li M, Xing Y, Che Z. Effects of ultrafiltration combined with high‐pressure processing, ultrasound and heat treatments on the quality of a blueberry–grape–pineapple–cantaloupe juice blend. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xinyao Xie
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
- The Agricultural and rural Bureau of Yilong County Nanchong 637600 China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Nan Ning
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
- Key Laboratory of Food Non‐thermal Processing Engineering Technology Research Center of Non‐thermal Food Processing Yibin Xihua University Research Institute Yibin 644004 China
| | - Mingyuan Li
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Yage Xing
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Biotechnology School of Food and Bioengineering Xihua University Chengdu 610039 China
| |
Collapse
|
32
|
Zeng L, Zhu Z, Sun DW. Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 62:3705-3722. [PMID: 35348019 DOI: 10.1080/10408398.2022.2054937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The membrane can not only be used as food packaging, but also for the separation, fractionation and recovery of food ingredients. Graphene oxide (GO) sheets are a two-dimensional (2 D) material with a unique structure that exhibit excellent mechanical properties, biocompatibility, and flexibility. The corporation of polymer matrix membrane with GO can significantly improve the permeability, selectivity, and antibacterial activity. In this review, the chemical structures of GO, GO membranes and GO/polymer composite membranes are introduced, the permeation mechanisms of molecules through the membranes are discussed and key factors affecting the permeability are presented in detail. In addition, recent applications in the food industry for filtration, bioreactions and active food packaging are analyzed, and limitations and future trends of GO membranes development are also highlighted. GO/polymer composite membranes exhibit excellent permeability, selectivity and strong barrier properties against bacterial and gas permeation. However, current food material filtration and packaging applications of GO/polymer composite membranes are still in the laboratory stage. Future work can focus on the development of large scale uniformly sized GO production, the homogeneous distribution and tight combination of GO in polymer matrixes, the sensing function of GO in packaging, and the verification method of GO toxicology.
Collapse
Affiliation(s)
- Leyin Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
33
|
Abdullah S, Karmakar S, Pradhan RC, Mishra S. Pressure‐driven crossflow microfiltration coupled with centrifugation for tannin reduction and clarification of cashew apple juice: modeling of permeate flux decline and optimization of process parameters. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Abdullah
- Department of Food Process Engineering National Institute of Technology Rourkela Odisha 769008 India
| | - Sankha Karmakar
- Institute of Chemical Technology ICT‐IOC Campus Bhubaneswar 751013 India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering National Institute of Technology Rourkela Odisha 769008 India
| | - Sabyasachi Mishra
- Institute of Chemical Technology ICT‐IOC Campus Bhubaneswar 751013 India
| |
Collapse
|
34
|
Kavitha E, Poonguzhali E, Nanditha D, Kapoor A, Arthanareeswaran G, Prabhakar S. Current status and future prospects of membrane separation processes for value recovery from wastewater. CHEMOSPHERE 2022; 291:132690. [PMID: 34715105 DOI: 10.1016/j.chemosphere.2021.132690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
Resource constraints and deteriorating environment have made it necessary to look for intensification of the industrial processes, to recover value from spent streams for reuse. The development of reverse osmosis has already established that water can be recovered from aqueous streams in a cost-effective and beneficial manner to the industries. With the development of several membrane processes and membrane materials, the possibility of recovering value from the effluents looks like a workable proposition. In this context, the potentialities of the different membrane processes in value recovery are presented. Among the pressure-driven processes, reverse osmosis can be used for the recovery of water as value. Nanofiltration has been used for the recovery of several dyes including crystal violet, congo red, methyl blue, etc., while ultrafiltration has been used in the fractionation of different solute species using membranes of different pore-size characteristics. Diffusion dialysis is found useful in the separation of acids from its salt solutions. Bipolar membrane electrodialysis has the potential to regenerate acid and base from salt solutions. Thermally driven membrane distillation can provide desalinated water, besides reducing the temperature of hot discharge streams. Passive membrane processes such as supported liquid membranes and membrane-assisted solvent extraction have been found useful in separating minor components from the wastewater streams. The details are discussed to drive home that membrane processes can be useful to achieve the objectives of value recovery, in a cost-effective manner through process intensification, as they are more compact and individual streams can be treated and value used seamlessly.
Collapse
Affiliation(s)
- E Kavitha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - E Poonguzhali
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - D Nanditha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| | - S Prabhakar
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
35
|
Lomba-Viana X, Raymundo A, Prista C, Alegria MJ, Sousa I. Clean Label “Rocha” Pear (Pyrus communis L.) Snack Containing Juice By-Products and Euglena gracilis Microalgae. Front Nutr 2022; 9:825999. [PMID: 35252304 PMCID: PMC8888533 DOI: 10.3389/fnut.2022.825999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
“Rocha do Oeste” pear is a Portuguese Protected Designation of Origin variety and one of the country's most relevant fruits for its nutritional value, production area, and exportation amounts. The recent integration of a pilot-scale juice production line brought to SUMOL+COMPAL company the need to characterize the new resulting fractions and value the new by-products. The objective of this work was to value the juice clarification by-products, producing a clean label and fiber-rich snack, in a circular economy rationale, where the secondary products are upcycled back into the food value chain, by creating another food product that includes those by-products. For the above to be possible, the laboratory conditions to produce pear fractions were optimized. After optimizing the puree centrifugation, using response surface methodology (RSM), and optimizing the turbid juice crossflow filtration, the different fractions were characterized in rheological, nutritional, and physical aspects. Comparison to the pulps revealed an increase in the viscosity of the pomace; an enriching effect on the fructose, glucose, and dietary fiber levels in the pomace, and maintenance of the vitamin C levels after centrifugation; and with no effect on the contents of total phenols during the filtration step. A thick pear snack was developed, incorporating retained fraction, inulin, and Euglena gracilis in the pomace, and optimized regarding its firmness and dietary fiber content. The snack characterization revealed an interesting total phenols content (which was maintained from the raw materials). Compared to the snack without microalgae and a commercial fruit snack, the pear snack with E. gracilis was well-accepted by the sensory panel, mainly in texture and appearance, and can be further improved in aroma and flavor. The snack without microalgae was the favorite among the three samples, in most sensory parameters, and never got the answer “I'm sure I wouldn't buy it.” Therefore, an innovative, clean label and plant-based snack was developed, in a circular economy rationale, which was relatively well-appreciated by the panel. This snack is rich in dietary fiber, having the possibility of presenting various nutritional claims, and the potential for easy sensory optimization.
Collapse
Affiliation(s)
- Xavier Lomba-Viana
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Departamento de Ciências e Engenharia de Biossistemas (DCEB), Instituto Superior de Agronomia da Universidade de Lisboa, Lisboa, Portugal
| | - Anabela Raymundo
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Departamento de Ciências e Engenharia de Biossistemas (DCEB), Instituto Superior de Agronomia da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Prista
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Departamento de Ciências e Engenharia de Biossistemas (DCEB), Instituto Superior de Agronomia da Universidade de Lisboa, Lisboa, Portugal
| | | | - Isabel Sousa
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Departamento de Ciências e Engenharia de Biossistemas (DCEB), Instituto Superior de Agronomia da Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Isabel Sousa
| |
Collapse
|
36
|
Laurio MVO, Yenkie KM, Slater CS. Optimization of vibratory nanofiltration for sustainable coffee extract concentration via response surface methodology. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.1879858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Kirti M. Yenkie
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - C. Stewart Slater
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
37
|
Viscoelastic behavior and fouling propensity of concentrated suspended particles of orange juice with defined size distributions: Towards a better control of the deposit layer properties during microfiltration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Evaluation of hybrid pressure-driven and osmotically-driven membrane process for non-thermal production of apple juice concentrate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Tavares HM, Tessaro IC, Cardozo NSM. Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
CARDOSO FDSN, CARVALHO LMJD, KOBLITZ MGB, ORTIZ GMD. Use of encapsulated commercial enzyme in the hydrolysis optimization of cagaita pulp (Eugenia dysenterica DC). FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.11221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Wang F, Luo X, Guo J, Zhang W. Treatment of soy sauce wastewater with biomimetic dynamic membrane for colority removal and chemical oxygen demand lowering. AN ACAD BRAS CIENC 2021; 93:e20210425. [PMID: 34787173 DOI: 10.1590/0001-3765202120210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soy sauce wastewater has been produced in soy sauce production and consumption. To reuse this kind of water resource, the chemical oxygen demand (COD), colority should be removed or lowered. Biomimetic dynamic membrane (BDM), GO&Laccase@UF membrane, was prepared by filtering mixture of graphene oxide (GO) and laccase through ultrafiltration (UF) membrane. Compared to UF membrane, the prepared BDM showed great performance in removal of COD and colority, due to the higher laccase activity with existence of GO. The removal rate of colority reached ~80% by one step filtration operation. Moreover, the multiple cycle test evidenced that the value of COD and colority in the permeate after 5 consecutive cycles with the same GO&Laccase@UF membrane still meet the standard for reuse water. This work indicates the promising of BDM for wastewater from food industry.
Collapse
Affiliation(s)
- Fang Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430205, Wuhan, China.,Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, 430205, Wuhan, China
| | - Xiao Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Jia Guo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 430205, Wuhan, China.,Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, 430205, Wuhan, China
| | - Wenxiang Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macau, China.,School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| |
Collapse
|
42
|
Milczarek RR, Sedej I. Aroma profiling of forward-osmosis watermelon juice concentrate and comparison to fresh fruit and thermal concentrate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
44
|
An Integrated Approach Based on NMR and HPLC–UV-ESI–MS/MS to Characterize Apple Juices and Their Nanofiltration (NF) Bioactive Extracts. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Tobar-Bolaños G, Casas-Forero N, Orellana-Palma P, Petzold G. Blueberry juice: Bioactive compounds, health impact, and concentration technologies-A review. J Food Sci 2021; 86:5062-5077. [PMID: 34716717 DOI: 10.1111/1750-3841.15944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Blueberries are a popular fruit with an attractive flavor and color, as well as health benefits. These health benefits have been attributed to the important number of bioactive compounds in blueberries with activities such as antioxidant, antitumor, antimutagenic, and antidiabetic effects and the prevention of cardiovascular diseases. Despite these advantages, blueberries are only obtained fresh in certain seasons; therefore, the food and beverage industry transforms them into jelly, puree, or juice. However, the concentration process could help preserve the bioactive compounds of blueberry byproducts. Concentration technologies focus on the removal of excess water to increase the product stability and reduce storage and transportation costs by causing them to take up less space or as a pretreatment before dehydration. These technologies include evaporation, reverse osmosis, and freeze concentration, and each one has different effects on the efficiency, quality, and nutritional value of the final concentrates. However, freeze concentration and reverse osmosis produce a higher-final quality concentrate than evaporation due to the use of low temperatures, which prevents the loss of thermolabile components such as bioactive compounds. Therefore, this review summarizes the impact of concentration technologies on the bioactive compounds and health benefits of blueberry juice.
Collapse
Affiliation(s)
- Guisella Tobar-Bolaños
- Departmento de Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Nidia Casas-Forero
- Departmento de Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Patricio Orellana-Palma
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Guillermo Petzold
- Departmento de Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| |
Collapse
|
46
|
Immobilization of naringinase on asymmetric organic membranes: Application for debittering of grapefruit juice. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Zhang K, An X, Bai Y, Shen C, Jiang Y, Hu Y. Exploration of food preservatives as draw solutes in the forward osmosis process for juice concentration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Schmidt HDO, Rockett FC, Ebert G, Sartori GV, Rezzadori K, Rodrigues RC, Rios ADO, Manfroi V. Effect of enzymatic treatments and microfiltration on the physicochemical quality parameters of feijoa (
Acca sellowiana
) juice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Helena de Oliveira Schmidt
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| | - Fernanda Camboim Rockett
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| | - Giovana Ebert
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| | - Giliani Veloso Sartori
- Federal Institute of Education, Science and Technology of Santa Catarina Senadinho Road, s/n, Campus Urupema Urupema SC 88625‐000 Brazil
| | - Katia Rezzadori
- Department of Food Science and Technology Federal University of Santa Catarina (UFSC) Admar Gonzaga Avenue, 1346, Itacorubi Florianópolis SC 88034‐000 Brazil
| | - Rafael Costa Rodrigues
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| | - Alessandro de Oliveira Rios
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| | - Vitor Manfroi
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Bento Gonçalves Avenue, 9500, Prédio 43.212, Campus do Vale Porto Alegre RS 91501‐970 Brazil
| |
Collapse
|
49
|
Cacao Pod Husk Extract Phenolic Nanopowder-Impregnated Cellulose Acetate Matrix for Biofouling Control in Membranes. MEMBRANES 2021; 11:membranes11100748. [PMID: 34677514 PMCID: PMC8538598 DOI: 10.3390/membranes11100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
The ultrafiltration membrane process is widely used for fruit juice clarification, yet the occurring of fouling promotes a decline in process efficiency. To reduce the fouling potential in the membrane application in food processing, the use of natural phenolic compounds extracted from cocoa pod husk is investigated. The cocoa pod husk extract (CPHE) was prepared in phenolic nanoparticles form and added into the polymer solution at varying concentrations of 0.5 wt%, 0.75 wt%, and 1.0 wt%, respectively. The composite membrane was made of a cellulose acetate polymer using DMF (dimethylformamide) and DMAc (dimethylacetamide) solvents. The highest permeability of 2.34 L m−2 h−1 bar−1 was achieved by 1.0 wt% CPHE/CA prepared with the DMAc solvent. CPHE was found to reduce the amount of Escherichia coli attached to the membranes by 90.5% and 70.8% for membranes prepared with DMF and DMAc, respectively. It is concluded that CPHE can be used to control biofouling in the membrane for food applications.
Collapse
|
50
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|