1
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
2
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
5
|
Büttner H, Pidot SJ, Scherlach K, Hertweck C. Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin. Chem Sci 2022; 14:103-112. [PMID: 36605741 PMCID: PMC9769094 DOI: 10.1039/d2sc04167g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.
Collapse
Affiliation(s)
- Hannah Büttner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena07743 JenaGermany
| |
Collapse
|
6
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
7
|
Díaz PR, Torres MJ, Petroselli G, Erra-Balsells R, Audisio MC. Antibacterial activity of Bacillus licheniformis B6 against viability and biofilm formation of foodborne pathogens of health importance. World J Microbiol Biotechnol 2022; 38:181. [PMID: 35951268 DOI: 10.1007/s11274-022-03377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
We studied a strain of Bacillus isolated from an artisanal tannery in Salta, Argentina. It was identified as Bacillus licheniformis B6 by 16 S phylogenetic analysis and MALDI TOF (GenBank accession code No. KP776730). The synthesis of lipopeptides by B6 and their antibacterial activity against clinical pathogenic strains was analyzed both in the cell-free supernatant (CFS) and in the crude fraction of lipopeptides (LF). Overall, the CFS did not significantly reduce the viability of the studied strains (Staphylococcus aureus 269 and ATCC 43,300, Escherichia coli 4591 and 25,922, Klebsiella sp. 1087 and 1101). However, LF at 9 mg/mL reduced the viability of those pathogenic strains by 2 and 3 log orders compared to those of the control. When the effects of LF and ampicillin were compared, they showed different sensitivity against pathogenic strains. For example, E. coli 4591 was the strain most resistant to ampicillin, requiring 250 mg/mL of antibiotic to achieve the same inhibitory effect as 9 mg/mL of B6 LF. SEM observations of the effect of LF on biofilm formation by E. coli 4591 and Klebsiella sp. 1087 clearly showed that biofilm structures were destabilized, these strains turning into weak biofilm formers. Signals in the CFS and LF corresponding to kurstakin and iturin were identified by MALDI TOF. Interestingly, surfactin was detected, rather than lichenysin, the expected lipopeptide in B. licheniformis species. Signals of bacitracin and fengycins were also found, the latter with a higher number of homologues and relative intensity in the LF than the other lipopeptides. These results show that the lipopeptides synthesized by B. licheniformis B6 have both potential antibacterial and anti-biofilm activity against pathogenic bacteria of health importance.
Collapse
Affiliation(s)
- Pablo R Díaz
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina
| | - María J Torres
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de Salta, Av. Bolivia, 5150. 4400, Salta, Argentina
| | - Gabriela Petroselli
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina
| | - Marcela Carina Audisio
- Consejo Nacional de Investigaciones Científicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, CIHIDECAR-CONICET, Universidad de Buenos Aires, Pabellón, II, Argentina.
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de Salta, Av. Bolivia, 5150. 4400, Salta, Argentina.
| |
Collapse
|
8
|
Rodriguez-Alvarez JS, Kratky L, Yates-Alston S, Sarkar S, Vogel K, Gutierrez-Aceves J, Levi N. A PEDOT nano-composite for hyperthermia and elimination of urological bacteria. BIOMATERIALS ADVANCES 2022; 139:212994. [PMID: 35882143 DOI: 10.1016/j.bioadv.2022.212994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Novel modalities for overcoming recurrent urinary tract infections associated with indwelling urinary catheters are needed, and rapidly induced hyperthermia is one potential solution. PEDOT nanotubes are a class of photothermal particles that can easily be incorporated into silicone to produce thin, uniform coating on medical grade silicone catheters; subsequent laser stimulation therein imparts temperature elevations that can eliminate bacteria and biofilms. PEDOT silicone coatings are stable following thermal sterilization and repeated heating and cooling cycles. Laser stimulation can induce temperature increases of up to 55 °C in 300 s, but only 45 s was needed for ablation of UTI inducing E. coli biofilms in vitro. This work also demonstrates that mild hyperthermia of 50 °C, applied for only 31 s in the presence of antibiotics could eliminate E. coli biofilm as effectively as high temperatures. This work culminates in the evaluation of the PEDOT NTs for photothermal elimination of E. coli in an in vivo model to demonstrate the safety and effectiveness of a photothermal nanocomposite (16 s treatment time) for rapid clearance of E. coli.
Collapse
Affiliation(s)
- Juan Sebastian Rodriguez-Alvarez
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America; Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lauren Kratky
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kenneth Vogel
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Jorge Gutierrez-Aceves
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
9
|
Ferreira WT, Hong HA, Adams JRG, Hess M, Kotowicz NK, Tan S, Ferrari E, Brisson A, Zentek J, Soloviev M, Cutting SM. Environmentally Acquired Bacillus and Their Role in C. difficile Colonization Resistance. Biomedicines 2022; 10:930. [PMID: 35625667 PMCID: PMC9138776 DOI: 10.3390/biomedicines10050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Clostridioides difficile is an environmentally acquired, anaerobic, spore-forming bacterium which ordinarily causes disease following antibiotic-mediated dysbiosis of the intestinal microbiota. Although much is understood regarding the life cycle of C. difficile, the fate of C. difficile spores upon ingestion remains unclear, and the underlying factors that predispose an individual to colonization and subsequent development of C. difficile infection (CDI) are not fully understood. Here, we show that Bacillus, a ubiquitous and environmentally acquired, spore-forming bacterium is associated with colonization resistance to C. difficile. Using animal models, we first provide evidence that animals housed under conditions that mimic reduced environmental exposure have an increased susceptibility to CDI, correlating with a loss in Bacillus. Lipopeptide micelles (~10 nm) produced by some Bacilli isolated from the gastro-intestinal (GI)-tract and shown to have potent inhibitory activity to C. difficile have recently been reported. We show here that these micelles, that we refer to as heterogenous lipopeptide lytic micelles (HELMs), act synergistically with components present in the small intestine to augment inhibitory activity against C. difficile. Finally, we show that provision of HELM-producing Bacillus to microbiota-depleted animals suppresses C. difficile colonization thereby demonstrating the significant role played by Bacillus in colonization resistance. In the wider context, our study further demonstrates the importance of environmental microbes on susceptibility to pathogen colonization.
Collapse
Affiliation(s)
- William T. Ferreira
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
| | - Huynh A. Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
| | - James R. G. Adams
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
| | - Mateusz Hess
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
| | - Natalia K. Kotowicz
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK;
| | - Sisareuth Tan
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK;
| | - Alain Brisson
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Jurgen Zentek
- Institute for Animal Health, Freie University of Berlin, Berlin 14195, Germany;
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
| | - Simon M. Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (J.R.G.A.); (M.H.)
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK;
| |
Collapse
|
10
|
Zaborskytė G, Wistrand-Yuen E, Hjort K, Andersson DI, Sandegren L. Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies. Front Cell Infect Microbiol 2022; 11:802303. [PMID: 35186780 PMCID: PMC8851424 DOI: 10.3389/fcimb.2021.802303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Medical device-related biofilms are a major cause of hospital-acquired infections, especially chronic infections. Numerous diverse models to study surface-associated biofilms have been developed; however, their usability varies. Often, a simple method is desired without sacrificing throughput and biological relevance. Here, we present an in-house developed 3D-printed device (FlexiPeg) for biofilm growth, conceptually similar to the Calgary Biofilm device but aimed at increasing ease of use and versatility. Our device is modular with the lid and pegs as separate units, enabling flexible assembly with up- or down-scaling depending on the aims of the study. It also allows easy handling of individual pegs, especially when disruption of biofilm populations is needed for downstream analysis. The pegs can be printed in, or coated with, different materials to create surfaces relevant to the study of interest. We experimentally validated the use of the device by exploring the biofilms formed by clinical strains of Escherichia coli and Klebsiella pneumoniae, commonly associated with device-related infections. The biofilms were characterized by viable cell counts, biomass staining, and scanning electron microscopy (SEM) imaging. We evaluated the effects of different additive manufacturing technologies, 3D printing resins, and coatings with, for example, silicone, to mimic a medical device surface. The biofilms formed on our custom-made pegs could be clearly distinguished based on species or strain across all performed assays, and they corresponded well with observations made in other models and clinical settings, for example, on urinary catheters. Overall, our biofilm device is a robust, easy-to-use, and relevant assay, suitable for a wide range of applications in surface-associated biofilm studies, including materials testing, screening for biofilm formation capacity, and antibiotic susceptibility testing.
Collapse
|
11
|
Umar A, Zafar A, Wali H, Siddique MP, Qazi MA, Naeem AH, Malik ZA, Ahmed S. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express 2021; 11:165. [PMID: 34894306 PMCID: PMC8665955 DOI: 10.1186/s13568-021-01327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
At present time, every nation is absolutely concern about increasing agricultural production and bioremediation of petroleum-contaminated soil. Hence, with this intention in the current study potent natural surfactants characterized as lipopeptides were evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from the Fimkessar oil field, Chakwal Pakistan. The significant results were obtained by using substrates in combination (white beans powder (6% w/v) + waste frying oil (1.5% w/v) and (0.1% w/v) urea) with lipopeptides yield of about 1.17 g/L contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report is presently describing lipopeptide production by Bacillus subtilis using white beans powder as a culture medium. Additionally, produced lipopeptides display great physicochemical properties of surface tension reduction value (SFT = 28.8 mN/m), significant oil displacement activity (ODA = 4.9 cm), excessive emulsification ability (E24 = 69.8%), and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, biosurfactants produced exhibit excellent stability over an extensive range of pH (1-11), salinity (1-8%), temperature (20-121°C), and even after autoclaving. Subsequently, produced lipopeptides are proved suitable for bioremediation of crude oil (86%) and as potent plant growth-promoting agent that significantly (P < 0.05) increase seed germination and plant growth promotion of chili pepper, lettuce, tomato, and pea maximum at a concentration of (0.7 g/100 mL), showed as a potential agent for agriculture and bioremediation processes by lowering economic and environmental stress.
Collapse
|
12
|
da Silva GO, Farias BCS, da Silva RB, Teixeira EH, Cordeiro RDA, Hissa DC, Melo VMM. Effects of lipopeptide biosurfactants on clinical strains of Malassezia furfur growth and biofilm formation. Med Mycol 2021; 59:1191-1201. [PMID: 34424316 DOI: 10.1093/mmy/myab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Lipopeptide biosurfactants (LBs) are biological molecules with low toxicity that have aroused growing interest in the pharmaceutical industry. Their chemical structure confers antimicrobial and antibiofilm properties against different species. Despite their potential, few studies have demonstrated their capability against Malassezia spp., commensal yeasts which can cause dermatitis and serious infections. Thus, the aim of this study was to evaluate the antifungal activity of biosurfactants produced by new strains of Bacillus subtilis TIM10 and B. vallismortis TIM68 against M. furfur and their potential for removal and inhibition of yeast biofilms. Biosurfactants were classified as lipopeptides by FTIR, and their composition was characterized by ESI-Q-TOF/MS, showing ions for iturin, fengycin, and surfactin, with a greater abundance of surfactin. Through the broth microdilution method, both biosurfactants inhibited the growth of clinical M. furfur strains. Biosurfactant TIM10 showed greater capacity for growth inhibition, with no statistical difference compared to those obtained by the commercial antifungal fluconazole for M. furfur 153DR5 and 154DR8 strains. At minimal inhibitory concentrations (MIC-2), TIM10 and TIM68 were able to inhibit biofilm formation, especially TIM10, with an inhibition rate of approximately 90%. In addition, both biosurfactants were able to remove pre-formed biofilm. Both biosurfactants showed no toxicity against murine fibroblasts, even at concentrations above MIC-2. Our results show the effectiveness of LBs in controlling the growth and biofilm formation of M. furfur clinical strains and highlight the potential of these agents to compose new formulations for the treatment of these fungi.
Collapse
Affiliation(s)
- Gabrielly Oliveira da Silva
- Laboratório de Ecologia Microbiana e Biotecnologia (LEMBiotech). Departamento de Biologia, Federal University of Ceara, Avenida Humberto Monte 2977, Fortaleza - CE 60455-760, Brazil
| | - Bárbara Cibelle Soares Farias
- Laboratório de Ecologia Microbiana e Biotecnologia (LEMBiotech). Departamento de Biologia, Federal University of Ceara, Avenida Humberto Monte 2977, Fortaleza - CE 60455-760, Brazil
| | - Renally Barbosa da Silva
- Laboratório Integrado de Biomoléculas (LIBS). Departamento de Patologia e Medicina Legal, Federal University of Ceara, Rua Coronel Nunes de Melo, Fortaleza - CE 60430-275, Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas (LIBS). Departamento de Patologia e Medicina Legal, Federal University of Ceara, Rua Coronel Nunes de Melo, Fortaleza - CE 60430-275, Brazil
| | - Rossana de Aguiar Cordeiro
- Departamento de Patologia e Medicina Legal, Federal University of Ceara, Rua Coronel Nunes de Melo, Fortaleza - CE 60430-275, Brazil
| | - Denise Cavalcante Hissa
- Laboratório de Recursos Genéticos (LARGEN). Departamento de Biologia, Federal University of Ceara, Avenida Humberto Monte 2977, Fortaleza - CE 60455-760, Brazil
| | - Vânia Maria Maciel Melo
- Laboratório de Ecologia Microbiana e Biotecnologia (LEMBiotech). Departamento de Biologia, Federal University of Ceara, Avenida Humberto Monte 2977, Fortaleza - CE 60455-760, Brazil
| |
Collapse
|
13
|
Ren H, Zhang J, Zhou J, Xu C, Fan Z, Pan X, Li S, Liang Y, Chen S, Xu J, Wang P, Zhang Y, Zhu G, Liu H, Jin Y, Bai F, Cheng Z, Pletzer D, Wu W. Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. J Antibiot (Tokyo) 2021; 74:528-537. [PMID: 34050325 DOI: 10.1038/s41429-021-00427-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Trans-translation is a unique bacterial ribosome rescue system that plays important roles in the tolerance to environmental stresses. It is composed of an ssrA-encoded tmRNA and a protein SmpB. In this study, we examined the role of trans-translation in antibiotic tolerance in Klebsiella pneumoniae and explored whether the inhibition of this mechanism could enhance the bactericidal activities of antibiotics. We found that deletion of the ssrA gene reduced the survival of K. pneumoniae after treatment with kanamycin, tobramycin, azithromycin, and ciprofloxacin, indicating an important role of the trans-translation in bacterial antibiotic tolerance. By using a modified ssrA gene with a 6×His tag we demonstrated that tobramycin suppressed the azithromycin and ciprofloxacin-elicited activation of trans-translation. The results were further confirmed with a trans-translation reporter system that is composed of a normal mCherry gene and a gfp gene without the stop codon. Compared to each individual antibiotic, combination of tobramycin with azithromycin or ciprofloxacin synergistically enhanced the killing activities against planktonic K. pneumoniae cells and improved bacterial clearance in a murine cutaneous abscess infection model. In addition, the combination of tobramycin and ciprofloxacin increased the bactericidal activities against biofilm-associated cells. Overall, our results suggest that the combination of tobramycin with azithromycin or ciprofloxacin is a promising strategy in combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuying Liang
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Shuiping Chen
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Jun Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Penghua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Yanhong Zhang
- Nankai University Affiliated Hospital (Tianjin Forth Hospital), Tianjin, 300222, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
15
|
Imchen M, Moopantakath J, Kumavath R, Barh D, Tiwari S, Ghosh P, Azevedo V. Current Trends in Experimental and Computational Approaches to Combat Antimicrobial Resistance. Front Genet 2020; 11:563975. [PMID: 33240317 PMCID: PMC7677515 DOI: 10.3389/fgene.2020.563975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
A multitude of factors, such as drug misuse, lack of strong regulatory measures, improper sewage disposal, and low-quality medicine and medications, have been attributed to the emergence of drug resistant microbes. The emergence and outbreaks of multidrug resistance to last-line antibiotics has become quite common. This is further fueled by the slow rate of drug development and the lack of effective resistome surveillance systems. In this review, we provide insights into the recent advances made in computational approaches for the surveillance of antibiotic resistomes, as well as experimental formulation of combinatorial drugs. We explore the multiple roles of antibiotics in nature and the current status of combinatorial and adjuvant-based antibiotic treatments with nanoparticles, phytochemical, and other non-antibiotics based on synergetic effects. Furthermore, advancements in machine learning algorithms could also be applied to combat the spread of antibiotic resistance. Development of resistance to new antibiotics is quite rapid. Hence, we review the recent literature on discoveries of novel antibiotic resistant genes though shotgun and expression-based metagenomics. To decelerate the spread of antibiotic resistant genes, surveillance of the resistome is of utmost importance. Therefore, we discuss integrative applications of whole-genome sequencing and metagenomics together with machine learning models as a means for state-of-the-art surveillance of the antibiotic resistome. We further explore the interactions and negative effects between antibiotics and microbiomes upon drug administration.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Juma A, Lemoine P, Simpson ABJ, Murray J, O'Hagan BMG, Naughton PJ, Dooley JG, Banat IM. Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1477. [PMID: 32733412 PMCID: PMC7358407 DOI: 10.3389/fmicb.2020.01477] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.
Collapse
Affiliation(s)
- Abulaziz Juma
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick Lemoine
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Alistair B J Simpson
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Jason Murray
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Barry M G O'Hagan
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick J Naughton
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
17
|
Investigating the biomolecular interactions between model proteins and glycine betaine surfactant with reference to the stabilization of emulsions and antimicrobial properties. Colloids Surf B Biointerfaces 2020; 194:111226. [PMID: 32623332 DOI: 10.1016/j.colsurfb.2020.111226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Binding effect and interaction of 2-pentadecanoyloxymethyl)trimethylammonium bromide (DMGM-14) with bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were systematically investigated by the fluorescence spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), surface tension analysis, and molecular docking studies. The emulsion properties and particle size distribution of surfactant/protein complexes containing sunflower oil were studied using static light scattering and confocal laser scanning microscopy (CLSM). The fluorescence spectroscopy and ITC analysis confirmed the complexes formation of DMGM-14 with BSA and HEWL which was also verified by surface tension measurements. CD results explained the conformational changes in BSA and HEWL upon DMGM-14 complexation. Molecular docking study provides insight into the binding of DMGM-14 into the specific sites of BSA and HEWL. Besides, the studies drew a detailed picture on the emulsification properties of DMGM-14 with BSA and HEWL. In addition, the in vitro experiment revealed a broad antibacterial spectrum of DMGM-14 and DMGM-14/HEWL complex including activity against Gram-positive and Gram-negative bacteria. In conclusion, the present study revealed that the interaction between DMGM-14 with BSA and HEWL is important for the pharmaceutical, biological, and food products.
Collapse
|
18
|
Virulence Potential of a Multidrug-Resistant Escherichia coli Strain Belonging to the Emerging Clonal Group ST101-B1 Isolated from Bloodstream Infection. Microorganisms 2020; 8:microorganisms8060827. [PMID: 32486334 PMCID: PMC7355805 DOI: 10.3390/microorganisms8060827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
Collapse
|
19
|
Kim SG, Giri SS, Yun S, Kim HJ, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Jun JW, Park SC. Synergistic phage-surfactant combination clears IgE-promoted Staphylococcus aureus aggregation in vitro and enhances the effect in vivo. Int J Antimicrob Agents 2020; 56:105997. [PMID: 32335278 DOI: 10.1016/j.ijantimicag.2020.105997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
Currently, topical antibiotic treatment is a major strategy for decolonisation of Staphylococcus aureus, although it may result in antibiotic resistance or recolonisation of the organism. Recently, application of bacteriophages in the treatment of S. aureus infection has attracted attention. However, a single administration of bacteriophages did not effectively decolonise S. aureus in our first trial in vivo. Using a bacteriophage (pSa-3) and surfactant combination in vitro, we showed an increased (>8%) adsorption rate of the bacteriophage on the host. Moreover, the combination increased the eradication of immunoglobulin E (IgE)-stimulated aggregation, as the surfactant promoted the dissociation of S. aureus aggregates by decreasing the size by 75% and 50% in the absence and presence of IgE, respectively. Furthermore, the combined treatment significantly decolonised the pathogen with an efficacy double that of the phage-only treatment, and decreased the expression of pro-inflammatory cytokine genes (IL-1β, IL-12 and IFNγ) for 5 days in the second in vivo trial. These results suggest that the bacteriophage-surfactant combination could act as an alternative to antibiotics for S. aureus decolonisation in patients with dermatitis.
Collapse
Affiliation(s)
- Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju-si, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules 2019; 24:molecules24213843. [PMID: 31731408 PMCID: PMC6864460 DOI: 10.3390/molecules24213843] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices.
Collapse
|
21
|
Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Adeli-Sardou M. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 2019; 138:103806. [PMID: 31629797 DOI: 10.1016/j.micpath.2019.103806] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Lipopeptide biosurfactants (LPBs) are amphiphilic compounds produced by microorganisms exhibiting various biological activities. The main aim of the present study was to assess the in vitro antimicrobial, anti-biofilm, and cytotoxic effects of LPB produced by Acinetobacter junii (AjL). We determined AjL minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria as well as two fungal strains. Also, the anti-biofilm activity of AjL against the biofilm produced by clinically isolated bacterial strains was investigated. The AjL non-selectively showed activity against both Gram-positive and Gram-negative bacterial strains. The obtained results of the present study exhibited that the AjL in concentrations nearly below critical micelle concentration (CMC) has an effective antibacterial activity. It was found that the MIC values of AjL were lower than standard antifungal and it exhibited nearly 100% inhibition against Candida utilis. The attained results of the biofilm formation revealed that AjL disrupted the biofilm of Proteus mirabilis, Staphylococcus aureus, and Pseudomonas aeruginosa at 1250 μg/ml and 2500 μg/ml concentrations. The attained results of cytotoxic effect (determined by WST-1 assay) of the AjL revealed IC50 of 7.8 ± 0.4 mg/ml, 2.4 ± 0.5 mg/ml, and 5.7 ± 0.1 mg/ml, against U87, KB, and HUVEC cell lines, respectively. The results indicated that AjL has a potential application in the relatively new field of biomedicine.
Collapse
Affiliation(s)
- Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 2019; 127:12-28. [PMID: 30828919 DOI: 10.1111/jam.14243] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.
Collapse
Affiliation(s)
- P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - R Marchant
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - V Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - I M Banat
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| |
Collapse
|
24
|
Rodríguez-López L, Rincón-Fontán M, Vecino X, Cruz JM, Moldes AB. Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. J Pharm Sci 2019; 108:2296-2304. [PMID: 30797780 DOI: 10.1016/j.xphs.2019.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Abstract
One of the most important challenges for pharmaceutical and cosmetic industries is solubilization and preservation of their active ingredients. Therefore, most of these formulations contain irritant chemical additives to improve their shelf-life and the solubility of hydrophobic ingredients. An interesting alternative to chemical surfactants and preservatives is the use of biosurfactants; thus, their surfactant properties and composition make them more biocompatible than their chemical counterparts. Moreover, some biosurfactants have shown antimicrobial activity in addition to their detergent capacity. In this work, the antimicrobial and irritant effect of 2 biosurfactant extracts was studied: one produced in a controlled fermentation process with Lactobacillus pentosus and the other produced from corn stream by spontaneous fermentation. The results showed a strong antimicrobial activity of the biosurfactant extract obtained from corn stream on pathogenic bacteria, in comparison with the L. pentosus biosurfactant extract. Moreover, both biosurfactants did not produce any irritant effect on the chorioallantoic membrane of hen's egg assay contrary to sodium dodecyl sulfate. This is the first study dealing with the application of biosurfactant extracts on sensitive biological membranes, and this is the first time that the preservative capacity of a biosurfactant extract obtained in spontaneous fermentation is being evaluated, achieving promising results.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Myriam Rincón-Fontán
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia (UPC)-Barcelona TECH, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Manuel Cruz
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ana Belén Moldes
- Chemical Engineering Department, School of Industrial Engineering - Centro de Investigación Tecnológico Industrial (MTI), University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
25
|
Saunders LP, Bischoff KM, Bowman MJ, Leathers TD. Inhibition of Lactobacillus biofilm growth in fuel ethanol fermentations by Bacillus. BIORESOURCE TECHNOLOGY 2019; 272:156-161. [PMID: 30336397 DOI: 10.1016/j.biortech.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Commercial fuel ethanol fermentations suffer from microbial contaminants, particularly species of Lactobacillus that may persist as antibiotic-resistant biofilms. In this study, culture supernatants from 54 strains of Bacillus known to produce lipopeptides were tested for inhibition of biofilm formation by Lactobacillus fermentum, L. plantarum, and L. brevis strains previously isolated as biofilm-forming contaminants of a commercial fuel ethanol facility. Eleven Bacillus strains inhibited biofilm formation by all three strains by at least 65% of controls. None of these strains inhibited Saccharomyces cerevisiae. Three strains also significantly inhibited planktonic cultures of Lactobacillus. Culture supernatants from B. nakamurai strain NRRL B-41091 were particularly effective. Inhibition was bacteriostatic rather than bacteriocidal, and appeared to be specific for strains of Lactobacillus. Furthermore, the inhibitor from B. nakamurai was shown to prevent stuck fermentations in a corn mash model fermentation system of S. cerevisiae contaminated with L. fermentum.
Collapse
Affiliation(s)
- Lauren P Saunders
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Kenneth M Bischoff
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA(1)
| | - Timothy D Leathers
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA.
| |
Collapse
|
26
|
Gomes IB, Meireles A, Gonçalves AL, Goeres DM, Sjollema J, Simões LC, Simões M. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Crit Rev Biotechnol 2017; 38:657-670. [DOI: 10.1080/07388551.2017.1380601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Inês B. Gomes
- LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Ana Meireles
- LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Ana L. Gonçalves
- LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Darla M. Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | - Lúcia C. Simões
- LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Coronel-León J, Pinazo A, Pérez L, Espuny MJ, Marqués AM, Manresa A. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture. Colloids Surf B Biointerfaces 2017; 149:38-47. [DOI: 10.1016/j.colsurfb.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
|
28
|
Ceresa C, Rinaldi M, Fracchia L. Synergistic activity of antifungal drugs and lipopeptide AC7 against Candida albicans biofilm on silicone. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Tabbene O, Azaiez S, Di Grazia A, Karkouch I, Ben Slimene I, Elkahoui S, Alfeddy MN, Casciaro B, Luca V, Limam F, Mangoni ML. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J Appl Microbiol 2016; 120:289-300. [PMID: 26669801 DOI: 10.1111/jam.13030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/10/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
AIMS In this study, we evaluated the ability of the lipopeptide bacillomycin D and the antifungal drug amphotericin B as well as their combination, to inhibit Candida albicans biofilm formation and to accelerate keratinocyte cell migration. METHODS AND RESULTS The antibiofilm activity of bacillomycin D and its combination with amphotericin B was carried out by crystal violet colorimetric method. Our results have shown that, when combined together at low concentrations nontoxic to mammalian cells, corresponding to 1/32 MIC (0·39 μg ml(-1) ) and 1/4 MIC (0·06 μg ml(-1) ) for bacillomycin D and amphotericin B, respectively, a clear antibiofilm activity is manifested (95% inhibition of biofilm formation) along with a clear inhibition of germ tube formation. Moreover, the effect of both drugs on preformed biofilm of C. albicans strain was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The combination of the two antifungal compounds at 0·39 and 1 μg ml(-1) for bacillomycin D and amphotericin B, respectively, resulted in a clear enhancement of biofilm eradication compared to the results obtained with each drug alone. Furthermore, this combination was found to promote the closure of a gap produced in a monolayer of human keratinocytes. CONCLUSIONS Bacillomycin D and its combination with amphotericin B display impressive anti-biofilm and wound-healing activities. SIGNIFICANCE AND IMPACT OF THE STUDY Application of the lipopeptide bacillomycin D and the antifungal drug amphotericin B in medical devices may offer a promising alternative for topical treatment of Candida-associated infections in the setting of a wound.
Collapse
Affiliation(s)
- O Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - S Azaiez
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - A Di Grazia
- Dipartimento di Scienze Biochimiche, Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' La Sapienza, Rome, Italy
| | - I Karkouch
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - I Ben Slimene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - S Elkahoui
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - M N Alfeddy
- Laboratoire de Phytobactériologie, UR Agrobiotechnologie, Institut National de Recherches Agronomiques, Marrakech, Morocco
| | - B Casciaro
- Dipartimento di Scienze Biochimiche, Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' La Sapienza, Rome, Italy
| | - V Luca
- Dipartimento di Scienze Biochimiche, Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' La Sapienza, Rome, Italy
| | - F Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - M L Mangoni
- Dipartimento di Scienze Biochimiche, Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' La Sapienza, Rome, Italy
| |
Collapse
|
30
|
Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 2016; 109:1375-88. [DOI: 10.1007/s10482-016-0736-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
|
31
|
Song B, Wang YZ, Wang GY, Liu GL, Li WZ, Yan F. The lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA has potent activity against the biofilm-forming organisms. MARINE POLLUTION BULLETIN 2016; 108:62-69. [PMID: 27184127 DOI: 10.1016/j.marpolbul.2016.04.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Both the whole cells and protoplasts of Pseudomonas aeruginosa PAO1 and Bacillus cereus, two biofilm-forming bacteria, were disrupted by the lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA. The lipopeptide 6-2 could also effectively inhibit the formation of biofilms and disperse pre-formed biofilms. Live/dead staining of the biofilms grown in the absence or presence of the lipopeptide 6-2 showed that more dead bacterial cells in the presence of the lipopeptide than those in the absence of the lipopeptide and biofilm formation was greatly reduced by the lipopeptide 6-2. Expression of the PslC gene related to exopolysaccharides in P. aeruginosa PAO1 was also inhibited. All these results demonstrated that the lipopeptide 6-2 produced by B. amyloliquefaciens anti-CA had a high activity against biofilm-forming bacteria. The lipopeptide 6-2 also killed the larvae of Balanus amphitrite and inhibit the germination of Laminaria japonica spore and growth of protozoa, all of which were the fouling organisms in marine environments.
Collapse
Affiliation(s)
- Bo Song
- School of Pharmacy, Weifang Medical University, Weifang 261042, China.
| | - Yu-Zhen Wang
- School of Pharmacy, Weifang Medical University, Weifang 261042, China
| | - Guang-Yuan Wang
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Guang-Lei Liu
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | - Wan-Zhong Li
- School of Pharmacy, Weifang Medical University, Weifang 261042, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang 261042, China
| |
Collapse
|
32
|
Sub-Optimal Treatment of Bacterial Biofilms. Antibiotics (Basel) 2016; 5:antibiotics5020023. [PMID: 27338489 PMCID: PMC4929437 DOI: 10.3390/antibiotics5020023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/08/2016] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed.
Collapse
|
33
|
van Tilburg Bernardes E, Lewenza S, Reckseidler-Zenteno S. Current Research Approaches to Target Biofilm Infections. ACTA ACUST UNITED AC 2015; 3:36-49. [PMID: 28748199 DOI: 10.14304/surya.jpr.v3n6.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on strategies to develop new treatments that target the biofilm mode of growth and that can be used to treat biofilm infections. These approaches aim to reduce or inhibit biofilm formation, or to increase biofilm dispersion. Many antibiofilm compounds are not bactericidal but render the cells in a planktonic growth state, which are more susceptible to antibiotics and more easily cleared by the immune system. Novel compounds are being developed with antibiofilm activity that includes antimicrobial peptides, natural products, small molecules and polymers. Bacteriophages are being considered for use in treating biofilms, as well as the use of enzymes that degrade the extracellular matrix polymers to dissolve biofilms. There is great potential in these new approaches for use in treating chronic biofilm infections.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Shawn Lewenza
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.,Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
| | - Shauna Reckseidler-Zenteno
- Department of Microbiology, Immunology, and Infectious Diseases Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.,Faculty of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
| |
Collapse
|
34
|
|
35
|
Wojnicz D, Tichaczek-Goska D, Kicia M. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli. Indian J Med Res 2015; 141:343-53. [PMID: 25963496 PMCID: PMC4442333 DOI: 10.4103/0971-5916.156631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND & OBJECTIVES Ciprofloxacin is commonly used in clinical practice for the treatment of recurrent urinary tract infections caused by Escherichia coli. However, very often these recurrent infections are due to a failure in a complete eradication of the microorganisms colonizing the urinary tract, especially in catheterized patients. To enhance the bactericidal activity of ciprofloxacin against biofilm-forming uropathogenic E. coli (UPECs), we examined its effect in combination with two pentacyclic triterpenes - asiatic and ursolic acids. METHODS The anti-biofilm activity of ciprofloxacin and pentacyclic triterpenes - asiatic acid (AA) and ursolic acid (UA), as well as their synergistic effect were tested on two types of surfaces - polystyrene microtiter plates and silicone catheters. It was investigated using the time-killing and biofilm assays. RESULTS a0 nti-biofilm activity of ciprofloxacin was not observed on microtiter plates or on the catheters. Ciprofloxacin combined with ursolic acid inhibited the biofilm formation on microtitre plates. This mixture, however, did not express such a strong activity against the synthesis of biofilm on the surface of catheters. Ciprofloxacin combined with asiatic acid had very weak inhibiting effect on the synthesis of biofilm mass on microtitre plates as well as on the catheters. Despite this, both mixtures - ciprofloxacin and asiatic acid, as well as ciprofloxacin and ursolic acid, exhibited strong and significant impact on the eradication of mature biofilm (P < 0.05). INTERPRETATION & CONCLUSIONS Although ciprofloxacin is recommended in the treatment of urinary tract infections caused by UPECs, but its efficacy is arguable. Subinhibitory concentrations of ciprofloxacin did not inhibit the formation of biofilm. Pentacyclic triterpenes used in combination with ciprofloxacin enhanced its anti-biofilm effectiveness. However, this anti-biofilm activity was found to depend on the type of surface on which biofilm was formed.
Collapse
Affiliation(s)
- Dorota Wojnicz
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Tichaczek-Goska
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kicia
- Department of Biology & Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
36
|
Fracchia L, J. Banat J, Cavallo M, Ceresa C, M. Banat I. Potential therapeutic applications of microbial surface-active compounds. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.144] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
37
|
Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 2014; 98:9915-29. [DOI: 10.1007/s00253-014-6169-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
38
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2013; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
- James A Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|
39
|
Mariana F, Buchholz F, Lerchner J, Neu TR, Harms H, Maskow T. Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information. Int J Med Microbiol 2013; 303:158-65. [PMID: 23453494 DOI: 10.1016/j.ijmm.2012.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/04/2012] [Accepted: 12/02/2012] [Indexed: 11/16/2022] Open
Abstract
Increased antibiotic resistance of pathogenic bacteria dwelling in biofilm structures has motivated the development of various monitoring tools specifically designed for biofilm investigations. In this study, the potential of the recently emerging chip calorimetry for this purpose was analysed. The activity of biofilms of Pseudomonas putida PaW340 was monitored chip-calorimetrically and compared with counts of colony forming units (CFU), bioluminescence-based ATP measurements, and quantitative confocal laser scanning microscopy (CLSM). The biofilms were treated with antibiotics differing in their mechanisms of action (bactericidal kanamycin vs. bacteriostatic tetracycline) and referenced to untreated biofilms. For untreated biofilms, all methods gave comparable results. Calorimetric killing curves, however, reflecting metabolic responses to biofilm eradication non-invasively in real time, differed from those obtained with the established methods. For instance, heat signals increased right after addition of the antibiotics. This transient increase of activity was not detected by the other methods, since only calorimetry delivers specific information about the catabolic part of the metabolism. In case of the bactericidal antibiotic, CFU misleadingly indicated successful biofilm eradication, whereas calorimetry revealed enduring activity. Our results show that calorimetry holds promise to provide valuable mechanistic information, thereby complementing other methods of biofilm analysis.
Collapse
Affiliation(s)
- Frida Mariana
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. Antimicrob Agents Chemother 2012; 56:2967-75. [PMID: 22450987 DOI: 10.1128/aac.06480-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures.
Collapse
|
42
|
Řezanka T, Čejková A, Masák J. Natural Products: Strategic Tools for Modulation of Biofilm Formation. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-59530-0.00010-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|