1
|
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants (Basel) 2023; 13:29. [PMID: 38247454 PMCID: PMC10812495 DOI: 10.3390/antiox13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.
Collapse
Affiliation(s)
- Brian G. Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Frank Wilkinson
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| | - Niny Z. Rao
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| |
Collapse
|
2
|
Morais SL, Rede D, Ramalhosa MJ, Correia M, Santos M, Delerue-Matos C, Moreira MM, Soares C, Barroso MF. Assessment of the Antioxidant Capacity of Commercial Coffee Using Conventional Optical and Chromatographic Methods and an Innovative Electrochemical DNA-Based Biosensor. BIOSENSORS 2023; 13:840. [PMID: 37754074 PMCID: PMC10526474 DOI: 10.3390/bios13090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
As one of the most popular beverages in the world, coffee is a rich source of non-enzymatic bioactive compounds with antioxidant capacity. In this study, twelve commercial coffee beverages found in local Portuguese markets were assessed to determine their total phenolic and flavonoid contents, as well as their antioxidant capacity, by conventional optical procedures, namely, ferric reducing antioxidant power and DPPH-radical scavenging assay, and non-conventional procedures such as a homemade DNA-based biosensor against two reactive radicals: HO• and H2O2. The innovative DNA-based biosensor comprised an adenine-rich oligonucleotide adsorbed onto a carbon paste electrode. This method detects the different peak intensities generated by square-wave voltammetry based on the partial damage to the adenine layer adsorbed on the electrode surface by the free radicals in the presence/absence of antioxidants. The DNA-based biosensor against H2O2 presented a higher DNA layer protection compared with HO• in the presence of the reference gallic acid. Additionally, the phenolic profiles of the twelve coffee samples were assessed by HPLC-DAD, and the main contributors to the exhibited antioxidant capacity properties were caffeine, and chlorogenic, protocatechuic, neochlorogenic and gallic acids. The DNA-based sensor used provides reliable and fast measurements of antioxidant capacity, and is also cheap and easy to construct.
Collapse
Affiliation(s)
- Stephanie L. Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Maria João Ramalhosa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Manuela Correia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Marlene Santos
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde (CISA|ESS), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Manuela M. Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (S.L.M.); (D.R.); (M.J.R.); (M.C.); (C.D.-M.)
| |
Collapse
|
3
|
Wang J, Zhao D, Jiang G, Wu Y, Shen Y, Wang T. Bioinspired Tannic Acid-Modified Coffee Grounds as Sustainable Fillers: Effect on the Properties of Polybutylene Adipate Terephthalate Composites. Polymers (Basel) 2023; 15:2769. [PMID: 37447415 DOI: 10.3390/polym15132769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Preparing composites from gricultural waste with biodegradable polymers is one of the strategies used to ensure the long-term sustainability of such materials. However, due to the differences in their chemical properties, biomass fillers often exhibit poor interfacial adhesion with polymer matrices. Inspired by mussel foot silk, this work focused on the surface modification of coffee grounds (CGs) using a combination of tannic acid (TA) and alkali treatment. CGs were used as a biomass filler to prepare polybutylene adipate terephthalate (PBAT)/CG composites. The modification of CGs was demonstrated by Fourier transform infrared spectroscopy (FTIR), the water contact angle, and scanning electron microscopy (SEM). The effect of CGs on the rheological, tensile, and thermal properties of the PBAT/CG composites was investigated. The results showed that the addition of CGs increased the complex viscosity, and the surface modification enhanced the matrix-filler adhesion. Compared with unmodified CG composites, the tensile strength and the elongation at break of the composite with TA-modified alkali-treated CGs increased by 47.0% and 53.6%, respectively. Although the addition of CGs slightly decreased the thermal stability of PBAT composites, this did not affect the melting processing of PBAT, which often occurs under 200 °C. This approach could provide a novel method for effectively using biomass waste, such as coffee grounds, as fillers for the preparation of polymer composites.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guodong Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong Wu
- Nanjing Wurui Biodegradable New Material Research Institute Co., Ltd., Nanjing 211816, China
| | - Yucai Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingwei Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Andrade C, Perestrelo R, Câmara JS. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022; 27:molecules27217504. [PMID: 36364330 PMCID: PMC9654447 DOI: 10.3390/molecules27217504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Coffee is one of the world’s most popular beverages, and its consumption generates copious amounts of waste. The most relevant by-product of the coffee industry is the spent coffee grounds, with 6 million tons being produced worldwide per year. Although generally treated as waste, spent coffee grounds are a rich source of several bioactive compounds with applications in diverse industrial fields. The present work aimed at the analysis of spent coffee grounds from different geographical origins (Guatemala, Colombia, Brazil, Timor, and Ethiopia) for the identification of bioactive compounds with industrial interest. For this purpose, the identification and quantification of the bioactive compounds responsible for the antioxidant activity attributed to the spent coffee grounds were attempted using miniaturized solid-phase extraction (µ-SPEed), combined with ultrahigh-performance liquid chromatography with photodiode array detection (UHPLC-PDA). After validation of the µ-SPEed/UHPLC-PDA method, this allowed us to conclude that caffeine and 5-caffeoylquinic acid (5-CQA) are the most abundant bioactive compounds in all samples studied. The total phenolic content (TPC) and antioxidant activity are highest in Brazilian samples. The results obtained show that spent coffee grounds are a rich source of bioactive compounds, supporting its bioprospection based on the circular economy concept closing the loop of the coffee value chain, toward the valorization of coffee by-products.
Collapse
Affiliation(s)
- Carolina Andrade
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291-705-112
| |
Collapse
|
5
|
Yust BG, Rao NZ, Schwarzmann ET, Peoples MH. Quantification of Spent Coffee Ground Extracts by Roast and Brew Method, and Their Utility in a Green Synthesis of Gold and Silver Nanoparticles. Molecules 2022; 27:molecules27165124. [PMID: 36014362 PMCID: PMC9413573 DOI: 10.3390/molecules27165124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology has become increasingly important in modern society, and nanoparticles are routinely used in many areas of technology, industry, and commercial products. Many species of nanoparticle (NP) are typically synthesized using toxic or hazardous chemicals, making these methods less environmentally friendly. Consequently, there has been growing interest in green synthesis methods, which avoid unnecessary exposure to toxic chemicals and reduce harmful waste. Synthesis methods which utilize food waste products are particularly attractive because they add value and a secondary use for material which would otherwise be disposed of. Here, we show that spent coffee grounds (SCGs) that have already been used once in coffee brewing can be easily used to synthesize gold and silver NPs. SCGs derived from medium and dark roasts of the same bean source were acquired after brewing coffee by hot brew, cold brew, and espresso techniques. The total antioxidant activity (TAC) and total caffeoylquinic acid (CQA) of the aqueous SCG extracts were investigated, showing that hot brew SCGs had the highest CQA and TAC levels, while espresso SCGs had the lowest. SCG extract proved effective as a reducing agent in synthesizing gold and silver NPs regardless of roast or initial brew method.
Collapse
Affiliation(s)
- Brian G. Yust
- Department of Physics, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
- Correspondence: ; Tel.: +1-(215)-951-2879
| | - Niny Z. Rao
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
| | - Evan T. Schwarzmann
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
| | - Madisyn H. Peoples
- Department of Chemistry and Biochemistry, Thomas Jefferson University, East Falls Campus, Philadelphia, PA 19144, USA
- College of Computing & Informatics, Drexel University, 3675 Market St., Philadelphia, PA 19144, USA
| |
Collapse
|
6
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
7
|
Baragaño D, Forján R, Álvarez N, Gallego JR, González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128748. [PMID: 35405586 DOI: 10.1016/j.jhazmat.2022.128748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - R Forján
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - N Álvarez
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Bondam AF, Diolinda da Silveira D, Pozzada dos Santos J, Hoffmann JF. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
The Valorization of Spent Coffee Ground Extract as a Prospective Insecticidal Agent against Some Main Key Pests of Phaseolus vulgaris in the Laboratory and Field. PLANTS 2022; 11:plants11091124. [PMID: 35567125 PMCID: PMC9103486 DOI: 10.3390/plants11091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The exploitation of massive amounts of food and agro-waste represents a severe social, economic, and environmental issue. Under the growing demand for food products that are free of toxic synthetic insecticides, a methanolic extract of spent coffee grounds (SCGs), which represent the main byproduct of coffee production, was applied in the current study as a bioinsecticide against the main pests of the green bean: Spodoptera littoralis, Agrotis ipsilon, Bemisia tabaci, Empoasca fabae, and Aphis craccivora. A deterrent assay, contact bioassay, and lethal concentration analysis were performed to reveal the repellent, antifeedant, and oviposition deterrent effects. Parallel to the above-mentioned bioassays, the phytochemical composition of the methanolic SCG extract was investigated via a high-performance liquid chromatography (HPLC) analysis. Fourteen phenolic acids and five flavonoids, in addition to caffeine (alkaloid), were identified in the extract. Cinnamic, rosmarinic, and gallic acids were the predominant phenolics, while apigenin-7-glucoside was the main flavonoid, followed by naringin, catechin, and epicatechin. The extract of SCGs showed an insecticidal effect, with a mortality between 27.5 and 76% compared to the control (7.4%) and based on the concentration of the extract used. In the same trend, the oviposition efficiency revealed different batches of laid eggs (0.67, 2.33, 7.33, and 8.67 batches/jar) for 100, 50, and 25% of the SCG extract and the control. Finally, the major components of the SCG extract were docked into the insecticide acetylcholinesterase enzyme to explore their potential for inhibition, where apigenin-7-glucoside showed a higher binding affinity, followed by catechin, compared to the control (lannate). The obtained findings could be a starting point for developing novel bioinsecticides from SCGs.
Collapse
|
10
|
Chongsrimsirisakhol O, Pirak T. Total polyphenol content and antioxidant properties of cold brew coffee extracts as affected by ultrasound treatment and their application in low fat pork sausage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2056197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Tantawan Pirak
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
11
|
Metabolomics Combined with Sensory Analysis Reveals the Impact of Different Extraction Methods on Coffee Beverages from Coffea arabica and Coffea canephora var. Robusta. Foods 2022; 11:foods11060807. [PMID: 35327231 PMCID: PMC8953325 DOI: 10.3390/foods11060807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
An untargeted metabolomics approach combined with sensory analysis was used to depict the impact of different traditional Italian extraction methods (i.e., Espresso, Neapolitan, Moka) along with Filter, on Coffea arabica and Coffea canephora var. robusta beverages. To this aim, polyphenols, Maillard reaction products, and coffee metabolites were screened by high resolution mass spectrometry and elaborated through both unsupervised and supervised multivariate statistical approaches. Multivariate statistics showed a distinctive chemical profile for Espresso preparation, while Moka and Neapolitan were very similar. The orthogonal projection to latent structures and discriminant analysis allowed the identification of 86 compounds showing a high VIP discrimination score (i.e., > 0.8). The 2,5-dimethyl-3-(methyldithio)-furan was a marker for the Filter preparation, while 1,2-disinapoylgentiobiose characterized both Filter and Neapolitan extractions. Caffeine (known to be a bitter compound) accumulated highly in Filter vs. Espresso, although at the sensory profile, bitterness was more perceived in Espresso. Vegetal aroma carried by pyrazines, pyridines, and phenolic acids were markers of Espresso, with Robusta showing higher values than Arabica. Notwithstanding, our findings showed that the extraction process played a hierarchically higher role in driving the chemical composition of the beverages when compared to coffee species.
Collapse
|
12
|
Oliveira Batista J, Car Cordeiro C, Klososki SJ, Mongruel Eleutério Dos Santos C, Leão GMC, Pimentel TC, Rosset M. Spent Coffee Grounds Improve the Nutritional Value and Technological Properties of Gluten-free Cookies. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2026266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | | | | | | | - Michele Rosset
- Campus Colombo, Federal Institute of Paraná, Colombo, Brazil
| |
Collapse
|
13
|
Antibacterial, Antiradical and Antiproliferative Potential of Green, Roasted, and Spent Coffee Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytochemical compositions of green coffee beans (GB), roasted coffee (RC), and the solid residue known as spent coffee grounds (SCG) have been associated with beneficial physiological effects. The objective of this study was to analyze the total phenolic compounds, antiradical scavenging ability, antibacterial activity, and antiproliferative activity on cancer cells of aqueous and ethanolic extracts of GB, RC, and SCG samples. The total phenolic content was quantified by Folin–Ciocalteu assay, while the antiradical activity was evaluated by ABTS●+ and DPPH radical assays, antibacterial activity was determined using the microtiter broth dilution method, and antiproliferative activity was evaluated by MTT assay in lung carcinoma cells (A549) and cervical cancer cells (C33A); furthermore, apoptosis and cell cycle arrest were evaluated by flow cytometry. Ethanolic extracts of RC and SCG showed the highest content of total phenols. The SCG ethanolic extract exhibited the lowest inhibitory capacity 50 (IC50) values for free radicals. The SCG extracts also had the lowest MIC values in bacteria. In antiproliferative assays, SCG extracts exhibited a significant decrease in viability in both cell lines, as well as increased apoptotic cells and promoted cell cycle arrest. The higher content of total phenols and antiradical activity of SCG ethanolic extracts was related to their antiproliferative activity in cancer cells, as well as their antibacterial activity against clinical isolates; therefore, the utilization of SCG adds value to an abundant and inexpensive residue.
Collapse
|
14
|
CHAVEZ SG, MENDOZA MM, CAETANO AC. Antioxidants, phenols, caffeine content and volatile compounds in coffee beverages obtained by different methods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Silva MFD, Pettinato M, Casazza AA, Maciel MIS, Perego P. Design and evaluation of non-conventional extraction for bioactive compounds recovery from spent coffee (Coffea arabica L.) grounds. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. INDUSTRIAL CROPS AND PRODUCTS 2022; 175:114265. [PMID: 34815622 PMCID: PMC8601035 DOI: 10.1016/j.indcrop.2021.114265] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 06/01/2023]
Abstract
Tea and coffee contain numerous polyphenolic compounds that exhibit health-promoting properties for humans, including antioxidant and neuroprotective properties, and can also take part in the treatment of covid-19 and improve fertility. This review, presents the activity of polyphenols found in different types of tea and coffee and describes the effects of tea fermentation and coffee roasting on their polyphenol composition and antioxidant properties. Polyphenol oxidase activity is reduced in the fermentation process; therefore black tea contains significantly less polyphenolic compounds compared to green and white tea. Epigallocatechin-3-gallate - a polyphenol from tea - effectively has been shown to inhibit the activity of SARS-CoV-2 as it blocked binding of coronavirus 2 to human angiotensin converting enzyme 2, decreased the expression of inflammatory factors in the blood, including tumor necrosis factor-α and interleukin-6, and significantly increased the overall fertilization efficiency in animals. Coffee roasting process influences both the content of polyphenols and the oxidative activity. The lowest levels of active compounds such as caffeine, chlorogenic acid and coffee acids are identified in roasted coffee beans. On the other hand, light coffee and green coffee show the strongest cytotoxic potential and antioxidant properties, and thus the greatest ability to decrease apoptosis by stopping the cell cycle in the S phase. Proteins, such as components of milk, can strongly bind/interact with phenolic compounds (especially, the CGAs) contain in coffee, which may explain the negative influence of milk on its antioxidant properties. Coffee polyphenols have also antiproliferative and antiesterase activities, which may be important in prevention of cancer and neurodegenerative disorders, respectively. In this review, biological properties of tea and coffee polyphenols, observed mainly in in vitro studies have been described. Based on these findings, future directions of the research works on these compounds have been suggested.
Collapse
Affiliation(s)
- Przemysław LIczbiński
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bożena Bukowska
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Vu DC, Vu QT, Huynh L, Lin CH, Alvarez S, Vo XT, Nguyen THD. Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1977657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Danh C. Vu
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Quyen T. Vu
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Long Huynh
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Chung-Ho Lin
- Center for Agroforestry, School of Natural Resources, University of Missouri, Columbia, Missouri, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States
| | - Xuyen T. Vo
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Trang H. D. Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Spent Coffee Grounds’ Valorization towards the Recovery of Caffeine and Chlorogenic Acid: A Response Surface Methodology Approach. SUSTAINABILITY 2021. [DOI: 10.3390/su13168818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amount of spent coffee grounds (SCGs) created, represents an environmental challenge worldwide. In this context, the aim of the present study was to exploit the potential of SCGs as a source of bioactive compounds that can be utilized in high value-added products. Thus, a cost-effective and environmentally friendly extraction technique was developed to ensure extracts with high total phenolic content and antioxidant activity, as well as significant amounts of caffeine and chlorogenic acid. Response surface methodology was implemented to evaluate the effects of the main extraction parameters (i.e., time, temperature, and ethanol-to-water ratio) and their interactions on the defined responses. The ethanol ratio was found to be the most significant variable. Then, a set of optimum values was determined (i.e., 7 min, 75 °C, and ethanol:water ratio 5:95), where the predicted values for responses were found to be 5.65% for the yield (Y1), 152.68 mg gallic acid equivalents per L for total phenolic content (Y2), 0.797 μmol Trolox equivalent per mL for the antioxidant activity (Y3), 30.5 ppm for caffeine concentration (Y4), and 17.4 ppm for chlorogenic acid concentration (Y5). Furthermore, the corresponding high experimental values from the validation experiment fitted well to these predictions, clearly clarifying the high potential of SCG extracts for use in high value-added applications.
Collapse
|
19
|
Mateus MPDB, Tavanti RFR, Tavanti TR, Santos EF, Jalal A, Reis ARD. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111772. [PMID: 33316726 DOI: 10.1016/j.ecoenv.2020.111772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 05/19/2023]
Abstract
There are conclusive evidences of selenium (Se) deficiency in Brazilian soils and foods. Brazil is the largest producer and consumer of coffee worldwide, which favors agronomic biofortification of its coffee. This study aimed to evaluate effects of foliar application of three formulations and six rates of Se on antioxidant metabolism, agronomic biofortification and yield of coffee beans. Seven Se concentrations (0, 10, 20, 40, 80, 100 and 160 mg L-1) were applied from three formulations of Se (sodium selenate, nano-Se 1500, and nano-Se 5000). Selenium application up to 40 mg L-1 increased the concentration of photosynthetic pigments such as chlorophylls, pheophytins and carotenoids in coffee leaves. Foliar application of Se ranging from 20 to 80 mg L-1 decreased lipid peroxidation and concentration of hydrogen peroxide, but increased superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities in coffee leaves. These results indicated that foliar Se application stimulates antioxidative metabolism to mitigate reactive oxygen species. Foliar application of 20 mg Se L-1 of sodium selenate increased coffee yield by 38%, and 160 mg Se L-1 of nano-Se 5000 increased dramatically coffee yield by 42%. Selenium concentration in grains ranged from 0.116 to 4.47 mg kg-1 (sodium selenate), 4.84 mg kg-1 (nano-Se 1500) and 5.82 mg kg-1 (nano-Se 5000). The results suggest the beneficial effect of Se on the increment of photosynthetic pigments, antioxidative metabolism, increased coffee yield and nutritional quality of grains. The recommended foliar Se application in this study can mitigate abiotic stressors such as high temperatures resulting in higher yield of coffee plants.
Collapse
Affiliation(s)
| | | | | | - Elcio Ferreira Santos
- Federal Institute of Mato Grosso do Sul (IFMS), MS - 473, km 23, Nova Andradina 75.750-000, MS, Brazil
| | - Arshad Jalal
- São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã 17602-496, SP, Brazil.
| |
Collapse
|
20
|
Sun X, Jia P, Bu T, Zhang H, Dong M, Wang J, Wang X, Zhe T, Liu Y, Wang L. Conversional fluorescent kiwi peel phenolic extracts: Sensing of Hg 2+ and Cu 2+, imaging of HeLa cells and their antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118857. [PMID: 32877850 DOI: 10.1016/j.saa.2020.118857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The valorization, resource generation and the functional characteristic exploration of domestic waste still face enormous challenges. Kiwi peels, a common kind of fruit waste, contain a large amount of phenolic substances, including polyphenols, flavonoids, etc., which can be explored and reused in food and biomedical fields. By ultrasonic assisted extraction technology, we obtained conversional fluorescence kiwi peel phenolic extracts (PE) which possessed gradient magenta fluorescence relying on the content of ethanol in the solution, as well as strong antioxidant activity. Besides, metal ions sensing assay revealed that PE can specifically sense Hg2+ and Cu2+ (LOD: 1.16 and 0.17 μM, respectively) accompanied with a fluorescence conversion from magenta fluorescence to blue. Moreover, employing the prepared PE as fluorescent probes, imaging of HeLa cells can be easily achieved with satisfactory resolution. Additionally, PE was incorporated into the gelatin matrix, successfully fabricating a green, edible degradable film with excellent antioxidant activity.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
21
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
de Abreu Pinheiro F, Ferreira Elias L, de Jesus Filho M, Uliana Modolo M, Gomes Rocha JDC, Fumiere Lemos M, Scherer R, Soares Cardoso W. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food Chem 2020; 336:127701. [PMID: 32781354 DOI: 10.1016/j.foodchem.2020.127701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
This study presents innovative research for comparison of the effect of the different dehydration techniques and methods of extraction on the antioxidant potential and bioactive compounds of Conilon and Arabica coffee flowers. The compounds were analyzed by high performance liquid chromatography and the antioxidant capacity evaluated by the 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide assays. Among the compounds evaluated, trigonelline, gallic acid, chlorogenic acid, and caffeine were identified, with trigonelline and caffeine being those with the highest concentration. The investigated factors significantly influenced the profile of the bioactive compounds identified, and the antioxidant capacity. The 92 °C infusion of freeze-dried Conilon coffee flowers, in general, showed greater antioxidant capacity by ABTS and DPPH assays, as well as total phenolic content. Lyophilization had a positive influence on maintaining the content of phenolic compounds and antioxidant capacity of the samples. Coffee flowers proved to be a potential raw material for making tea-like drinks.
Collapse
Affiliation(s)
| | - Luzia Ferreira Elias
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Milton de Jesus Filho
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil; Department of Food Science, School of Food Engineering, State University of Campinas, São Paulo, Brazil
| | - Mariana Uliana Modolo
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | | | - Mayara Fumiere Lemos
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| | - Wilton Soares Cardoso
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| |
Collapse
|
23
|
Vilas-Boas AA, Oliveira A, Jesus D, Rodrigues C, Figueira C, Gomes A, Pintado M. Chlorogenic acids composition and the impact of in vitro gastrointestinal digestion on espresso coffee from single-dose capsule. Food Res Int 2020; 134:109223. [DOI: 10.1016/j.foodres.2020.109223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
|