1
|
Nabawy A, Chattopadhyay AN, Makabenta JMV, Hassan MA, Yang J, Park J, Jiang M, Jeon T, Im J, Rotello VM. Cationic conjugated polymers with tunable hydrophobicity for efficient treatment of multidrug-resistant wound biofilm infections. Biomaterials 2025; 316:123015. [PMID: 39705926 PMCID: PMC11755787 DOI: 10.1016/j.biomaterials.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Biofilm-associated infections arising from antibiotic-resistant bacteria pose a critical challenge to global health. We report the generation of a library of cationic conjugated poly(phenylene ethynylene) (PPE) polymers featuring trimethylammonium terminated sidechains with tunable hydrophobicity. Screening of the library identified an amphiphilic polymer with a C11 hydrophobic spacer as the polymer with the highest antimicrobial efficacy against biofilms in the dark with excellent selectivity. These polymers are highly fluorescent, allowing label-free monitoring of polymer-bacteria/biofilm interactions. The amphiphilic conjugated polymer penetrated the biofilm matrix in vitro and eradicated resident bacteria through membrane disruption. This C11 polymer was likewise effective in an in vivo murine model of antibiotic-resistant wound biofilm infections, clearing >99.9 % of biofilm colonies and efficient alleviation of biofilm-associated inflammation. The results demonstrate the therapeutic potential of the fluorescent conjugated polymer platform as a multi-modal antimicrobial and imaging tool, surpassing conventional antimicrobial strategies against resilient biofilm infection.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Junwhee Yang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Sun Y, Li S, Che Y, Liang H, Guo Y, Xiao C. A respiratory Streptococcus strain inhibits Acinetobacter baumannii from causing inflammatory damage through ferroptosis. BMC Microbiol 2024; 24:437. [PMID: 39465358 PMCID: PMC11514839 DOI: 10.1186/s12866-024-03589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Microecological equilibrium is essential for human health. Previous research has demonstrated that Streptococcus strain A, the main bacterial group in the respiratory tract, can suppress harmful microbes and protect the body. In this study, Streptococcus strain D19T was isolated from the oral and pharyngeal cavities of healthy children. Its antibacterial mechanism against Acinetobacter baumannii was examined, as well as its potential to prevent inflammatory damage to cells. We evaluated the effect of the fermentation conditions of D19T on inhibition of Acinetobacter baumannii growth; Isolation and purification of antibacterial active components of strain D19T and molecular mechanism of inhibition of Acinetobacter baumannii; Molecular mechanism of D19T antibacterial protein reversing cellular inflammatory injury induced by Acinetobacter baumannii. RESULTS The supernatant of fermentation broth of Streptococcus D19T was the active component against Acinetobacter baumannii, but the bacteria had no antibacterial activity. The supernatant of D19T fermentation broth was precipitated by (NH4)2SO4 solution, and the protein was the active antibacterial component. After gel filtration chromatography and anion gel filtration chromatography, the molecular weight of antibacterial protein was 53kD. D19T antibacterial protein can improve cell membrane permeability, limit extracellular soluble protein release, inhibit Acinetobacter baumannii biofilm formation, and prevent Acinetobacter baumannii adhesion. Acinetobacter baumannii induces inflammatory damage to respiratory cells via ferroptosis, and the D19T antibacterial protein can counteract this damage, protecting the respiratory tract. CONCLUSION Streptococcus strain D19T, as a potential probiotic, inhibits the growth of Acinetobacter baumannii and the inflammatory damage of respiratory cells, playing a protective role in human respiratory health.
Collapse
Affiliation(s)
- Ye Sun
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, 110034, China
| | - Shuyin Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, 110034, China
| | - Yuchen Che
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, 110034, China
| | - Hao Liang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, 110034, China
| | - Yi Guo
- School of Health Management, Shenyang Vocational and Technical College, 32 Laodong Road, Dadong District, Shenyang, 110045, China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, 146 Huanghe North Street, Yuhong District, Shenyang, 110034, China.
| |
Collapse
|
4
|
Tsitsos A, Damianos A, Boutel M, Gousia P, Soultos N, Papa A, Tirodimos I, Economou V. Prevalence, Characterization, and Epidemiological Relationships between ESBL and Carbapenemase-Producing Escherichia coli, Klebsiella pneumoniae, and Acinetobacter spp. Isolated from Humans and the Kitchen Environment of Two Greek Hospitals. Antibiotics (Basel) 2024; 13:934. [PMID: 39452201 PMCID: PMC11504295 DOI: 10.3390/antibiotics13100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Extended-spectrum-β-lactamase (ESBL) and carbapenemase-producing Enterobacterales and Acinetobacter spp. pose significant challenges as nosocomial pathogens, demonstrating resistance against various antimicrobials. Their presence in food suggests that hospital kitchens could serve as antibiotic resistance reservoirs leading to patients' infection. OBJECTIVES The aim of this study was to assess the prevalence and characteristics of β-lactam-resistant strains of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter spp. isolated from the kitchen environment and from the staff of two Greek hospitals. METHODS Strains were recovered after selective isolation with β-lactams and were identified with MALDI-TOF MS. Antimicrobial susceptibility and presence of common β-lactamase genes were evaluated. Protein profiles were examined to analyze potential relationships of the strain with those from hospital patients. E. coli strains were further categorized into phylogenetic groups. RESULTS The overall prevalence in the kitchen environment was 4.5%, 1.5%, and 15.0% for E. coli, K. pneumoniae, and Acinetobacter spp., respectively, whereas the prevalence of Acinetobacter spp. in human skin was 4.0%. Almost all strains were multidrug-resistant. All E. coli strains were ESBL producers and belonged to phylogroups A and B1. All K. pneumoniae and seven Acinetobacter strains were carbapenemase-producers. A protein profile analysis showed relatedness between chicken and kitchen environment strains, as well as between kitchen environment and patient strains originated either from the same or from different hospitals. CONCLUSIONS The results suggest that hospital kitchens may act as important pathogen hotspots contributing to the circulation of resistant strains in the hospital environment.
Collapse
Affiliation(s)
- Anestis Tsitsos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.D.); (N.S.)
| | - Alexandros Damianos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.D.); (N.S.)
| | - Maria Boutel
- Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Panagiota Gousia
- Department of Food Analytical and Research Laboratories of Thessaloniki, Hellenic Food Authority, 57001 Thermi, Greece;
| | - Nikolaos Soultos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.D.); (N.S.)
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilias Tirodimos
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vangelis Economou
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.D.); (N.S.)
| |
Collapse
|
5
|
Klamer ZL, June CM, Wawrzak Z, Taracila MA, Grey JA, Benn AMI, Russell CP, Bonomo RA, Powers RA, Leonard DA, Szarecka A. Structural and Dynamic Features of Acinetobacter baumannii OXA-66 β-Lactamase Explain Its Stability and Evolution of Novel Variants. J Mol Biol 2024; 436:168603. [PMID: 38729259 PMCID: PMC11198252 DOI: 10.1016/j.jmb.2024.168603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
OXA-66 is a member of the OXA-51 subfamily of class D β-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and β5-β6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.
Collapse
Affiliation(s)
- Zachary L Klamer
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, IL, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Joshua A Grey
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Alyssa M I Benn
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | | | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Departments of Pharmacology, Biochemistry, and Molecular Biology and Microbiology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA.
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
| |
Collapse
|
6
|
Cheyne I, Hassan K, Dunkel T, Sota M, Wróblewski Ł, Mikaszewska-Sokolewicz M. Effective Treatment of Acinetobacter baumannii Ventriculitis With Interventricular Colistin: A Case Report. Cureus 2024; 16:e62169. [PMID: 38993404 PMCID: PMC11238891 DOI: 10.7759/cureus.62169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Cerebrospinal fluid shunts are the primary treatment for hydrocephalus. However, prolonged external ventricular drain (EVD) use can lead to central nervous system (CNS) infections such as ventriculitis. In the ICU setting, nosocomial infections with gram-negative, multi-drug resistant (MDR) organisms such as Acinetobacter baumannii (AB) prevail, leading to poor outcomes. AB infections are notably challenging due to their genetic drug resistance. Colistin has been reintroduced for use against gram-negative MDR pathogens but has limitations in CNS penetration when administered intravenously. Therefore, intraventricular (IVT) or intrathecal administration of colistin is recommended to enhance its therapeutic reach within the CNS. We present a case of a 22-year-old male admitted after an electric scooter accident with head trauma and hydrocephalus. A ventriculoperitoneal (VP) shunt was inserted, complicated by a nosocomial neuroinfection. Empiric IV therapy with meropenem and vancomycin was initiated. The VP shunt culture identified AB susceptible only to colistin. Intravenous (IV) colistin was added to meropenem with no significant improvement. The addition of IVT colistin significantly improved the patient's neurological condition and reduced inflammatory markers. The patient experienced one myoclonic seizure during IVT colistin treatment, managed with antiepileptics. After multiple unrelated nosocomial complications, the patient was discharged in good condition to rehabilitation. This case suggests that IVT colistin, combined with IV administration, may be preferable over IV colistin alone. Medical staff should be informed about the correct prevention and care of EVD-associated infections.
Collapse
Affiliation(s)
- Ithamar Cheyne
- Anesthesiology and Intensive Care Scientific Circle English Division (ANKONA ED), Medical University of Warsaw, Warsaw, POL
| | - Kamelia Hassan
- Anesthesiology and Intensive Care Scientific Circle English Division (ANKONA ED), Medical University of Warsaw, Warsaw, POL
| | - Tjard Dunkel
- Anesthesiology and Intensive Care Scientific Circle English Division (ANKONA ED), Medical University of Warsaw, Warsaw, POL
| | - Marcin Sota
- Anesthesiology and Intensive Care Scientific Circle English Division (ANKONA ED), Medical University of Warsaw, Warsaw, POL
| | - Łukasz Wróblewski
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, POL
| | | |
Collapse
|
7
|
Darby EM, Moran RA, Holden E, Morris T, Harrison F, Clough B, McInnes RS, Schneider L, Frickel EM, Webber MA, Blair JMA. Differential development of antibiotic resistance and virulence between Acinetobacter species. mSphere 2024; 9:e0010924. [PMID: 38578105 PMCID: PMC11237425 DOI: 10.1128/msphere.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
The two species that account for most cases of Acinetobacter-associated bacteremia in the United Kingdom are Acinetobacter lwoffii, often a commensal but also an emerging pathogen, and Acinetobacter baumannii, a well-known antibiotic-resistant species. While these species both cause similar types of human infection and occupy the same niche, A. lwoffii (unlike A. baumannii) has thus far remained susceptible to antibiotics. Comparatively little is known about the biology of A. lwoffii, and this is the largest study on it conducted to date, providing valuable insights into its behaviour and potential threat to human health. This study aimed to explain the antibiotic susceptibility, virulence, and fundamental biological differences between these two species. The relative susceptibility of A. lwoffii was explained as it encoded fewer antibiotic resistance and efflux pump genes than A. baumannii (9 and 30, respectively). While both species had markers of horizontal gene transfer, A. lwoffii encoded more DNA defense systems and harbored a far more restricted range of plasmids. Furthermore, A. lwoffii displayed a reduced ability to select for antibiotic resistance mutations, form biofilm, and infect both in vivo and in in vitro models of infection. This study suggests that the emerging pathogen A. lwoffii has remained susceptible to antibiotics because mechanisms exist to make it highly selective about the DNA it acquires, and we hypothesize that the fact that it only harbors a single RND system restricts the ability to select for resistance mutations. This provides valuable insights into how development of resistance can be constrained in Gram-negative bacteria. IMPORTANCE Acinetobacter lwoffii is often a harmless commensal but is also an emerging pathogen and is the most common cause of Acinetobacter-derived bloodstream infections in England and Wales. In contrast to the well-studied and often highly drug-resistant A. baumannii, A. lwoffii has remained susceptible to antibiotics. This study explains why this organism has not evolved resistance to antibiotics. These new insights are important to understand why and how some species develop antibiotic resistance, while others do not, and could inform future novel treatment strategies.
Collapse
Affiliation(s)
- Elizabeth M. Darby
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Emma Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Theresa Morris
- Centre for Electron Microscopy, University of Birmingham, Birmingham, United Kingdom
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Barbara Clough
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ross S. McInnes
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ludwig Schneider
- Centre for Electron Microscopy, University of Birmingham, Birmingham, United Kingdom
| | - Eva M. Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Yamada N, Kamoshida G, Shiraishi T, Yamaguchi D, Matsuoka M, Yamauchi R, Kanda N, Kamioka R, Takemoto N, Morita Y, Fujimuro M, Yokota SI, Yahiro K. PmrAB, the two-component system of Acinetobacter baumannii, controls the phosphoethanolamine modification of lipooligosaccharide in response to metal ions. J Bacteriol 2024; 206:e0043523. [PMID: 38661375 PMCID: PMC11112996 DOI: 10.1128/jb.00435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.
Collapse
Affiliation(s)
- Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Go Kamoshida
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Momoko Matsuoka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reika Yamauchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Roku Kamioka
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masahiro Fujimuro
- Laboratory of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
9
|
Morsli M, Salipante F, Magnan C, Dunyach-Remy C, Sotto A, Lavigne JP. Direct metagenomics investigation of non-surgical hard-to-heal wounds: a review. Ann Clin Microbiol Antimicrob 2024; 23:39. [PMID: 38702796 PMCID: PMC11069288 DOI: 10.1186/s12941-024-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Non-surgical chronic wounds, including diabetes-related foot diseases (DRFD), pressure injuries (PIs) and venous leg ulcers (VLU), are common hard-to-heal wounds. Wound evolution partly depends on microbial colonisation or infection, which is often confused by clinicians, thereby hampering proper management. Current routine microbiology investigation of these wounds is based on in vitro culture, focusing only on a limited panel of the most frequently isolated bacteria, leaving a large part of the wound microbiome undocumented. METHODS A literature search was conducted on original studies published through October 2022 reporting metagenomic next generation sequencing (mNGS) of chronic wound samples. Studies were eligible for inclusion if they applied 16 S rRNA metagenomics or shotgun metagenomics for microbiome analysis or diagnosis. Case reports, prospective, or retrospective studies were included. However, review articles, animal studies, in vitro model optimisation, benchmarking, treatment optimisation studies, and non-clinical studies were excluded. Articles were identified in PubMed, Google Scholar, Web of Science, Microsoft Academic, Crossref and Semantic Scholar databases. RESULTS Of the 3,202 articles found in the initial search, 2,336 articles were removed after deduplication and 834 articles following title and abstract screening. A further 14 were removed after full text reading, with 18 articles finally included. Data were provided for 3,628 patients, including 1,535 DRFDs, 956 VLUs, and 791 PIs, with 164 microbial genera and 116 species identified using mNGS approaches. A high microbial diversity was observed depending on the geographical location and wound evolution. Clinically infected wounds were the most diverse, possibly due to a widespread colonisation by pathogenic bacteria from body and environmental microbiota. mNGS data identified the presence of virus (EBV) and fungi (Candida and Aspergillus species), as well as Staphylococcus and Pseudomonas bacteriophages. CONCLUSION This study highlighted the benefit of mNGS for time-effective pathogen genome detection. Despite the majority of the included studies investigating only 16 S rDNA, ignoring a part of viral, fungal and parasite colonisation, mNGS detected a large number of bacteria through the included studies. Such technology could be implemented in routine microbiology for hard-to-heal wound microbiota investigation and post-treatment wound colonisation surveillance.
Collapse
Affiliation(s)
- Madjid Morsli
- Department of Microbiology and Hospital Hygiene, VBIC, INSERM U1047, Univ Montpellier, Platform MICRO&BIO, CHU Nîmes, Nîmes, France
| | - Florian Salipante
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology (BESPIM), CHU Nîmes, Nîmes, France
| | - Chloé Magnan
- Department of Microbiology and Hospital Hygiene, VBIC, INSERM U1047, Univ Montpellier, Platform MICRO&BIO, CHU Nîmes, Nîmes, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, VBIC, INSERM U1047, Univ Montpellier, Platform MICRO&BIO, CHU Nîmes, Nîmes, France
| | - Albert Sotto
- Department of Infectious Diseases, VBIC, INSERM U1047, Univ Montpellier, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, VBIC, INSERM U1047, Univ Montpellier, Platform MICRO&BIO, CHU Nîmes, Nîmes, France.
| |
Collapse
|
10
|
Eryilmaz-Eren E, Yalcin S, Ozan F, Saatci E, Suzuk-Yildiz S, Ture Z, Kilinc-Toker A, Celik I. An outbreak analysis of wound infection due to Acinetobacter baumannii in earthquake-trauma patients. Am J Infect Control 2024; 52:599-604. [PMID: 38103648 DOI: 10.1016/j.ajic.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii is still a major contributor to outbreaks and infections health care-associated infections. This study aimed to investigate an outbreak of wound infection due to A baumannii in trauma patients injured in the Kahramanmaraş earthquake. METHODS This retrospective case-control study was conducted on an outbreak of wound infection caused by A. baumannii in trauma patients affected by the February 6 Turkey earthquake. Among the patients who underwent at least one extremity surgery due to earthquake-related crush-trauma injury, patients with wound infection due to A baumannii were included in the case group and without infection were included in the control group. Multivariate analysis and logistic regression were performed to identify risk factors. Environmental cultures were taken to identify the source of the outbreak. Molecular typing by pulsed-field gel electrophoresis was used to confirm the relationships of the wound infection agent A. baumannii strains. RESULTS A total of 44 patients were included in the case group and 62 patients in the control group. Time under the debris; 22.0 versus 35.7 (odds ratio [OR]:1.02, 95% confidence interval [CI]: 1.00-1.04) and hemodialysis (OR: 6.09, 95% CI: 1.64-22.66) were identified as risk factors for in the multivariate analysis. Performing the first intervention in a fully equipped tertiary hospital was seen as an infection-reducing factor compared to performing it in a field hospital (OR: 0.21, 95% CI: 0.06-0.68). Dressing trolleys and scissors were identified as the source of the outbreak. CONCLUSIONS After devastating earthquakes, a large number of patients are admitted and require emergency interventions due to life-threatening conditions. Organ failure often develops and requires the use of invasive catheters and procedures. Compliance with infection control measures and clean surgical interventions reduce wound site infections and allow extremities to heal, while problems in adhering to infection control measures can lead to many problems such as outbreaks of gram-negative bacteria. This highlights the importance of infection control measures.
Collapse
Affiliation(s)
- Esma Eryilmaz-Eren
- Department of Infectious Disease and Clinical Microbiology, Kayseri City Trainig and Research Hospital, University of Health Sciences, Kayseri, Turkey; Department of Clinical Bacteriology and Infectious Diseases, Preventing Hospital Infections Doctorate Programme, Institute of Health Sciences, Erciyes University, Kayseri, Turkey.
| | - Suleyman Yalcin
- Department of Microbiology Reference Laboratories, General Directorate of Public Health, Ministry of Health, Ankara, Turkey
| | - Firat Ozan
- Department of Orthopedics and Traumatology, Kayseri City Training and Research Hospital, University of Health Sciences, Kayseri, Turkey
| | - Esma Saatci
- Department of Medical Microbiology, Kayseri City Training and Research Hospital, Kayseri, Turkey
| | - Serap Suzuk-Yildiz
- Department of Microbiology Reference Laboratories, General Directorate of Public Health, Ministry of Health, Ankara, Turkey
| | - Zeynep Ture
- Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Aysin Kilinc-Toker
- Department of Infectious Disease and Clinical Microbiology, Kayseri City Trainig and Research Hospital, University of Health Sciences, Kayseri, Turkey
| | - Ilhami Celik
- Department of Infectious Disease and Clinical Microbiology, Kayseri City Trainig and Research Hospital, University of Health Sciences, Kayseri, Turkey
| |
Collapse
|
11
|
Mushtaq F, Nadeem A, Yabrag A, Bala A, Karah N, Zlatkov N, Nyunt Wai S, Uhlin BE, Ahmad I. Colony phase variation switch modulates antimicrobial tolerance and biofilm formation in Acinetobacter baumannii. Microbiol Spectr 2024; 12:e0295623. [PMID: 38205963 PMCID: PMC10845969 DOI: 10.1128/spectrum.02956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii causes one of the most difficult-to-treat nosocomial infections. Polycationic drugs like polymyxin B or colistin and tetracycline drugs such as doxycycline or minocycline are commonly used to treat infections caused by carbapenem-resistant A. baumannii. Here, we show that a subpopulation of cells associated with the opaque/translucent colony phase variation by A. baumannii AB5075 displays differential tolerance to subinhibitory concentrations of colistin and tetracycline. Using a variety of microscopic techniques, we demonstrate that extracellular polysaccharide moieties mediate colistin tolerance to opaque A. baumannii at single-cell level and that mushroom-shaped biofilm structures protect opaque bacteria at the community level. The colony switch phenotype is found to alter several traits of A. baumannii, including long-term survival under desiccation, tolerance to ethanol, competition with Escherichia coli, and intracellular survival in the environmental model host Acanthamoeba castellanii. Additionally, our findings suggest that extracellular DNA associated with membrane vesicles can promote colony switching in a DNA recombinase-dependent manner.IMPORTANCEAs a WHO top-priority drug-resistant microbe, Acinetobacter baumannii significantly contributes to hospital-associated infections worldwide. One particularly intriguing aspect is its ability to reversibly switch its colony morphotype on agar plates, which has been remarkably underexplored. In this study, we employed various microscopic techniques and phenotypic assays to investigate the colony phase variation switch under different clinically and environmentally relevant conditions. Our findings reveal that the presence of a poly N-acetylglucosamine-positive extracellular matrix layer contributes to the protection of bacteria from the bactericidal effects of colistin. Furthermore, we provide intriguing insights into the multicellular lifestyle of A. baumannii, specifically in the context of colony switch variation within its predatory host, Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Fizza Mushtaq
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Abdelbasset Yabrag
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Anju Bala
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nabil Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
13
|
Bassetti M, Castaldo N, Fantin A, Giacobbe DR, Vena A. Antibiotic therapy for nonfermenting Gram-negative bacilli infections: future perspectives. Curr Opin Infect Dis 2023; 36:615-622. [PMID: 37846592 DOI: 10.1097/qco.0000000000000984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Serious infections caused by nonfermenting Gram-negative bacteria (NF-GNB) pose a significant challenge for clinicians due to the limited treatment options available, which are frequently associated with issues of toxicity and unfavourable pharmacokinetic profiles. The aim of this review is to provide a brief overview of the existing data concerning the ongoing development of antiinfective agents targeting NF-GNB. RECENT FINDINGS Several agents exhibiting efficacy against NF-GNB are under clinical investigation. Durlobactam-sulbactam and cefepime-taniborbactam emerge as promising therapeutic avenues against carbapenem-resistant Acinetobacter baumanii . Cefepime-zidebactam may serve as a suitable treatment option for urinary tract infections caused by a wide range of NF-GNB. Cefepime-enmetazobactam demonstrates potent in vitro activity against various NF-GNB strains; however, its role as an anti- Pseudomonal agent is inadequately substantiated by available data. Xeruborbactam is a wide β-lactamase inhibitor that can be associated with a range of agents, enhancing in-vitro activity of these against many NF-GNB, including those resistant to newer, broader spectrum options. Lastly, murepavadin appears to be a potential pathogen-specific solution for severe Pseudomonas infections; however, additional investigation is necessary to establish the safety profile of this compound. SUMMARY Each of the novel molecules reviewed possesses an interesting range of in-vitro activity against NF-GNB. In addition, some of them have already been proved effective in vivo, underscoring their potential as future treatment options.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Nadia Castaldo
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alberto Fantin
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Antonio Vena
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| |
Collapse
|
14
|
Zhang Y, Xu G, Miao F, Huang W, Wang H, Wang X. Insights into the epidemiology, risk factors, and clinical outcomes of carbapenem-resistant Acinetobacter baumannii infections in critically ill children. Front Public Health 2023; 11:1282413. [PMID: 38098829 PMCID: PMC10720883 DOI: 10.3389/fpubh.2023.1282413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background and aims Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a leading cause of nosocomial infections with an increasing impact on critically ill patients, yet there is limited data on contributing factors. This study was aim to evaluate the prevalence and risk factors, and clinical outcomes of CRAB infections among critically ill children in a tertiary university teaching hospital in China. Methods From January 2016 to December 2021, all children diagnosed with nosocomial Acinetobacter baumannii (A. baumannii) infections in the pediatric intensive care unit (PICU) were identified through the computerized microbiology laboratory databases. Among them, children suffering from CRAB infection were designated as a case group, while children with carbapenem susceptible A. baumannii (CSAB) infection were assigned to a control group. This retrospective case-control study was based on two groups of patients to determine potential clinical factors contributing to CRAB infection and death among critically ill children via univariate and multivariate analyses. Results During the 6-year study period, a total of 372 episodes of nosocomial A. baumannii infection in the PICU were eligible and included in the study. These isolates displayed moderate or high rates of resistance to all tested antimicrobials except colistin. The overall prevalence of CRAB and MDRAB (multidrug-resistant A. baumannii) was 78.0% and 80.9%, respectively. Several risk factors found to significantly increase CRAB infection included receiving invasive operation (OR = 9.412, p = 0.001), gastric intubation (OR = 2.478, p = 0.026), prior carbapenems exposure (OR = 2.543, p = 0.003), severe pneumonia (OR = 3.235, p = 0.001), and hemoglobin <110g/L (OR = 3.049, p = 0.005). Of 372 patients with CRAB infection, the mortality rate was 30.9% (115/372) and mortality did not differ between children with CRAB and CSAB infections. Septic shock (OR = 2.992, p = 0.001), AST > 46U/L (OR = 2.015, p = 0.005), bone marrow aspiration (OR = 2.704, p = 0.008), lymphocyte <20 % (OR = 1.992, p = 0.006) and age (OR = 1.094, p = 0.002) were independent risk factors for the death of A. baumanni infection. Conclusions This study highlights considerable incidence rate and remarkable mortality of children with A. baumanni (especially CRAB) infections, and identifies age-specific risk factors for CRAB infection and mortality in critically ill children. These risk factors should be taken into account in pediatric hospitals in order to establish early intervention and rational treatment to improve clinical outcomes.
Collapse
Affiliation(s)
- Yufei Zhang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guifeng Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Miao
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weichun Huang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haiying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Su CH, Chien LJ, Fang CT, Chang SC. Excess mortality and long-term disability from healthcare-associated carbapenem-resistant Acinetobacter baumannii infections: A nationwide population-based matched cohort study. PLoS One 2023; 18:e0291059. [PMID: 37695791 PMCID: PMC10495011 DOI: 10.1371/journal.pone.0291059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Carbapenem resistance is perceived as a clinical challenge in the management of debilitated and immunocompromised patients who eventually will die from underlying diseases. We aimed to examine whether carbapenem resistance per se, rather than the underlying diseases, negatively affect outcomes, by comparing the excess mortality and morbidity from healthcare-associated infections (HAIs) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-susceptible A. baumannii (CSAB). METHODS This was a nationwide retrospective matched cohort study of hospitalized patients in 96 hospitals which participated in Taiwan Nosocomial Infection Surveillance (TNIS). A total of 2,213 patients with A. baumannii HAIs were individually matched to 4,426 patients without HAIs. Main outcomes were excess risks for one-year all-cause mortality and one-year new-onset chronic ventilator dependence or dialysis-dependent end-stage renal disease. RESULTS Excess one-year mortality was 27.2% in CRAB patients, compared with their matched uninfected inpatients, as well as 15.4% in CSAB patients (also compared with their matched uninfected inpatients), resulting in an attributable mortality of 11.8% (P <0.001) associated with carbapenem resistance. The excess risk associated with carbapenem resistance for new-onset chronic ventilator dependence was 5.2% (P <0.001). Carbapenem resistance was also associated with an extra cost of $2,511 per case of A. baumannii HAIs (P <0.001). CONCLUSION Carbapenem resistance is associated with a significant disease burden in terms of excess mortality, long-term ventilator dependence, and medical cost. Further studies on effects of antimicrobial stewardship programs in decreasing this burden are warranted.
Collapse
Affiliation(s)
- Chiu-Hsia Su
- Division of Infection Control and Biosafety, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Li-Jung Chien
- Division of Infection Control and Biosafety, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Chwen Chang
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Tan H, Cao L. Acinetobacter baumannii outer membrane protein A induces autophagy in bone marrow-derived dendritic cells involving the PI3K/mTOR pathway. Immun Inflamm Dis 2023; 11:e830. [PMID: 37102650 PMCID: PMC10091376 DOI: 10.1002/iid3.830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Outer membrane protein A (OmpA) is the major virulence factor of Acinetobacter baumannii and plays a wide role in the pathogenesis and antimicrobial resistance of A. baumannii. Dendritic cells (DCs) are the most effective antigen-presenting cells and play a crucial role in regulating the immune response to multiple antigens and immune sentries. We aimed to study the role and molecular mechanisms of OmpA-induced mouse bone marrow-derived dendritic cells (BMDCs) autophagy in the immune response of A. baumannii. METHODS First, purified A. baumannii OmpA was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. OmpA effect on BMDCs viability was evaluated by MTT assay. BMDCs were pretreated with autophagy inhibitor chloroquine or transfected with overexpression plasmids (oe-NC or oe-PI3K). Then BMDCs apoptosis, inflammatory cytokines, protein kinase B (PI3K)/mammalian target of rapamycin (mTOR) pathway, and autophagy-related factors levels were evaluated. RESULTS SDS-PAGE and western blot verified the successful purification of OmpA. BMDCs viability repressed gradually with the increase of OmpA concentration. OmpA treatment of BMDCs led to apoptosis and inflammation in BMDCs. OmpA caused incomplete autophagy in BMDCs, and light chain 3 (LC3), Beclin1, P62, and LC3II/I levels were significantly elevated with the increase of the time and concentration of OmpA treatment. Chloroquine reversed OmpA effects on autophagy in BMDCs, that was, LC3, Beclin1, and LC3II/I levels were reduced, while P62 level was elevated. Furthermore, chloroquine reversed OmpA effects on apoptosis and inflammation in BMDCs. PI3K/mTOR pathway-related factor expression was affected by OmpA treatment of BMDCs. After overexpression of PI3K, these effects were reversed. CONCLUSIONS A. baumannii OmpA induced autophagy in BMDCs involving the PI3K/mTOR pathway. Our study may provide a novel therapeutic target and theoretical basis for treating infections caused by A. baumannii.
Collapse
Affiliation(s)
- Hongyi Tan
- Department of Pulmonary and Critical Care Medicine, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhouChina
| | - Liyan Cao
- Department of Healthcare Associated Affection ManagementChangsha Central HospitalChangshaChina
| |
Collapse
|
17
|
Deusdará TT, Félix MKC, de S Brito H, Cangussu EWS, de S Moura W, Albuquerque B, Silva MG, Dos Santos GR, de Morais PB, da Silva EF, Chaves YO, Mariúba LAM, Nogueira PA, Astolfi-Filho S, Assunção EN, Epiphanio S, Marinho CRF, Brandi IV, Viana KF, Oliveira EE, Cangussu ASR. Using an Aluminum Hydroxide–Chitosan Matrix Increased the Vaccine Potential and Immune Response of Mice against Multi-Drug-Resistant Acinetobacter baumannii. Vaccines (Basel) 2023; 11:vaccines11030669. [PMID: 36992253 DOI: 10.3390/vaccines11030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide–chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.
Collapse
Affiliation(s)
- Túllio T Deusdará
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Mellanie K C Félix
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Helio de S Brito
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Edson W S Cangussu
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Wellington de S Moura
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Benedito Albuquerque
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Marcos G Silva
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Gil R Dos Santos
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Paula B de Morais
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Elizangela F da Silva
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Yury O Chaves
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Luis Andre M Mariúba
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Paulo A Nogueira
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Spartaco Astolfi-Filho
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Enedina N Assunção
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Sabrina Epiphanio
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Claudio R F Marinho
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Montes Claros 39400-310, MG, Brazil
- Department of Biotchnology, State University of Montes Claros, Montes Claros 39401-089, MG, Brazil
| | - Kelvinson F Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85866-000, PR, Brazil
| | - Eugenio E Oliveira
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Alex Sander R Cangussu
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| |
Collapse
|
18
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Han B, Chen Y, Han S, Han L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020195. [PMID: 36830106 PMCID: PMC9952577 DOI: 10.3390/antibiotics12020195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
19
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
20
|
Intrathecal/Intraventricular Colistin for Antibiotic-Resistant Bacterial CNS Infections in Pediatric Population: A Systematic Review. Trop Med Infect Dis 2022; 7:tropicalmed7030041. [PMID: 35324588 PMCID: PMC8954222 DOI: 10.3390/tropicalmed7030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Central nervous system (CNS) infections constitute a life-threatening condition, especially in children. Treatment limitations exist for drug-resistant CNS bacterial infections. Inadequate CNS penetration and intravenous (IV) antibiotic treatment failure represent a major clinical challenge. However, patients with antibiotic-resistant bacterial CNS infections may benefit from intrathecal (IT) or intraventricular (IVT) colistin. The authors aimed to assess the safety and effectiveness of IT/IVT colistin therapy in the pediatric population, with or without other antibiotics, for the treatment of antibiotic-resistant CNS infections. A comprehensive literature search was conducted using the electronic databases of PubMed, Ovid, and Embase for relevant articles using the following terms: “Colistin”, “CNS infection”, and “Outcome”, as well as their combinations. The retrieved articles were filtered by age (Child), language (English), route of administration (IT/IVT), and species (Humans). The present systematic review comprised 20 articles that included 31 children (19; 61.2% were boys) with multidrug-resistant CNS infection. Their ages ranged from less than one month to 18 years (median: 9 months). Acinetobacter baumannii was the main causative organism in 22 patients (70.9%), and infection occurred mainly after neurosurgical interventions (83.8%). An external ventricular drain was inserted to administer colistin into the ventricular system in 29 cases (93.5%). The median duration for colistin therapy was 18 days. Twenty-three patients (74%) recovered, while five patients (16%) had residual disability, and three patients (10%) died. The authors concluded that IT/IVT colistin therapy is safe and effective as either the primary or adjunct treatment for antibiotic-resistant cases with CNS infection.
Collapse
|
21
|
Bharathi SV, Venkataramaiah M, Rajamohan G. Genotypic and Phenotypic Characterization of Novel Sequence Types of Carbapenem-Resistant Acinetobacter baumannii, With Heterogeneous Resistance Determinants and Targeted Variations in Efflux Operons. Front Microbiol 2022; 12:738371. [PMID: 35002996 PMCID: PMC8735875 DOI: 10.3389/fmicb.2021.738371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the dominant nosocomial human pathogens associated with high morbidity and mortality globally. Increased incidences of carbapenem-resistant A. baumannii (CRAB) have resulted in an enormous socioeconomic burden on health-care systems. Here, we report the genotypic and phenotypic characterization of novel ST1816 and ST128 variants in A. baumannii strains belonging to International clone II (GC2) with capsule types KL1:OCL8 and KL3:OCL1d from India. Sequence analysis revealed the presence of diverse virulome and resistome in these clinical strains, in addition to islands, prophages, and resistance genes. The oxacillinase bla OXA-23 detected in the genomic island also highlighted the coexistence of bla OXA-66 /bla OXA-98 , bla ADC73 /bla ADC-3 , and bla TEM-1D in their mobile scaffolds, which is alarming. Together with these resistance-determining enzymes, multidrug efflux transporters also harbored substitutions, with increased expression in CRAB strains. The hotspot mutations in colistin resistance-conferring operons, PmrAB, LpxACD, and AdeRS, were additionally confirmed. Phenotype microarray analysis indicated that multidrug-resistant strains A. baumannii DR2 and A. baumannii AB067 preferred a range of antimicrobial compounds as their substrates relative to the other. To our knowledge, this is the first comprehensive report on the characterization of A. baumannii variants ST1816 and ST128, with different genetic makeup and genome organization. The occurrence of CRAB infections worldwide is a severe threat to available limited therapeutic options; hence, continued surveillance to monitor the emergence and dissemination of such novel ST variants in A. baumannii is imperative.
Collapse
Affiliation(s)
- Srinivasan Vijaya Bharathi
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Manjunath Venkataramaiah
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Govindan Rajamohan
- Molecular Biology Division, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
22
|
Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: a scientific review. J Appl Microbiol 2021; 131:2715-2738. [PMID: 33971055 DOI: 10.1111/jam.15130] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Carbapenem is an important therapy for serious hospital-acquired infections and for the care of patients affected by multidrug-resistant organisms, specifically Acinetobacter baumannii; however, with the global increase of carbapenem-resistant A. baumannii, this pathogen has significantly threatened public health. Thus, there is a pressing need to better understand this pathogen in order to develop novel treatments and control strategies for dealing with A. baumannii. In this review, we discuss an overview of carbapenem, including its discovery, development, classification and biological characteristics, and its importance in hospital medicine especially in critical care units. We also describe the peculiarity of bacterial pathogen, A. baumannii, including its commonly reported virulence factors, environmental persistence and carbapenem resistance mechanisms. In closing, we discuss various control strategies for overcoming carbapenem resistance in hospitals and for limiting outbreaks. With the appearance of strains that resist carbapenem, the aim of this review is to highlight the importance of understanding this increasingly problematic healthcare-associated pathogen that creates significant concern in the field of nosocomial infections and overall public health.
Collapse
Affiliation(s)
- M Nguyen
- Center for Surgical Infections, Drexel University School of Biomedical Engineering, Science & Health Systems, Philadelphia, PA, USA
| | - S G Joshi
- Center for Surgical Infections, Drexel University School of Biomedical Engineering, Science & Health Systems, Philadelphia, PA, USA.,Institute of Molecular Medicine and Infectious Diseases, Center for Surgical Infections, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Vahhabi A, Hasani A, Rezaee MA, Baradaran B, Hasani A, Samadi Kafil H, Abbaszadeh F, Dehghani L. A plethora of carbapenem resistance in Acinetobacter baumannii: no end to a long insidious genetic journey. J Chemother 2021; 33:137-155. [PMID: 33243098 DOI: 10.1080/1120009x.2020.1847421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Acinetobacter baumannii, notorious for causing nosocomial infections especially in patients admitted to intensive care unit (ICU) and burn units, is best at displaying resistance to all existing antibiotic classes. Consequences of high potential for antibiotic resistance has resulted in extensive drug or even pan drug resistant A. baumannii. Carbapenems, mainly imipenem and meropenem, the last resort for the treatment of A. baumannii infections have fallen short due to the emergence of carbapenem resistant A. baumannii (CRAB). Though enzymatic degradation by production of class D β-lactamases (Oxacillinases) and class B β-lactamases (Metallo β-lactamases) is the core mechanism of carbapenem resistance in A. baumannii; however over-expression of efflux pumps such as resistance-nodulation cell division (RND) family and variant form of porin proteins such as CarO have been implicated for CRAB inception. Transduction and outer membrane vesicles-mediated transfer play a role in carbapenemase determinants spread. Colistin, considered as the most promising antibacterial agent, nevertheless faces adverse effects flaws. Cefiderocol, eravacycline, new β-lactam antibiotics, non-β-lactam-β-lactamase inhibitors, polymyxin B-derived molecules and bacteriophages are some other new treatment options streamlined.
Collapse
Affiliation(s)
- Abolfazl Vahhabi
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Alka Hasani
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I. R. Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Faeze Abbaszadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Leila Dehghani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
24
|
Liu B, Liu L. Molecular Epidemiology and Mechanisms of Carbapenem-Resistant Acinetobacter baumannii Isolates from ICU and Respiratory Department Patients of a Chinese University Hospital. Infect Drug Resist 2021; 14:743-755. [PMID: 33658811 PMCID: PMC7920613 DOI: 10.2147/idr.s299540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background The objective of our study is to estimate the differences in molecular epidemiology and resistance mechanisms in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from the ICU and respiratory department(RD) in Fourth Affiliated Hospital of Harbin Medical University. Methods Carbapenemase genes associated with carbapenem resistance were studied by polymerase chain reaction(PCR). Genotyping was analyzed using multi-locus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). Results Sixty non-duplicate CRAB isolates from the ICU and RD (n=30, respectively) were collected. All of CRAB strains were not resistant to colistin (0%). The CRAB strains from the ICU were significantly more resistant to tigecycline and cefoperazone/sulbactam compared with the RD (23.3% vs 0%, P=0.03; 53.3% % vs 23.3%, P=0.01, respectively). PCR detection of genes associated with CRAB revealed that the ratio in both the ICU and the RD of blaVIM-2, blaIMP-4, blaNDM-1, blaOXA-23, ampC, and mutation of CarO were present in 23.3% vs 0% (P=0.01), 40% vs 10% (P=0.02), 20% vs 0% (P=0.02), 80% vs 56.7%, 16.7% vs 13.3% and 86.7% vs 60% (P=0.04), respectively. Seven genotypes were detected by the PFGE in the RD and the ICU, respectively. Genotype I was significantly more frequent in the ICU compared with the RD (63.3% vs 36.6%, P=0.03). MLST showed that there were 10 ST genotypes in the RD and four in the ICU, but ST92 in both groups was 33.3% vs 63.3% (P=0.03), respectively. Conclusion There are differences in molecular epidemiology and resistance mechanisms in the CRAB isolates between the ICU and RD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Lei Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
25
|
Ioannou P, Mavrikaki V, Kofteridis DP. Infective endocarditis by Acinetobacter species: a systematic review. J Chemother 2020; 33:203-215. [PMID: 32875967 DOI: 10.1080/1120009x.2020.1812804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A. baumannii - A. calcoaceticus complex infections are increasingly frequent, especially in intensive care units. Such infections are associated with a mortality that can be as high as 62%. On the other hand, infective endocarditis (IE) is an uncommon disease with notable morbidity and mortality. Even though IE is rarely caused by Acinetobacter species, these infections can be particularly problematic due to increasing antimicrobial resistance. The purpose of this study was to systemically review all published cases of IE by Acinetobacter species in the literature. A systematic review of PubMed, Scopus and Cochrane library (through 25 April 2020) for studies providing epidemiological, clinical, microbiological as well as treatment data and outcomes of IE by Acinetobacter species was performed. A total of 35 studies, containing data of 37 patients, were included. A prosthetic valve was present in 40.5%, while the most common causative pathogen was A. baumannii - A. calcoaceticus complex, followed by A. lwoffii. Aortic valve was the commonest infected site, followed by mitral valve. Diagnosis was set with transthoracic echocardiography in 48.6%, while the diagnosis was set at autopsy in 20%. Fever and sepsis were the commonest clinical presentations, followed by heart failure and embolic phenomena. Aminoglycosides, cephalosporins and carbapenems were the commonest antimicrobials used. Clinical cure was noted in 70.3%, while overall mortality was 32.4%. Development of heart failure was independently associated with mortality by IE. This systematic review thoroughly describes IE by Acinetobacter and provides information on epidemiology, clinical presentation, treatment and outcomes.
Collapse
Affiliation(s)
- Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vasiliki Mavrikaki
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
26
|
Chen H, Guo X, Xie D, Dong X, Niu J, Chen G. A Clinical Study on the Use of Intraventricular Polymyxin B Supplemented by Continuous External Ventricular Drainage in the Treatment of Drug-Resistant Gram-Negative Bacilli Intracranial Infection. Infect Drug Resist 2020; 13:2963-2970. [PMID: 32904679 PMCID: PMC7457587 DOI: 10.2147/idr.s261510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the clinical effect of ventricular polymyxin B supplemented by continuous external ventricular drainage in the treatment of intracranial infection with multidrug-resistant (MDR) or extensively drug-resistant (XDR) Gram-negative (G-) bacilli following neurosurgery. Patients and Methods A retrospective analysis was performed on 28 patients who had G-bacilli intracranial infection following neurosurgery in our department between January 2017 and December 2019. The patients were treated with intraventricular polymyxin B supplemented by continuous external ventricular drainage. The clinical characteristics, treatment process, cerebrospinal-fluid-related indicators, results and prognosis were analysed. Results All of 28 patients developed an infection subsequent to neurosurgery, and cerebrospinal fluid (CSF) cultures demonstrated MDR/XDR G- bacilli, including Acinetobacter baumannii in 14 cases, Klebsiella pneumoniae in 9 cases, Pseudomonas aeruginosa in 3 cases, and Enterobacter cloacae in 2 cases. The ventricular drainage tube remained unobstructed in all patients during treatment, and intraventricular polymyxin B combined with intravenous antibiotics were administered each day. The duration of treatment with intraventricular polymyxin B was 14.96±4.28 days, and the time required to obtain a negative CSF culture was 8.23±4.02 days. The bacterial clearance rate from cerebrospinal fluid was 92.9% (26/28), and the clinical cure rate was 82.1% (23/28). Among them, 18 patients underwent ventriculoperitoneal shunt insertion for hydrocephalus 82.5 (59.5,114.75) days after the infection was cured, and the mortality rate was 17.6% (5/28). There was no significant change in patient blood creatinine levels before and after treatment. Cured patients were followed up for 4 months to 3 years, and no recurrences were observed. Conclusion Treatment of intracranial infection with MDR/XDR G- bacilli using early intraventricular polymyxin B supplemented by continuous external ventricular drainage treatment may be a safe and effective treatment strategy.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Xiaochuan Guo
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Dongcheng Xie
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Xuanwei Dong
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Jianxing Niu
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| |
Collapse
|
27
|
Spaziante M, Oliva A, Ceccarelli G, Venditti M. What are the treatment options for resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria? Expert Opin Pharmacother 2020; 21:1781-1787. [DOI: 10.1080/14656566.2020.1779221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Martina Spaziante
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
- IRCCS INM Neuromed, Pozzilli, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
28
|
Tawfick MM, Rady HF, El-Borhamy MI, Maraqa AD. Dissemination of Plasmid-Mediated Aminoglycoside-Modifying Enzymes Among MDR Acinetobacter baumannii Isolates from a Tertiary Care Egyptian Hospital. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Acinetobacter baumannii is one of the most challenging multidrug-resistant (MDR) nosocomial pathogens worldwide. Aminoglycosides are used for the treatment of A. baumannii infections, however, resistance to aminoglycosides is currently emerging, limiting therapeutic choices.
Objective:
In this study, the prevalence of aminoglycoside resistance and plasmid-mediated mechanisms of aminoglycoside resistance were investigated in A. baumannii clinical isolates collected from ICU patients at a tertiary care hospital in Egypt.
Methods:
The automated Vitek 2 system was used to identify A. baumannii species and determination of the antimicrobial susceptibility pattern. The identification of A. baumannii was confirmed by the detection of the blaOXA-51-like gene intrinsic to this species. Minimum Inhibitory Concentration (MIC) of gentamicin was determined using E-test following the CLSI breakpoints. Isolates were screened for the prevalence and diversity of the plasmid-carried aminoglycoside-modifying enzymes encoding genes aacC1, aadA1, aadB and aphA6. For genetic diversity analysis, the ERIC-PCR method was performed.
Results:
All A. baumannii isolates were MDR with high resistance rates to tested antimicrobials. The resistance rate to gentamicin was 92.9% with elevated MICs (≥ 32 μg/mL). The gentamicin-resistant isolates harboured one or more of the studied genes with the prevalence of aphA6 (81%). ERIC-based genotyping revealed that there was no evidence of A. baumannii clonal dissemination among isolates.
Conclusion:
The study concluded that MDR A. baumannii isolates were highly resistant to gentamicin. The plasmid-carried aminoglycoside-modifying enzymes encoding genes were disseminated among isolates with the AphA6 gene, which was the most prevalent one. The acquisition of more than one aminoglycoside resistance gene was associated with an elevated MIC of gentamicin. Thus, regular surveillance studies of the emerging resistance to antimicrobials and strict measures to control the dissemination of resistance determinants genes are warranted.
Collapse
|
29
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
30
|
Shi Y, Hua X, Xu Q, Yang Y, Zhang L, He J, Mu X, Hu L, Leptihn S, Yu Y. Mechanism of eravacycline resistance in Acinetobacter baumannii mediated by a deletion mutation in the sensor kinase adeS, leading to elevated expression of the efflux pump AdeABC. INFECTION GENETICS AND EVOLUTION 2020; 80:104185. [PMID: 31923725 DOI: 10.1016/j.meegid.2020.104185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Acinetobacter baumannii is an important pathogen and presents a major burden in healthcare as strains frequently cause hospital associated opportunistic infections with high mortality rates. Due to increasing numbers of drug resistant A. baumannii strains, newly developed antibiotics are being used to treat infections caused by such strains. One novel synthetic antibiotic of the tetracycline class with activity against A. baumannii is eravacycline. To investigate possible mechanisms of eravacycline resistance, we performed an in vitro evolution experiment to select for an eravacycline resistant strain, with the clinical isolate MDR-ZJ06 as parental strain. We obtained a strain designated MDR-ZJ06-E6 that was able to grow in 64-fold MIC. Genomic mutations were identified by whole genome sequencing, where we found a deletion mutation in the gene adeS. Using complementation experiments, including growth rate determination and antibiotics susceptibility testing, we could confirm that this mutation was responsible for eravacycline resistance of strain MDR-ZJ06-E6. As a mechanism of resistance, we identified a significant overexpression of the efflux pump AdeABC which seems to be regulated by the mutation in adeS in A. baumannii.
Collapse
Affiliation(s)
- Yue Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunxing Yang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xinli Mu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Lihua Hu
- Department of critical care medicine, Hangzhou General Hospital of Chinese People's Armed Police, Hangzhou, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Abd El-Baky RM, Farhan SM, Ibrahim RA, Mahran KM, Hetta HF. Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2019.1707350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Sara M. Farhan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Reham A. Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Khaled M. Mahran
- General Surgery and Laparoscopic surgery, Faculty of Medicine, Minia University, Minia, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
32
|
Yang J, Hong G, Kim YS, Seo H, Kim S, McDowell A, Lee WH, Kim YS, Oh YM, Cho YS, Choi YW, Kim YY, Jee YK, Kim YK. Lung Disease Diagnostic Model Through IgG Sensitization to Microbial Extracellular Vesicles. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:669-683. [PMID: 32400132 PMCID: PMC7224999 DOI: 10.4168/aair.2020.12.4.669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Purpose Recently, there has been a rise in the interest to understand the composition of indoor dust due to its association with lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Furthermore, it has been found that bacterial extracellular vesicles (EVs) within indoor dust particles can induce pulmonary inflammation, suggesting that these might play a role in lung disease. Methods We performed microbiome analysis of indoor dust EVs isolated from mattresses in apartments and hospitals. We developed diagnostic models based on the bacterial EVs antibodies detected in serum samples via enzyme-linked immunosorbent assay (ELISA) in this analysis. Results Proteobacteria was the most abundant bacterial EV taxa observed at the phylum level while Pseudomonas, Enterobacteriaceae (f) and Acinetobacter were the most prominent organisms at the genus level, followed by Staphylococcus. Based on the microbiome analysis, serum anti-bacterial EV immunoglobulin G (IgG), IgG1 and IgG4 were analyzed using ELISA with EV antibodies that targeted Staphylococcus aureus, Acinetobacter baumannii, Enterobacter cloacae and Pseudomonas aeruginosa. The levels of anti-bacterial EV antibodies were found to be significantly higher in patients with asthma, COPD and lung cancer compared to the healthy control group. We then developed a diagnostic model through logistic regression of antibodies that showed significant differences between groups with smoking history as a covariate. Four different variable selection methods were compared to construct an optimal diagnostic model with area under the curves ranging from 0.72 to 0.81. Conclusions The results of this study suggest that ELISA-based analysis of anti-bacterial EV antibodies titers can be used as a diagnostic tool for lung disease. The present findings provide insights into the pathogenesis of lung disease as well as a foundation for developing a novel diagnostic methodology that synergizes microbial EV metagenomics and immune assays.
Collapse
Affiliation(s)
- Jinho Yang
- Institute of MD Healthcare Inc., Seoul, Korea.,Department of Health and Safety Convergence Science, Korea University, Seoul, Korea
| | - Goohyeon Hong
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Youn Seup Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Hochan Seo
- Institute of MD Healthcare Inc., Seoul, Korea
| | - Sungwon Kim
- Institute of MD Healthcare Inc., Seoul, Korea
| | | | - Won Hee Lee
- Institute of MD Healthcare Inc., Seoul, Korea
| | - You Sun Kim
- Cell Therapy Research Center, GCLabCell, Yongin, Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Disease, Asan Medical Center, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, Seoul, Korea
| | - Young Woo Choi
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, Korea
| | - You Young Kim
- Professor Emeritus of Seoul National University, Honorary President of Korea Asthma Allergy Foundation, Seoul, Korea
| | - Young Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea.
| | | |
Collapse
|
33
|
Wu X, Wang L, Ye YZ, Yu H. Postoperative multidrug-resistant Acinetobacter baumannii meningitis successfully treated with intravenous doxycycline and intraventricular gentamicin: A case report. World J Clin Cases 2019; 7:4342-4348. [PMID: 31911917 PMCID: PMC6940324 DOI: 10.12998/wjcc.v7.i24.4342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii (MDRAB) has emerged as an increasingly important pathogen that causes nosocomial meningitis. However, MDRAB-associated nosocomial meningitis is rarely reported in children.
CASE SUMMARY We report the case of a 1-year-old girl with a choroid plexus papilloma, who developed postoperative nosocomial meningitis due to MDRAB. The bacterial strain was sensitive only to tigecycline and colistin, and showed varying degrees of resistance to penicillin, amikacin, ceftriaxone, cefixime, cefotaxime, ciprofloxacin, levofloxacin, gentamicin, meropenem, imipenem, and tobramycin. She was cured with intravenous doxycycline and intraventricular gentamicin treatment.
CONCLUSION Doxycycline and gentamicin were shown to be effective and safe in the treatment of a pediatric case of MDRAB meningitis.
Collapse
Affiliation(s)
- Xia Wu
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Lu Wang
- Department of General Medicine, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Ying-Zi Ye
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Hui Yu
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
34
|
Hassannejad N, Bahador A, Rudbari NH, Modarressi MH, Parivar K. In vivo antibacterial activity of
Zataria multiflora
Boiss extract and its components, carvacrol, and thymol, against colistin‐resistant
Acinetobacter baumannii
in a pneumonic BALB/c mouse model. J Cell Biochem 2019; 120:18640-18649. [DOI: 10.1002/jcb.28908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Niloofar Hassannejad
- Department of Cellular and Molecular BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| | - Abbas Bahador
- Department of MicrobiologySchool of MedicineTehran University of Medical Sciences Tehran Iran
| | - Nasim Hayati Rudbari
- Department of BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| | | | - Kazem Parivar
- Department of BiologyFaculty of SciencesScience and Research Brand of Islamic Azad University Tehran Iran
| |
Collapse
|
35
|
Radó J, Kaszab E, Benedek T, Kriszt B, Szoboszlay S. First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiol Immunol Hung 2019; 66:113-130. [PMID: 30816807 DOI: 10.1556/030.66.2019.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The emergence of opportunistic Acinetobacter spp. in healthcare settings poses a significant threat to public health. The major reasons for nosocomial spread of these species are their abilities to develop and transfer drug resistance against various classes of antibiotics. Considering that Acinetobacter spp. are ubiquitous in nature, can utilize several carbon sources, and reach humans via various pathways, our aim was to obtain information about the environmental strains of this genus. Our first step was to develop and test a multistep isolation procedure based on traditional scientific methods. Antibiotic resistance patterns of the isolated strains were determined, as susceptibility to 12 antibiotics of 7 classes was tested by MIC Test Strip method. Altogether 366 samples (groundwater, surface water, and soil) of 24 sites were investigated and a collection of 37 Acinetobacter isolates was obtained. Among others, clinically important human pathogen Acinetobacter spp., such as A. baumannii, A. johnsonii, and A. gyllenbergii were identified. Three environmental strains were determined as multidrug-resistant including a carbapenem-resistant, hemolytic Acinetobacter beijerinckii strain isolated from a hydrocarbon-contaminated groundwater sample. In summary, it has been found that the applied multistep isolation procedure is applicable to isolate various species of Acinetobacter genus. Based on the antibiotic resistance assay, we can conclude that environmental representatives of Acinetobacter spp. are able to develop multidrug resistance, but at a lower rate than their clinical counterparts.
Collapse
Affiliation(s)
- Júlia Radó
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Edit Kaszab
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Tibor Benedek
- 2 Regional University Center of Excellence, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Sándor Szoboszlay
- 1 Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
36
|
Pandey S, Li L, Deng XY, Cui DM, Gao L. Outcome Following the Treatment of Ventriculitis Caused by Multi/Extensive Drug Resistance Gram Negative Bacilli; Acinetobacter baumannii and Klebsiella pneumonia. Front Neurol 2019; 9:1174. [PMID: 30728802 PMCID: PMC6352847 DOI: 10.3389/fneur.2018.01174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/18/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction: CNS ventriculitis is a serious complication following an intracranial insult that demands immediate treatment with broad-spectrum antibiotics in a critical care setting. Infections due to multi/extensive drug resistance (MDR/XDR) microorganisms are very challenging, which may demand an additional approach to the ongoing practice; intravenous and intraventricular administration of antibiotics. Aim: To study the efficacy and safety of thorough ventricular irrigation followed by daily intraventricular antibiotic administration in patients with MDR/XDR ventriculitis. Materials and Methods: A retrospective analysis was done on 19 inpatients with ventriculitis caused by Acinetobacter baumannii (AB) or Klebsiella pneumonia (KP), at Shanghai Tenth People's Hospital from January 2016 to October 2017. We reviewed our experience; the role of thorough ventricular irrigation with Colistin mixed normal saline, followed by intraventricular Colistin therapy. Treatment outcomes were evaluated based on the clinical symptoms, Cerebro-Spinal Fluid (CSF) culture, laboratory findings and complications. Results: A total of 19 patients were included (15 males and 4 females), with a mean age in years of 51, which ranged from 18–67. Fourteen patients had Acinetobacter baumannii (AB) and 5 had Klebsiella pneumoniae (KP). The average CSF sterilization period following ventricular irrigation and intraventricular Colistin was 6 days. Sixteen patients (84%) were cured, and 3 patients (15%) died during the course of the treatment. Conclusion: In addition to Intraventricular Colistin, thorough ventricular irrigation could increase the cure rate up to 84% in patients suffering from MDR/XDR CNS ventriculitis.
Collapse
Affiliation(s)
- Sajan Pandey
- Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lei Li
- Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xian Yu Deng
- Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Da Ming Cui
- Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Liang Gao
- Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Chen F, Deng X, Wang Z, Wang L, Wang K, Gao L. Treatment of severe ventriculitis caused by extensively drug-resistant Acinetobacter baumannii by intraventricular lavage and administration of colistin. Infect Drug Resist 2019; 12:241-247. [PMID: 30718963 PMCID: PMC6345184 DOI: 10.2147/idr.s186646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Severe ventriculitis (SV) caused by multidrug-resistant bacteria is associated with high morbidity and mortality in neurosurgical patients. This study assessed the outcomes of patients with SV caused by Acinetobacter baumannii who were treated by intraventricular (IVT) lavage and colistin administration. Methods This retrospective study included consecutive patients with SV caused by A. baumannii who were admitted at the Neurosurgical Department of Shanghai Tenth People’s Hospital from January 2014 to September 2017. Patients’ medical records, radiographic images, and surgical notes were reviewed. The patients were followed up for at least 6 months after discharge. Results A total of 25 patients, including 20 male and five female, were enrolled in this study; the average age was 45.6 years. All patients underwent neurosurgery before infection, and all A. baumannii cultures from cerebrospinal fluid (CSF) showed extensive resistance to the tested antibiotics except for tigecycline and colistin. All the patients underwent IVT lavage followed by daily administration of colistin after surgery; 24 patients received a daily colistin dose of 100,000 IU, while one received 50,000 IU. The patients also received tigecycline-based systemic antibiotic treatment. The mean duration of IVT colistin was 13.4±2.8 days. The time required to obtain a negative CSF culture was 8.9±4.0 days. Of the 20 patients who were cured, eight underwent shunt surgery due to hydrocephalus before they were discharged to a rehabilitation center. Five patients died, including one who was re-admitted due to recurrence 1 month after discharge. Conclusions IVT lavage and colistin treatment may be an effective treatment for SV caused by extensively drug-resistant A. baumannii. Future studies with a larger sample size may be needed to verify the findings in this study.
Collapse
Affiliation(s)
- FuMei Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China, ; .,Department of Emergency Surgery, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou 360001, China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China, ;
| | - Zhanpeng Wang
- Department of Neurosurgery, Shanghai Clinical College, Anhui Medical University, Shanghai 200072, China
| | - Li Wang
- Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou City 310016, China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China, ;
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China, ;
| |
Collapse
|
38
|
Perier F, Couffin S, Martin M, Bardon J, Cook F, Mounier R. Multidrug-Resistant Acinetobacter baumannii Ventriculostomy-Related Infection, Treated by a Colistin, Tigecycline, and Intraventricular Fibrinolysis. World Neurosurg 2018; 121:111-116. [PMID: 30312816 DOI: 10.1016/j.wneu.2018.09.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acinetobacter baumannii meningitis and ventriculitis are difficult issues, because of the low diffusion of antibiotics in the cerebrospinal fluid and bacterial multidrug resistance. The presence of an infected intraventricular hematoma, constituting an equivalent of undrained abscess, may promote biofilm formation and failure of medical treatment. CASE DESCRIPTION In this case of ventriculostomy-related infection after ventricular hemorrhage, Acinetobacter baumannii was sensitive only to colistin and tigecycline. Despite a combination therapy involving intraventricular injections of colistin, we observed clinical and bacteriologic failure. Therefore, at day 4 of antibiotic therapy, we performed intraventricular fibrinolysis, which dissolved the clot, enabling sterilization of the cerebrospinal fluid after 48 hours. CONCLUSION This clinical case suggests the usefulness of intraventricular fibrinolysis to lyse the clot and optimize the action of antibiotics.
Collapse
Affiliation(s)
- François Perier
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France.
| | - Severine Couffin
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France
| | - Mathieu Martin
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France
| | - Jean Bardon
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France
| | - Fabrice Cook
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France
| | - Roman Mounier
- Department of Anesthesia and Surgical Intensive Care, Henri Mondor University Hospital of Paris, Paris XII School of Medicine, Creteil, France
| |
Collapse
|
39
|
Eales MG, Ferrari E, Goddard AD, Lancaster L, Sanderson P, Miller C. Mechanistic and phenotypic studies of bicarinalin, BP100 and colistin action on Acinetobacter baumannii. Res Microbiol 2018; 169:296-302. [DOI: 10.1016/j.resmic.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023]
|
40
|
Jiménez-Guerra G, Heras-Cañas V, Gutiérrez-Soto M, Del Pilar Aznarte-Padial M, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-Fernández J. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol 2018; 67:790-797. [PMID: 29693543 DOI: 10.1099/jmm.0.000742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose. Acinetobacter baumannii and Pseudomonas aeruginosa are responsible for numerous nosocomial infections. The objective of this study was to determine the development of their susceptibility to ten antibiotics and the antibiotic consumption of patients with suspicion of urinary tract infection (UTI).Methodology. A retrospective study was conducted on the susceptibility profiles of A. baumannii and P. aeruginosa isolates from 749 urine samples gathered between January 2013 and December 2016, and on the consumption of imipenem, meropenem and piperacillin-tazobactam between 2014 and 2016.Results. Hospital patients were the source of 82 (91.1 %) of the 90 A. baumannii isolates detected and 555 (84.2 %) of the 659 P. aeruginosa isolates. Globally, the lowest percentage susceptibility values were found for fosfomycin, aztreonam and ciprofloxacin, while colistin continued to be the most active antibiotic in vitro. In 2016, the susceptibility of A. baumannii to carbapenem and piperacillin-tazobactam decreased to very low values, while the susceptibility of P. aeruginosa to carbapenem remained stable but its susceptibility to piperacillin-tazobactam decreased. There was a marked increase in the consumption of piperacillin-tazobactam.Conclusion. In our setting, it is no longer possible to use carbapenems and piperacillin-tazobactam for empirical treatment of UTI due to A. baumannii or to use piperacillin-tazobactam for empirical treatment of UTI due to P. aeruginosa. Colistin was found to be the most active antibiotic in vitro. There was a marked increase in the consumption of piperacillin-tazobactam.
Collapse
Affiliation(s)
- Gemma Jiménez-Guerra
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Victor Heras-Cañas
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | | | | | - Manuela Expósito-Ruiz
- Unidad de Metodología de la Investigación y Bioestadística. Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José Gutiérrez-Fernández
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Granada-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|
41
|
Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics. Front Microbiol 2018; 9:1011. [PMID: 29875743 PMCID: PMC5974060 DOI: 10.3389/fmicb.2018.01011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/30/2018] [Indexed: 01/23/2023] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP), efflux pumps (adeABC), and multi-drug resistant protein (mdrp) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC (P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.
Collapse
Affiliation(s)
- Deepti P Karumathil
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Meera Surendran Nair
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - James Gaffney
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | | |
Collapse
|
42
|
Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK. The Broad-Spectrum Antimicrobial Potential of [Mn(CO) 4(S 2CNMe(CH 2CO 2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxid Redox Signal 2018; 28:1286-1308. [PMID: 28816060 PMCID: PMC5905950 DOI: 10.1089/ars.2017.7239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CORMs) are candidates for animal and antimicrobial therapeutics. We aimed to probe the antimicrobial potential of a novel manganese CORM. RESULTS [Mn(CO)4S2CNMe(CH2CO2H)], CORM-401, inhibits growth of Escherichia coli and several antibiotic-resistant clinical pathogens. CORM-401 releases CO that binds oxidases in vivo, but is an ineffective respiratory inhibitor. Extensive CORM accumulation (assayed as intracellular manganese) accompanies antimicrobial activity. CORM-401 stimulates respiration, polarizes the cytoplasmic membrane in an uncoupler-like manner, and elicits loss of intracellular potassium and zinc. Transcriptomics and mathematical modeling of transcription factor activities reveal a multifaceted response characterized by elevated expression of genes encoding potassium uptake, efflux pumps, and envelope stress responses. Regulators implicated in stress responses (CpxR), respiration (Arc, Fnr), methionine biosynthesis (MetJ), and iron homeostasis (Fur) are significantly disturbed. Although CORM-401 reduces bacterial growth in combination with cefotaxime and trimethoprim, fractional inhibition studies reveal no interaction. INNOVATION We present the most detailed microbiological analysis yet of a CORM that is not a ruthenium carbonyl. We demonstrate CO-independent striking effects on the bacterial membrane and global transcriptomic responses. CONCLUSIONS CORM-401, contrary to our expectations of a CO delivery vehicle, does not inhibit respiration. It accumulates in the cytoplasm, acts like an uncoupler in disrupting cytoplasmic ion balance, and triggers multiple effects, including osmotic stress and futile respiration. Rebound Track: This work was rejected during standard peer review and rescued by rebound peer review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Miguel Aon, Giancarlo Biagini, James Imlay, and Nigel Robinson. Antioxid. Redox Signal. 28, 1286-1308.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .,2 School of Science and Technology , Nottingham Trent University, Nottingham, United Kingdom
| | - Ronald Begg
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - John J Kendall
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Guido Sanguinetti
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Brian E Mann
- 4 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
43
|
Ramalingam K, Lee VA. Antibiofilm activity of an EDTA-containing nanoemulsion on multidrug-resistant Acinetobacter baumannii. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:737-743. [PMID: 29719996 DOI: 10.1080/21691401.2018.1468771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Acinetobacter baumannii have evolved as an exceedingly troublesome pathogenic microorganisms and prevention and controlling this pathogen is considered to be a public health problem. Nanoemulsions (NE) are a distinctive type of decontaminator produced by integration of immiscible oil phase with aqueous phase under extreme shear forces. The effectiveness of NEs and their components was determined against four stains of A. baumannii by MBC, adherence assay, biofilm assay and SEM studies. NE dilutions ranging from 125 to 225 reduced adhesion by from 61.8 to 99.9% in NE-treated groups (p<.05) as determined by MBC. Four-day-old A. baumannii biofilms were treated with NE; LIVE/DEAD staining showed dead cell intensity of 56.2-92.0% in NE-treated groups. After NE treatment and observation by SEM, cell surfaces appeared to be remarkably disintegrated. Irregular boundaries were observed and margins of cell walls were unclear. The anti-adherence, anti-biofilm and morphological disruption effects of NE suggest that this material could be useful for the development of promising antimicrobial agents.
Collapse
Affiliation(s)
- Karthikeyan Ramalingam
- a School of Life Sciences , B.S. Abdur Rahman Crescent Institute of Science and Technology , Chennai , India
| | - Valerie A Lee
- b University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
44
|
Serifoglu I, Er Dedekarginoglu B, Savas Bozbas S, Akcay S, Haberal M. Clinical Characteristics of Acinetobacter baumannii Infection in Solid-Organ Transplant Recipients. EXP CLIN TRANSPLANT 2018. [PMID: 29528021 DOI: 10.6002/ect.tond-tdtd2017.p51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Acinetobacter baumannii, depending on the immune status of the host, may result in one of the most serious hospital infections. Infections involving A. baumannii infection have been recently rising. However, little is known about the clinical features of A. baumannii infection in solid-organ transplant recipients. We aimed to share our clinical experiences with A. baumannii infection in our transplant recipients. MATERIALS AND METHODS Between 2011 and 2017, 41 solid-organ transplant patients developed A. baumannii infection at Baskent University Hospital. Medical records were reviewed, and patient demographics, microbiology results, and overall outcome data were noted. RESULTS Of 41 solid-organ transplant patients with A. baumannii infection, 29 were male and 12 were female patients with mean age of 47.15 ± 13.24 years. Our infection rate with A. baumannii infection was 6.1%. The most common sites of infection were deep tracheal aspirate (48.8%)and bloodstream (36.6%). Onset of infection 1 year posttransplant was identified in 58.5% of recipients. Risk factors included presence of invasive procedures (56.1%) and administration of high-dose corticosteroids for rejection 1 year before infection (68.3%). Thirty-day mortality rate was 41.5% (17/41 patients) and was not associated with the infection site, microbiological cure, clinical cure, and drug resistance in our study group. CONCLUSIONS Acinetobacter baumannii is an important cause of hospital-acquired infection and mortality worldwide. A major problem with A. baumannii infection is delayed initiation of appropriate antibiotic treatment and the rising numbers of extensively drug-resistant organisms. Predicting the potential risk factors, especially in the already at-risk solid-organ transplant population, has an important role in patient outcomes.
Collapse
Affiliation(s)
- Irem Serifoglu
- Department of Pulmonary Diseases, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
45
|
Gómez RF, Castillo A, Chávez-Vivas M. Characterization of multidrug-resistant Acinetobacter ssp. strains isolated from medical intensive care units in Cali - Colombia. COLOMBIA MEDICA (CALI, COLOMBIA) 2017; 48:183-190. [PMID: 29662260 PMCID: PMC5896725 DOI: 10.25100/cm.v48i4.2858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction The extensive use of antibiotics has led to the emergence of multi-resistant strains in some species of the genus Acinetobacter. Objective To investigate the molecular characteristics of multidrug-resistant of Acinetobacter ssp. strains isolated from 52 patients collected between March 2009 and July 2010 in medical intensive care units in Cali - Colombia. Methods The susceptibility to various classes of antibiotics was determined by disc diffusion method, and the determination of the genomic species was carried out using amplified ribosomal DNA restriction analysis (ARDRA) and by sequencing of the 16s rDNA gene. Also, the genes of beta-lactamases as well as, integrases IntI1 and IntI2 were analyzed by PCR method. Results The phenotypic identification showed that the isolates belong mainly to A. calcoaceticus- A. baumannii complex. All of them were multi-resistant to almost the whole antibiotics except to tigecycline and sulperazon, and they were grouped into five (I to V) different antibiotypes, being the antibiotype I the most common (50.0%). The percent of beta-lactamases detected was: blaTEM (17.3%), blaCTX-M (9.6%), blaVIM (21.2%), blaIMP (7.7%), blaOXA-58 (21.2%), and blaOXA-51 (21.2%). The phylogenetic tree analysis showed that the isolates were clustering to A. baumannii (74.1%), A. nosocomialis (11.1%) and A. calcoaceticus (7.4 %). Besides, the integron class 1 and class 2 were detected in 23.1% and 17.3% respectively. Conclusion The isolates were identified to species A. baumanii mainly, and they were multiresistant. The resistance to beta-lactams may be by for presence of beta-lactamases in the majority of the isolates.
Collapse
Affiliation(s)
- Rómel Fabian Gómez
- Grupo de Investigación en Microbiología Molecular y Enfermedades Infecciosas (GIMMEIN). Universidad Libre, seccional Cali. Colombia
| | - Andres Castillo
- Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad del Valle, Cali. Colombia
| | - Mónica Chávez-Vivas
- Grupo Microambiente Libre Departamento de Ciencias Biomédicas. Facultad de Salud. Universidad Santiago de Cali. Cali. Colombia.,Grupo de Investigación Instituto de Ciencias Biomédicas. Universidad Libre de Cali, Colombia
| |
Collapse
|
46
|
Karaiskos I, Antoniadou A, Giamarellou H. Combination therapy for extensively-drug resistant gram-negative bacteria. Expert Rev Anti Infect Ther 2017; 15:1123-1140. [DOI: 10.1080/14787210.2017.1410434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ilias Karaiskos
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | - Helen Giamarellou
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| |
Collapse
|
47
|
Kuo HY, Chao HH, Liao PC, Hsu L, Chang KC, Tung CH, Chen CH, Liou ML. Functional Characterization of Acinetobacter baumannii Lacking the RNA Chaperone Hfq. Front Microbiol 2017; 8:2068. [PMID: 29163381 PMCID: PMC5663733 DOI: 10.3389/fmicb.2017.02068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The RNA chaperone Hfq is involved in the riboregulation of diverse genes via small RNAs. Recent studies have demonstrated that Hfq contributes to the stress response and the virulence of several pathogens, and the roles of Hfq vary among bacterial species. Here, we attempted to elucidate the role of Hfq in Acinetobacter baumannii ATCC 17978. In the absence of hfq, A. baumannii exhibited retarded cell growth and was highly sensitive to environmental stress, including osmotic and oxidative pressure, pH, and temperature. Compared to the wild-type, the Hfq mutant had reduced outer membrane vesicles secretion and fimbriae production as visualized by atomic force microscopy. The absence of hfq reduced biofilm formation, airway epithelial cell adhesion and invasion, and survival in macrophage. Further, the hfq mutant induced significantly higher IL-8 levels in airway epithelial cells, which would promote bacterial clearance by the host. In addition to results similar to those reported for other bacteria, our findings demonstrate that Hfq is required in the regulation of the iron-acquisition system via downregulating the bauA and basD genes, the stress-related outer membrane proteins carO, A1S_0820, ompA, and nlpE, and the stress-related cytosolic proteins uspA and groEL. Our data indicate that Hfq plays a critical role in environmental adaptation and virulence in A. baumannii by modulating stress responses, surface architectures, and virulence factors. This study is the first to illustrate the functional role of Hfq in A. baumannii.
Collapse
Affiliation(s)
- Han-Yueh Kuo
- Department of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Hao Chao
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Cheng Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Long Hsu
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chi-Hua Tung
- Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
| | - Chang-Hua Chen
- Division of Infectious Disease, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Center of Infection Prevention and Control, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| |
Collapse
|
48
|
Swe-Han KS, Pillay M, Schnugh D, Mlisana KP, Baba K, Pillay M. Horizontal transfer of OXA-23-carbapenemase-producing Acinetobacterspecies in intensive care units at an academic complex hospital, Durban, KwaZulu-Natal, South Africa. S Afr J Infect Dis 2017. [DOI: 10.1080/23120053.2017.1335482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Khine Swe Swe-Han
- Department of Medical Microbiology, National Health Laboratory Service, Durban, South Africa
- Medical Microbiology and Infection Control, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melendhran Pillay
- Department of Medical Microbiology, National Health Laboratory Service, Durban, South Africa
| | - Desmond Schnugh
- Infection Control Services Laboratory, Department of Clinical Microbiology and Infectious Diseases, Witwatersrand Medical School, Johannesburg, South Africa
| | - Koleka P Mlisana
- Department of Medical Microbiology, National Health Laboratory Service, Durban, South Africa
- Medical Microbiology and Infection Control, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kamaldeen Baba
- Department of Medical Microbiology, National Health Laboratory Service, Universitas Academic Laboratory, University of the Free State, Bloemfontein, South Africa
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
49
|
Alharbe R, Almansour A, Kwon DH. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Int J Med Microbiol 2017; 307:409-414. [PMID: 28781060 DOI: 10.1016/j.ijmm.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022] Open
Abstract
A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were all<0.5 and the carbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless of their resistance or susceptibility to antibiotics. This finding suggests that exogenous glutathione alone and/or in combination with existing antibiotics may be applicable to treat infections with carbapenem-associated multidrug resistant A. baumannii.
Collapse
Affiliation(s)
- Roaa Alharbe
- Department of Biology, Long Island University, Brooklyn, NY 11201, United States
| | - Ayidh Almansour
- Department of Biology, Long Island University, Brooklyn, NY 11201, United States
| | - Dong H Kwon
- Department of Biology, Long Island University, Brooklyn, NY 11201, United States; Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX 77030, United States, United States.
| |
Collapse
|
50
|
Sun L, Wang X, Li Z. Successful treatment of multidrug-resistant Acinetobacter baumannii meningitis with ampicillin sulbactam in primary hospital. Br J Neurosurg 2017; 32:642-645. [PMID: 28431478 DOI: 10.1080/02688697.2017.1319907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction: Acinetobacter baumannii nosocomial infections, especially those due to multi-drug resistant strains, are increasingly detected. We want to find the effective treatment measures about multi-resistant Acinetobacter baumannii infections through this research.Methodology: The clinical features and the outcomes of twelve cases of nosocomial Acinetobacter baumannii meningitis treated with ampicillin sulbactam and intrathecal use of amikacin are reported in primary hospital. All the patients had fever, neck stiffness or meningeal signs, and a low consciousness level, and in their cerebrospinal fluid (CSF), pleocytosis, a low glucose level, and an elevated protein level were noted. For all CSF isolates were resistant to at least two antibiotics used in empirical therapy (third and fourth generation cephalosporins, carbapenems or piperacillin/tazobactam). Four cases sputum culture prompted the growth of Acinetobacter baumannii. Two CSF isolates were intermediate resistant to ampicillin sulbactam, only sensitive to amikacin. The two patients were treated with ampicillin sulbactam and intrathecal use of amikacin.Results: The dosages and the duration of treatment with ampicillin sulbactam were 2 g/1 g every 6 hours and 9-21days. Eleven patients were cured and one patient died of meningitis (8.3%). This patient died of severe respiratory Acinetobacter baumannii infection and severe sepsis. One patient had mild nausea and discomfort, given metoclopramide therapy. There were no serious side effects with the ampicillin sulbactam treatment.Conclusions: In conclusion, ampicillin sulbactam may be effective as therapy for meningitis caused by Acinetobacter baumannii resistant to imipenem and other β-lactam drugs. Meanwhile, continuous lumbar external drainage and intermittent intrathecal use of amikacin were necessary methods.
Collapse
Affiliation(s)
- Leitao Sun
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|