1
|
Zhao Y, Zhang M, Bhandari B, Li C. Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: research progress, applications, and trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39895375 DOI: 10.1080/10408398.2025.2457420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Food 3D printing brings food processing technology into the digital age. This is a vast field that can provide entertainment experience, personalized food and specific nutritional needs. However, the limited availability of suitable food raw materials has restricted the extensive use of 3D food printing processing technique. The search for novel nutritious and healthy food materials that meet the demand for 3D food printing processing technology is core of the sustainable development of this emerging technology. The printing mechanism, precise nutrition, future outlooks and challenges of 3D food printing technology application in hybrid plant and animal food materials are also analyzed.The results demonstrate that selecting suitable animal and plant materials and mixing them into 3D food printing ingredients without adding food additives can result in printable inks, which can also improve the nutritive value and eating quality of 3D food printed products. Sustainability of novel food materials such as animal cell culture meat and microbial protein mixed with conventional food materials to realize 3D printed food can be a potential research direction. Some other issues should also be considered in future research, such as evaluation of the nutritional efficacy of the product, product stability, shelf life, production efficiency and convenience of process operation.
Collapse
Affiliation(s)
- Yonggan Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Han N, Baek S, Alauddin AAD, Jo H, Ma Y, Lee S, Bae JE. Optimizing Tilapia-based surimi ink for 3D printing: Enhancing physicochemical properties and printability with Ulva powder. Food Chem 2025; 464:141759. [PMID: 39471558 DOI: 10.1016/j.foodchem.2024.141759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The elderly face malnutrition and dysphagia. 3D printing with high-protein surimi offers an innovative way to customize nutrition and texture of foods for the elderly. This study explored whether tilapia-based surimi ink (TBSI) with Ulva powder (UP, 0-3 %) could improve physicochemical properties and printability as an alternative to traditional pollock-based surimi ink (PBSI). TBSI showed a more uniform microstructure, greater water-holding capacity (WHC), and better printability with consistent extrusion than PBSI. Adding UP to TBSI promoted cross-linking and enhanced microstructure and WHC. Rheological analysis revealed that all inks exhibited shear-thinning behavior. UP increased complex viscosity, storage modulus, and loss modulus. Notably, UP above 2 % improved protein matrix uniformity, structural integrity, and printability, as confirmed by FT-IR and 3D printing tests. The hardness of steamed TBSI fish cake increased when infill density increased. This study highlights the potential of TBSI with UP for 3D printing to prepare personalized and elderly-friendly food.
Collapse
Affiliation(s)
- NaRa Han
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - SuHyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Afif Aziz Daffa Alauddin
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - HaRan Jo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266000, China
| | - Sanggil Lee
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Ji-Eun Bae
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
4
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
5
|
Ma S, Zhang M, Wang X, Yang Y, He L, Deng J, Jiang H. Effect of plasma-activated water on the quality of wheat starch gel-forming 3D printed samples. Int J Biol Macromol 2024; 274:133552. [PMID: 39025747 DOI: 10.1016/j.ijbiomac.2024.133552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
In this study, a new method for preparing gels suitable for 3D printing of food structures using wheat starch and plasma activated water (PAW) is presented. The investigation focused on the effect of PAW on starch pasting and the final 3D printed product. It was found that the use of PAW for 15 min in the preparation of wheat starch gels optimized carrier stability and improved height retention in the printed constructs, showing significant shape retention even after prolonged storage. This durability can be attributed to the hindrance of polymerization between starch molecules and the promotion of intermolecular starch polymerization when reactive groups and ions are integrated into the starch structure. The incorporation of PAW with soluble reactive groups, ions and acidity not only accelerates the breakdown of the starch molecules but also facilitates additional hydrogen bonding within the double helix, which strengthens the structure of the gel. This interaction accelerates the retrogradation of the starch, thereby enhancing its overall stability. This study provides a new green approach to modify the 3D printing properties of starch gels.
Collapse
Affiliation(s)
- Shu Ma
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Meng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xinxin Wang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yang Yang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Ling He
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jishuang Deng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
6
|
Li J, Yue X, Zhang X, Chen B, Han Y, Zhao J, Bai Y. Effect of deacetylated konjac glucomannan on the 3D printing properties of minced pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5274-5283. [PMID: 38334358 DOI: 10.1002/jsfa.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The influences of deacetylated konjac glucomannan (DKGM) at different condition levels (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) on the 3D printing feasibility, printing properties, and the final gel characteristics of minced pork were investigated. RESULTS As the DKGM content increased, the printing accuracy and stability initially increased and then declined, and the printing stability and accuracy increased to their highest levels (98.16% and 98.85%) with a 1.5% addition of DKGM. Furthermore, the addition of DKGM significantly enhanced the texture of 3D-printed meat after heat treatments. When the DKGM content reached 1.5%, the hardness and springiness were 1.19 and 1.06 times higher than those of the control group. The results of low-field nuclear magnetic resonance and Raman spectra revealed that DKGM enhanced the amount of bound water in 3D-printed meat and encouraged changes in protein structure. After the addition of DKGM at 1.5%, the contents of bound water and β-sheets were 7.67% and 12.89% higher than those of the control group, respectively, facilitating the development of a better gel network of minced meat during heating. CONCLUSION The results indicate that a concentration of 1.5% DKGM is the ideal setting for obtaining the desired rheological properties and textural characteristics (printability) of 3D-printed minced meat products compared to other samples. In addition, the results showed that the addition of DKGM at 1.5% promotes the transition from α-helix to β-folding of proteins during heating, which facilitates the formation of gels. The results of the study contribute to the application potential of minced meat in the field of 3D food printing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xuyue Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Ying Han
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd, Luohe, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| |
Collapse
|
7
|
Jiang Q, Wei X, Liu Q, Zhang T, Chen Q, Yu X, Jiang H. Rheo-fermentation properties of bread dough with different gluten contents processed by 3D printing. Food Chem 2024; 433:137318. [PMID: 37678121 DOI: 10.1016/j.foodchem.2023.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The rheological properties of dough closely correlate to a dough's ability to be three-dimensionally (3D) printed, but only weakly characterize its fermentation and baking process. This study aimed to use rheo-fermentation properties to predict rheological properties of dough, thereby obtaining indirect information on both 3D printing properties and post-processing characteristics. The 3D printing behavior and baking quality of the dough were measured. A gluten content of 13% was found to be the most suitable for 3D printing and exhibited desirable performance during fermentation and baking. Pearson correlation analysis revealed a strong correlation between rheological properties and rheo-fermentation properties. Using partial least squares regression-based models, the coefficients of determination of the prediction for rheological parameters (G', G″, η*) were 0.920, 0.854 and 0.863, respectively, with corresponding residual prediction deviation values of 3.063, 3.774, and 4.773. These findings suggest that 3D printing of bread dough products can be easily and successfully accomplished.
Collapse
Affiliation(s)
- Qian Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xing Wei
- Shaanxi Rural Science and Technology Development Center, Xi'an 710000, China
| | - Qianchen Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Teng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Qin Chen
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
8
|
Zhai Y, Peng W, Luo W, Wu J, Liu Y, Wang F, Li X, Yu J, Wang S. Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi. Food Chem 2024; 431:137114. [PMID: 37595381 DOI: 10.1016/j.foodchem.2023.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
This study investigated the cryoprotective mechanism of ultrafiltration membrane-separated fractions (>10 kDa, UF-1; 3-10 kDa, UF-2; and <3 kDa, UF-3) derived from silver carp hydrolysates on frozen surimi. The surimi gel incorporating UF-3 exhibited a compact, continuous structure with uniform pores, even after undergoing six freeze-thaw (F-T) cycle, with the minimal reduction in entrapped water (from 95.1 % to 91.1 %) and least increase in free water (from 4.5 % to 6.6 %) as revealed by SEM and LF-NMR analysis. Through molecular docking analysis, three major peptides in UF-3 were identified to form robust interactions with the myosin head pocket, facilitated by hydrogen bonds, electrostatic forces, and hydrophobic interactions. Furthermore, molecular dynamics simulations demonstrated that the three peptides effectively prevented myosin from unfolding and aggregating by tightly binding to basic amino acids (Arg, Lys) and hydrophobic amino acids (Phe, Leu, Ile, Met, and Val) residues in the myosin head pocket, primarily governed by electrostatic energies (-156.95, -321.38, and -267.53 kcal/mol, respectively) and van der Waals energies (-395.05, -347.46, and -319.16 kcal/mol, respectively). Notably, the key action site was identified as Lys599 on myosin. The hydrophilic and hydrophobic hotspot residues of the peptides worked synergistically to stabilize the myosin structure in frozen surimi.
Collapse
Affiliation(s)
- Yueying Zhai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Wei Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China.
| |
Collapse
|
9
|
Farshi P, Amamcharla J, Getty K, Smith JS. Effect of Immersion Time of Chicken Breast in Potato Starch Coating Containing Lysine on PhIP Levels. Foods 2024; 13:222. [PMID: 38254522 PMCID: PMC10814811 DOI: 10.3390/foods13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
This study investigated the effect of immersion time of chicken breasts in potato starch (PS) coating containing amino acids (AAs) on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) and to evaluate a possible mechanism to inhibit the formation of PhIP in chicken breasts during frying. The chicken breasts with standardized dimensions were dipped in the potato starch (PS) coating solution containing 0.25% w/v lysine (Lys) for different times (15 min, 30 min, 1 h, 3 h, and 6 h). After drying the coating on the chickens, samples were fried at 195 °C for 7.5 min on each side. Results showed that the immersion time does not significantly decrease (p < 0.05) the PhIP level, suggesting that 15 min immersion time is enough for PhIP reduction compared to the control chicken samples (without coating). Phenylacetaldehyde (PheAce) was increased in chicken breast coated with PS-0.25% Lys after frying, suggesting that there should be another pathway to prevent the formation of PhIP by the addition of PS-0.25% Lys. Volatile compound analysis also confirmed this and showed increases in many aroma compounds in the coated chicken. Moreover, no significant differences (p < 0.05) were shown between the cooking loss percentage, color parameters, texture profile, and tenderness of chicken with the PS-0.25% coating and chicken without coating.
Collapse
Affiliation(s)
| | | | | | - J. Scott Smith
- Food Science Institute, Kansas State University, Manhattan, KS 66506, USA; (P.F.); (J.A.); (K.G.)
| |
Collapse
|
10
|
Kim J, Chang YH, Lee Y. Effects of NaCl on the Physical Properties of Cornstarch-Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System. Foods 2023; 12:4390. [PMID: 38137196 PMCID: PMC10742538 DOI: 10.3390/foods12244390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigated the impact of NaCl on the physical properties of cornstarch-methyl cellulose (CS-MC) mixtures and their gels prepared with rice flour in a model system. Opposite trends were observed, showing that NaCl led to decreased viscosity of the CS-MC mixtures (liquid-based), whereas a more stable and robust structure was observed for the rice-flour-added gels (solid-based) with the addition of NaCl. The interference of NaCl with the CS-MS blend's ability to form a stable gel network resulted in a thinner consistency, as the molecules of the CS-MS blend may not bind together as effectively. On the contrary, NaCl showed the potential to enhance the protein network within CS-MC gels prepared with rice flour, thereby contributing to an augmentation in the stability or firmness of the cooked gels. Careful utilization of NaCl to optimize the physical properties of the CS-MC blends, as well as the gels based on rice flour, should be performed.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngseung Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
11
|
Zhong L, Lewis JR, Sim M, Bondonno CP, Wahlqvist ML, Mugera A, Purchase S, Siddique KHM, Considine MJ, Johnson SK, Devine A, Hodgson JM. Three-dimensional food printing: its readiness for a food and nutrition insecure world. Proc Nutr Soc 2023; 82:468-477. [PMID: 37288524 DOI: 10.1017/s0029665123003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations.
Collapse
Affiliation(s)
- Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Mark L Wahlqvist
- Monash Asia Institute, Monash University, Melbourne, VIC, Australia
- School of Public Health, National Defence Medical Centre, Taipei, Taiwan, Republic of China
| | - Amin Mugera
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sharon Purchase
- Business School, University of Western Australia, Crawley, WA, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | | | - Amanda Devine
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Wang C, Ma M, Wei Y, Zhao Y, Lei Y, Zhang J. Effects of CaCl 2 on 3D Printing Quality of Low-Salt Surimi Gel. Foods 2023; 12:foods12112152. [PMID: 37297396 DOI: 10.3390/foods12112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In order to develop low-salt and healthy surimi products, we limited the amount of NaCl to 0.5 g/100 g in this work and studied the effect of CaCl2 (0, 0.5, 1.0, 1.5, and 2.0 g/100 g) on the 3D printing quality of low-salt surimi gel. The results of rheology and the 3D printing showed that the surimi gel with 1.5 g/100 g of CaCl2 added could squeeze smoothly from the nozzle and had good self-support and stability. The results of the chemical structure, chemical interaction, water distribution, and microstructure showed that adding 1.5 g/100 g of CaCl2 could enhance the water-holding capacity and mechanical strength (the gel strength, hardness, springiness, etc.) by forming an orderly and uniform three-dimensional network structure, which limited the mobility of the water and promoted the formation of hydrogen bonds. In this study, we successfully replaced part of the salt in surimi with CaCl2 and obtained a low-salt 3D product with good printing performance and sensory properties, which could provide theoretical support for the development of healthy and nutritious surimi products.
Collapse
Affiliation(s)
- Chaoye Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| |
Collapse
|
13
|
Guo Z, Chen Z, Meng Z. Bigels constructed from hybrid gelator systems: bulk phase-interface stability and 3D printing. Food Funct 2023. [PMID: 37161523 DOI: 10.1039/d3fo00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, edible bigels with different ratios of beeswax-based oleogel to gellan gum-based hydrogel were developed and characterized. Gellan gum formed a 3D network in water through hydrogen bonding. Beeswax formed a crystalline network in the oil phase, which prevented the flow of oil and formed an oleogel. The position of the droplets is fixed by the crystallization of glycerol monostearate (GMS) at the interface. Bigels with different oleogel contents presented different types of O/W (oleogel content was less than 62%), semi-bicontinuous (oleogel content was 62-68%), and W/O bigels (oleogel content was more than 70%), respectively. Rheological experiments showed bigels had a shear thinning ability, which was suitable for extrusion 3D printing. Then the applicability of 3D printing was studied and it was found that the self-supporting ability of bigels became stronger with the increase of oleogel content. Functional pigments were incorporated into the bigel inks, making the 3D printing product nutrient-rich and color customizable. These results would favor guiding the preparation of bigels with adjusted physical properties and delicate structures for 3D food printing to satisfy the personal desire of consumers.
Collapse
Affiliation(s)
- Zhixiu Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Zhujian Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Xu J, Fan Y, Chen Q, Sun F, Li M, Kong B, Xia X. Effects of κ-carrageenan gum on 3D printability and rheological properties of pork pastes. Meat Sci 2023; 197:109078. [PMID: 36549078 DOI: 10.1016/j.meatsci.2022.109078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The effects of κ-carrageenan gum (KG) on the 3D printability and rheological properties of pork pastes were investigated in this study. There were five groups with different levels of KG (0, 2, 4, 6, and 8 g/kg) named as KG-0, KG-2, KG-4, KG-6, and KG-8, respectively. The addition of KG increased the yield stress, viscosity, shear stress, recovery percentage, storage modulus, loss modulus, and initial and average flow forces (P < 0.05). The results of low-field nuclear magnetic resonance analysis revealed that addition of KG reduced T21 and T22 (P < 0.05). The best printing parameters were obtained by accuracy and stability results: printing filling percent, 90%; printing speed, 35 mm⋅s-1; layer height, 2 mm; nozzle diameter, 1.55 mm, and KG addition level, 6 g/kg. KG addition improved the hardness, springiness, chewiness, cohesiveness, adhesiveness, and density, respectively (P < 0.05). The results suggested that KG addition improved the rheological properties and 3D printability of the pork pastes.
Collapse
Affiliation(s)
- Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Min Li
- Delisi Group Co. LTD, Weifang 262200, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Integrated design of micro-fibrous food with multi-materials fabricated by uniaxial 3D printing. Food Res Int 2023; 165:112529. [PMID: 36869529 DOI: 10.1016/j.foodres.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Owing to the interest in sustainable foods, a new approach known as 3D food printing is being employed to make fibrous foods for meat and fish substitutes. In this study, we developed a filament structure with a multi-material ink comprising fish surimi-based ink (SI) and plant-based ink (PI), using single-nozzle printing and steaming. PI and an SI + PI mix collapsed after printing owing to their low shear modulus, although both PI and SI showed gel-like rheological behaviors. However, unlike the control, the objects printed with two and four columns per filament remained stable and fiberized after steaming. Each SI and PI sample gelatinized irreversibly at approximately 50 °C. The different rheological values of these inks after cooling resulted in relatively strong (PI) and weak (SI) fibers, which constructed a filament matrix. A cutting test demonstrated that the transverse strength of the fibrous structure of the printed objects was higher than the longitudinal strength, in contrast to that of the control. The degree of texturization increased with the fiber thickness based on the column number or nozzle size. Thus, we successfully designed a fibrous system using printing and post-processing and substantially broadened the application opportunities for creating fibril matrices for sustainable food analogs.
Collapse
|
16
|
The Relationship between Penetration, Tension, and Torsion for the Fracture of Surimi Gels: Application of Digital Image Correlation (DIC). Processes (Basel) 2023. [DOI: 10.3390/pr11010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A standardized method to evaluate the material properties of surimi gels has to be updated because of the lack of accuracy and the repeatability of data obtained from conventional ways. To investigate the relationships between the different texture measurement methods used in surimi gels, 250 batches of different surimi gels were used. The textural properties of surimi gels made with or without whey protein concentrate (SG-WP), potato starch (SG-PS), or dried egg white (SG-EW) were measured under torsion, tensile, and penetration tests. The correlation between the textural properties related to the deformation and hardness of surimi gels without any added ingredients (SG) was linear (R2 > 0.85). However, the R2 values of the shear strain and tensile strain of SG-WP and SG-EW were significantly lower than that of SG. The strain distributions of surimi gels with and without added ingredients were estimated by digital image correlation (DIC) analysis. The results showed that the local strain concentration in SG-WP and SG-EW was significantly higher than that of SG in the failure ring tensile test and the torsion test (p < 0.05). DIC analysis was an effective tool for evaluating the strain distribution characteristics of surimi gels upon fracture from torsion, penetration, and tension.
Collapse
|
17
|
Xu J, Fan Y, Liu H, Liu Q, Zhamsaranova S, Kong B, Chen Q. Improvement of rheological properties and 3D printability of pork pastes by the addition of xanthan gum. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Wen Y, Chao C, Che QT, Kim HW, Park HJ. Development of plant-based meat analogs using 3D printing: Status and opportunities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Yun HJ, Jung WK, Kim HW, Lee S. Embedded 3D printing of abalone protein scaffolds as texture-designed food production for the elderly. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Formation of advanced glycation end-products in silver carp (Hypophthalmichthys molitrix) surimi products during heat treatment as affected by freezing-thawing cycles. Food Chem 2022; 395:133612. [DOI: 10.1016/j.foodchem.2022.133612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023]
|
21
|
Wen Y, Kim HW, Park HJ. Effects of transglutaminase and cooking method on the physicochemical characteristics of 3D-printable meat analogs. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Zhu S, Wang W, Stieger M, van der Goot AJ, Schutyser MA. Shear-induced structuring of phase-separated sodium caseinate - sodium alginate blends using extrusion-based 3D printing: Creation of anisotropic aligned micron-size fibrous structures and macroscale filament bundles. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Chen Y, McClements DJ, Peng X, Chen L, Xu Z, Meng M, Zhou X, Zhao J, Jin Z. Starch as edible ink in 3D printing for food applications: a review. Crit Rev Food Sci Nutr 2022; 64:456-471. [PMID: 35997260 DOI: 10.1080/10408398.2022.2106546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three-dimensional (3D) printing has attracted more attention in food industry because of its potential advantages, including the ability to create customized products according to individual's sensory or nutritional requirements. However, the production of high-quality 3D printed foods requires the availability of edible bio-inks with the required physicochemical and sensory attributes. Starch, as one of the important sources of dietary energy, is widely used in food processing and is considered as one kind of versatile polymers. It is not only because starch has low prices and abundant sources, but also because desirable modified starch can be obtained by altering its physicochemical properties through physical, chemical and enzymatic methods. This article focuses on the utilization of starch as materials to create food-grade bio-inks. Initially, several kinds of commonly used 3D printers are discussed. The factors affecting the printing quality of starch-based materials and improvement methods are then reviewed, as well as areas where future researches are required. The applications of 3D printed starch-based materials in food industry are also introduced. Overall, starch appears to be one kind of useful substances for creating edible bio-inks that can be utilized within 3D food printing applications to create a wide variety of food products.
Collapse
Affiliation(s)
- Yuanhui Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, China
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Zhang L, Dong H, Yu Y, Liu L, Zang P. Application and challenges of
3D
food printing technology in manned spaceflight: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Long‐zhen Zhang
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Hai‐sheng Dong
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Yan‐bo Yu
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
| | - Li‐yan Liu
- Lee Kum Kee (Xinhui) Food Co., Ltd. Jiangmen Guangdong 529156 China
| | - Peng Zang
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| |
Collapse
|
25
|
Enfield RE, Pandya JK, Lu J, McClements DJ, Kinchla AJ. The future of 3D food printing: Opportunities for space applications. Crit Rev Food Sci Nutr 2022; 63:10079-10092. [PMID: 35652158 DOI: 10.1080/10408398.2022.2077299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the past decade or so, there have been major advances in the development of 3D printing technology to create innovative food products, including for printing foods in homes, restaurants, schools, hospitals, and even space flight missions. 3D food printing has the potential to customize foods for individuals based on their personal preferences for specific visual, textural, mouthfeel, flavor, or nutritional attributes. Material extrusion is the most common process currently used to 3D print foods, which is based on forcing a fluid or semi-solid food "ink" through a nozzle and then solidifying it. This type of 3D printing application for space missions is particularly promising because a wide range of foods can be produced from a limited number of food inks in a confined area. This is especially important for extended space missions because astronauts desire and require a variety of foods, but space and resources are minimal. This review highlights the potential applications of 3D printing for creating custom-made foods in space and the challenges that need to be addressed.
Collapse
Affiliation(s)
- Rachael E Enfield
- Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Janam K Pandya
- Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jiakai Lu
- Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Amanda J Kinchla
- Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
26
|
Chao C, Hwang JS, Kim IW, Choi RY, Kim HW, Park HJ. Coaxial 3D printing of chicken surimi incorporated with mealworm protein isolate as texture-modified food for the elderly. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Lee SH, Kim HW, Park HJ. Plaque removal effectiveness of 3D printed dental hygiene chews with various infill structures through artificial dog teeth. Heliyon 2022; 8:e09096. [PMID: 35846455 PMCID: PMC9280378 DOI: 10.1016/j.heliyon.2022.e09096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Pet food has recently been in the spotlight as an auxiliary approach to manage oral health, since it helps dogs or cats to take relatively simple care of their mouths at home. Especially, dental hygiene chew is crucial to remove teeth accumulation or plaque by chemical or mechanical methods. This study applied 3D printing to dental chews, which should be tailored to dogs’ individual tooth structure and preferences. The optimum methods for making dental hygiene chews based on corn starch with glycerin for extrusion-based 3D printing were developed. The viscoelasticity of dental chews increased with increasing glycerin content. According to the infill level (40%, 60%, or 80%) and glycerin content, texture and plaque removal efficacy were investigated using a texture analyzer and dog dentures. A 60% infill level with 10% and 20% glycerin content had the best plaque removal efficacy in both canines and premolars. A lattice structure design with square holes was more effective for canines, whereas a crumbly texture was more effective for premolars. Starch-based dental chew ink was formulated with various glycerin concentrations. The rheology of dental chew ink was dependent on the addition of glycerin. Increasing glycerin content up to 20% contributed to improved printing performance. Printed objects had higher breaking force but less hardness than control. Plaque removal efficacy was enhanced by infill densities.
Collapse
|
28
|
Carvajal-Mena N, Tabilo-Munizaga G, Pérez-Won M, Lemus-Mondaca R. Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Priyadarshini MB, Majumder RK, Maurya P. Effect of vacuum packaging on the shelf‐life of shrimp analog prepared from
Pangasionodon hypophthalmus
surimi during refrigerated storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ranendra Kumar Majumder
- Department of Fish Processing Technology and Engineering, College of Fisheries CAU(I) West Tripura India
| | - Pradip Maurya
- Department of Fish Processing Technology and Engineering, College of Fisheries CAU(I) West Tripura India
| |
Collapse
|
30
|
|
31
|
Derossi A, Bhandari B, Bommel K, Noort M, Severini C. Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises? Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Antonio Derossi
- Department of Agriculture, Food Natural resources and Engineering (DAFNE) – University of Foggia Italy
| | - Bhesh Bhandari
- School of Agriculture and Food Science University of Queensland Brisbane QLD Australia
| | - Kjeld Bommel
- Netherlands Organisation for Applied Scientific Research (TNO) The Hague The Netherlands
| | - Martijn Noort
- Wageningen Food & Biobased Research Wageningen The Netherlands
| | - Carla Severini
- Department of Agriculture, Food Natural resources and Engineering (DAFNE) – University of Foggia Italy
| |
Collapse
|