1
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Ma L, Xie M, Yang Y, Ding X, Li Y, Yan Z, Chan EWC, Chen S, Chen G, Zhang R. Prevalence and genomic characterization of clinical Escherichia coli strains that harbor the plasmid-borne tet(X4) gene in China. Microbiol Res 2024; 285:127730. [PMID: 38805981 DOI: 10.1016/j.micres.2024.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.
Collapse
Affiliation(s)
- Lan Ma
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongxin Yang
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xinying Ding
- Department of Clinical Laboratory, Zibo First Hospital, Zibo, People's Republic of China
| | - Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Gautam H, Raza S, Biswas J, Mohapatra S, Sood S, Dhawan B, Kapil A, Das BK. Antimicrobial efficacy of eravacycline against emerging extensively drug-resistant (XDR) Acinetobacter baumannii isolates. Indian J Med Microbiol 2024; 48:100565. [PMID: 38522746 DOI: 10.1016/j.ijmmb.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Drug-resistant Acinetobacter baumannii is an emerging threat. This study has been conducted to observe the efficacy of eravacycline along with the RND-efflux pump system. METHODS A cross-sectional study was done collecting 48 clinical isolates of Acinetobacter baumannii. MICs of 15 antibiotics were detected along with BMD of tigecycline and eravacycline. PCR products of drug-resistant regulatory genes were sequenced and analyzed. RESULTS Of the total 48 Isolates, 35 (72.91%) were XDR and 13 (27.08%) were MDR. Out of all, 60.41% of isolates were found to be susceptible to eravacycline by BMD according to both FDA and EUCAST guidelines. A 2-fold decline of MIC50/90 was observed with the use of eravacycline compared to tigecycline. RND-efflux genes like AdeC in 30 (62.5%) isolates and Regulatory gene AdeS in 29 (60.41%) isolates were detected, explaining the existing resistance mechanism. CONCLUSIONS XDR Acinetobacter poses an escalating threat due to its resistance to multiple antibiotics, raising serious concerns in healthcare settings. Eravacycline is an encouraging new drug for empirical use in severe infection caused due to the same. Molecular investigation and strict antimicrobial stewardship should be followed to control the emergence, and a better understanding of mechanisms of resistance to prevent the spread of drug-resistant isolates.
Collapse
Affiliation(s)
- Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shahid Raza
- All India Institute of Medical Sciences, New Delhi, India.
| | - Jaya Biswas
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Arti Kapil
- Department of Microbiology, North DMC Medical College and Hindu Rao Hospital, New Delhi, India.
| | - Bimal K Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Liu C, Liu J, Lu Q, Wang P, Zou Q. The Mechanism of Tigecycline Resistance in Acinetobacter baumannii under Sub-Minimal Inhibitory Concentrations of Tigecycline. Int J Mol Sci 2024; 25:1819. [PMID: 38339095 PMCID: PMC10855123 DOI: 10.3390/ijms25031819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The presence of sub-minimal inhibitory concentration (sub-MIC) antibiotics in our environment is widespread, and their ability to induce antibiotic resistance is inevitable. Acinetobacter baumannii, a pathogen known for its strong ability to acquire antibiotic resistance, has recently shown clinical resistance to the last-line antibiotic tigecycline. To unravel the complex mechanism of A. baumannii drug resistance, we subjected tigecycline-susceptible, -intermediate, and -mildly-resistant strains to successive increases in sub-MIC tigecycline and ultimately obtained tigecycline-resistant strains. The proteome of both key intermediate and final strains during the selection process was analyzed using nanoLC-MS/MS. Among the more than 2600 proteins detected in all strains, we found that RND efflux pump AdeABC was associated with the adaptability of A. baumannii to tigecycline under sub-MIC pressure. qRT-PCR analysis also revealed higher expression of AdeAB in strains that can quickly acquire tigecycline resistance compared with strains that displayed lower adaptability. To validate our findings, we added an efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazine (CCCP), to the medium and observed its ability to inhibit tigecycline resistance in A. baumannii strains with quick adaptability. This study contributes to a better understanding of the mechanisms underlying tigecycline resistance in A. baumannii under sub-MIC pressure.
Collapse
Affiliation(s)
| | | | | | | | - Qinghua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.L.); (J.L.); (Q.L.); (P.W.)
| |
Collapse
|
7
|
Amann LF, Broeker A, Riedner M, Rohde H, Huang J, Nordmann P, Decousser JW, Wicha SG. Pharmacokinetic/pharmacodynamic evaluation of tigecycline dosing in a hollow fiber infection model against clinical bla-KPC producing Klebsiella Pneumoniae isolates. Diagn Microbiol Infect Dis 2024; 108:116153. [PMID: 38086168 DOI: 10.1016/j.diagmicrobio.2023.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
The FDA announced a boxed warning for tigecycline due to progression of infections caused by Gram-negative bacteria and increased risk of mortality during treatment. Plasma exposure of tigecycline might not prevent bacteraemia in these cases from the focuses. Hence, we evaluated intensified dosing regimens and breakpoints that might suppress bloodstream infections, caused by progression of infection by e.g., Gram-negatives. A pharmacometric model was built from tigecycline concentrations (100-600 mg daily doses) against clinical Klebsiella pneumoniae isolates (MIC 0.125-0.5 mg/L). Regrowth occurred at clinically used doses and stasis was only achieved with 100 mg q8h for the strain with the lowest studied MIC of 0.125 mg/L. Stasis at 24 h was related to fAUC/MIC of 38.5. Our study indicates that even intensified dosing regimens might prevent bloodstream infections only for MIC values ≤0.125 mg/L for tigecycline. This indicates an overly optimistic breakpoint of 1 mg/L for Enterobacterales, which are deemed to respond to the tigecycline high dose regimen (EUCAST Guidance Document on Tigecycline Dosing 2022).
Collapse
Affiliation(s)
- Lisa F Amann
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany
| | - Astrid Broeker
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany
| | - Maria Riedner
- Technology Platform Mass Spectrometry, Universität Hamburg, Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Patrice Nordmann
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Winoc Decousser
- Dynamic Team-EA 7380, Faculté de santé, Université Paris-Est-Créteil Val-De-Marne, France
| | - Sebastian G Wicha
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Yao H, Zhang T, Peng K, Peng J, Liu X, Xia Z, Chi L, Zhao X, Li S, Chen S, Qin S, Li R. Conjugative plasmids facilitate the transmission of tmexCD2-toprJ2 among carbapenem-resistant Klebsiella pneumoniae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167373. [PMID: 37758131 DOI: 10.1016/j.scitotenv.2023.167373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great threat to global public health. The emergence of tmexCD-toprJ greatly weakened the efficacy of tigecycline in the treatment of CRKP infections. In this study, we did a comprehensive investigation of the prevalence and genomic features of tmexCD-toprJ in clinical CRKP from 2018 to 2020 in Henan province, China. The results demonstrated tmexCD-toprJ was at a low prevalence in CRKP from patients (7/2031, 0.34 %). Among the seven tmexCD-toprJ positive CRKP, KP18-29 that carried tmexCD1-toprJ1, blaNDM-1 and mcr-8.2 was resistant to tigecycline, carbapenem and colistin simultaneously. While, tmexCD2-toprJ2 together with one or two carbapenemase genes were detected in the remaining strains. Four strains (KP18-231, KP18-2110-2, KP19-3023 and KP19-3088) isolated at different times but shared the same sequence type (ST) 2667 exhibited high genomic similarity, indicating the clonal dissemination of CRKP ST2667 co-producing KPC-2 and TMexCD-TOprJ. Notably, conjugative transmission of the IncFrepB(R1701) plasmid co-harboring tmexCD2-toprJ2 and blaKPC-2 among clinical CRKP isolates belonging to different STs (ST2667, ST978 and ST147) revealed further propagation of tmexCD-toprJ among K. pneumoniae. Such IncFrepB(R1701) plasmids pose a substantial threat to public health due to their mobile resistance to both tigecycline and carbapenem. Online data mining showed isolates carried both carbapenemase genes and tmexCD-toprJ were dominantly isolated from humans, and isolates of animal origins usually carried mcr genes and tmexCD-toprJ, suggesting that these critical resistance genes co-existed in diverse niches. Global surveillance of K. pneumoniae co-harboring tmexCD-toprJ and mcr/carbapenemase genes in various settings with a One Health strategy was warranted.
Collapse
Affiliation(s)
- Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tingting Zhang
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Peng
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Junke Peng
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Xia
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leizi Chi
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Zhao
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangshang Qin
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ruichao Li
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Shi S, Xu M, Zhao Y, Feng L, Liu Q, Yao Z, Sun Y, Zhou T, Ye J. Tigecycline-Rifampicin Restrains Resistance Development in Carbapenem-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:1858-1866. [PMID: 37669401 DOI: 10.1021/acsinfecdis.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.
Collapse
Affiliation(s)
- Shiyi Shi
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| |
Collapse
|
10
|
Furlan JPR, Stehling EG. Predicting tigecycline susceptibility in multidrug-resistant Klebsiella species and Escherichia coli strains of environmental origin. Braz J Microbiol 2023; 54:1915-1921. [PMID: 37328679 PMCID: PMC10484842 DOI: 10.1007/s42770-023-01036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
Tigecycline (TGC) is an important antimicrobial agent used as a last resort for difficult-to-treat infections mainly caused by carbapenem-resistant Enterobacteriaceae, but TGC-resistant strains are emerging, raising concerns. In this study, 33 whole-genome characterized multidrug-resistant (MDR) strains (Klebsiella species and Escherichia coli) positive mainly to mcr-1, bla, and/or qnr from the environment were investigated for TGC susceptibility and mutations in TGC resistance determinants, predicting a genotype-phenotype relationship. TGC minimum inhibitory concentrations (MICs) of Klebsiella species and E. coli ranged from 0.25 to 8 and 0.125 to 0.5 mg/L, respectively. In this context, KPC-2-producing Klebsiella pneumoniae ST11 and Klebsiella quasipneumoniae subsp. quasipneumoniae ST4417 strains were resistant to TGC, while some E. coli strains of ST10 clonal complex positive for mcr-1 and/or blaCTX-M exhibited reduced susceptibility to this antimicrobial. Overall, neutral and deleterious mutations were shared among TGC-susceptible and TGC-resistant strains. A new frameshift mutation (Q16stop) in RamR was found in a K. quasipneumoniae strain and was associated with TGC resistance. Deleterious mutations in OqxR were identified in Klebsiella species and appear to be associated with decreased susceptibility to TGC. All E. coli strains were determined as susceptible, but multiple point mutations were identified, highlighting deleterious mutations in ErmY, WaaQ, EptB, and RfaE in strains exhibiting decreased susceptibility to TGC. These findings demonstrate that resistance to TGC is not widespread in environmental MDR strains and provide genomic insights about resistance and decreased susceptibility to TGC. From a One Health perspective, the monitoring of TGC susceptibility should be constant, improving the genotype-phenotype relationship and genetic basis.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Ribeirão Preto, Monte Alegre, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Ribeirão Preto, Monte Alegre, 14040-903, Brazil.
| |
Collapse
|
11
|
Zhang Y, Zhang J, Cai P, Lu Y, Sun RY, Cao MT, Xu XL, Webber MA, Jiang HX. IncHI1 plasmids are epidemic vectors that mediate transmission of tet(X4) in Escherichia coli isolated from China. Front Microbiol 2023; 14:1153139. [PMID: 37303808 PMCID: PMC10248516 DOI: 10.3389/fmicb.2023.1153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study aimed to investigate the genetic factors promoting widespread Q6 dissemination of tet(X4) between Escherichia coli and to characterize the genetic contexts of tet(X4). Methods We isolated E. coli from feces, water, soil and flies collected across a large-scale chicken farm in China in 2020. Antimicrobial susceptibility testing and PFGE typing were used to identify tigecycline resistance and assess clonal relationships among isolates. Plasmids present and genome sequences were analyzed by conjugation, S1 pulsed-field gel electrophoresis (PFGE), plasmid stability testing and whole-genome sequencing. Results A total of 204 tigecycline-resistant E. coli were isolated from 662 samples. Of these, we identified 165 tet(X4)-carrying E. coli and these strains exhibited a high degree of multidrug resistance. Based on the geographical location distribution of the sampled areas, number of samples in each area and isolation rate of tigecycline-resistant strains and tet(X4)-carrying isolates, 72 tet(X4)-positive isolates were selected for further investigation. Tigecycline resistance was shown to be mobile in 72 isolates and three types of tet(X4)-carrying plasmids were identified, they were IncHI1 (n = 67), IncX1 (n = 3) and pO111-like/IncFIA(HI1) (n = 2). The pO111-like/IncFIA(HI1) is a novel plasmid capable of transferring tet(X4). The transfer efficiency of IncHI1 plasmids was extremely high in most cases and IncHI1 plasmids were stable when transferred into common recipient strains. The genetic structures flanked by IS1, IS26 and ISCR2 containing tet(X4) were complex and varied in different plasmids. Discussion The widespread dissemination of tigecycline-resistant E. coli is a major threat to public health. This data suggests careful use of tetracycline on farms is important to limit spread of resistance to tigecycline. Multiple mobile elements carrying tet(X4) are in circulation with IncHI1 plasmids the dominant vector in this setting.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ping Cai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruan-Yang Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Meng-Tao Cao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Li Xu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, China
| | | | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Sodeifian F, Zangiabadian M, Arabpour E, Kian N, Yazarlou F, Goudarzi M, Centis R, Seghatoleslami ZS, Kameh MC, Danaei B, Goudarzi H, Nasiri MJ, Sotgiu G, Migliori GB. Tigecycline-Containing Regimens and Multi Drug-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Microb Drug Resist 2023. [PMID: 37192494 DOI: 10.1089/mdr.2022.0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Introduction: The use of tigecycline (TG) for the treatment of Acinetobacter baumannii is controversial. In this systematic review and meta-analysis, we aimed to better explore the safety and efficacy of TG for the treatment of multi drug-resistant (MDR) Acinetobacter. Methods: We searched PubMed/MEDLINE, Scopus, Cochrane Central, and Web of Science to identify studies reporting the clinical and microbiological efficacy and safety of regimens containing TG in patients with drug susceptibility testing (DST)-confirmed MDR A. baumannii, published until December 30, 2022. Observational studies were included if they reported clinical and microbiological efficacy of TG-based regimens. The Newcastle-Ottawa Scale (NOS) and Joana Briggs Institute (JBI) critical appraisal tool were used to assess the quality of included studies. Results: There were 30 observational studies, of which 19 studies were cohort and 11 studies were single group studies. Pooled clinical response and failure rates in the TG-containing regimens group were 58.1 (95% confidence interval [CI] 49.2-66.6) and 40.2 (95% CI 31.1-50.0), respectively. The pooled microbiological response rate was 32.1 (95% CI 19.8-47.5), and the pooled all-cause mortality rate was 41.1 (95% CI 34.1-48.4). Pooled clinical response and failure rates in the colistin-based regimens group were 52.7 (42.7-62.5) and 43.1 (33.1-53.8), respectively. The pooled microbiological response rate was 42.9 (16.2-74.5), and the pooled all-cause mortality rate was 34.3 (26.1-43.5). Conclusions: According to our results, the efficacy of the TG-based regimen is the same as other antibiotics. However, our study showed a high mortality rate and a lower rate of microbiological eradication for TG compared with colistin-based regimen. Therefore, our study does not recommend it for the treatment of MDR A. baumannii. However, this was a prevalence meta-analysis of observational studies, and for better conclusion experimental studies are required.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Arabpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Kian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fartous Yazarlou
- Department of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | | | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
13
|
Sun C, Yu Y, Hua X. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1141490. [PMID: 37228666 PMCID: PMC10203620 DOI: 10.3389/fcimb.2023.1141490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Acinetobacter baumannii is widely distributed in nature and in hospital settings and is a common pathogen causing various infectious diseases. Currently, the drug resistance rate of A. baumannii has been persistently high, showing a worryingly high resistance rate to various antibiotics commonly used in clinical practice, which greatly limits antibiotic treatment options. Tigecycline and polymyxins show rapid and effective bactericidal activity against CRAB, and they are both widely considered to be the last clinical line of defense against multidrug resistant A. baumannii. This review focuses with interest on the mechanisms of tigecycline resistance in A. baumannii. With the explosive increase in the incidence of tigecycline-resistant A. baumannii, controlling and treating such resistance events has been considered a global challenge. Accordingly, there is a need to systematically investigate the mechanisms of tigecycline resistance in A. baumannii. Currently, the resistance mechanism of A. baumannii to tigecycline is complex and not completely clear. This article reviews the proposed resistance mechanisms of A. baumannii to tigecycline, with a view to providing references for the rational clinical application of tigecycline and the development of new candidate antibiotics.
Collapse
Affiliation(s)
- Chunli Sun
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Wang J, Wan X, Meng H, Olsen RH, Chen X, Li L. Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. Int J Mol Sci 2023; 24:ijms24086923. [PMID: 37108087 PMCID: PMC10138661 DOI: 10.3390/ijms24086923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Tigecycline is a last-resort antibiotic for the treatment of infections caused by multidrug-resistant bacteria. The emergence of plasmid-mediated tigecycline resistance genes is posing a serious threat to food safety and human health and has attracted worldwide attention. In this study, we characterized six tigecycline-resistant Escherichia fergusonii strains from porcine nasal swab samples collected from 50 swine farms in China. All the E. fergusonii isolates were highly resistant to tigecycline with minimal inhibitory concentration (MIC) values of 16-32 mg/L, and all contained the tet(X4) gene. In addition, 13-19 multiple resistance genes were identified in these isolates, revealed by whole-genome sequencing analysis. The tet(X4) gene was identified as being located in two different genetic structures, hp-abh-tet(X4)-ISCR2 in five isolates and hp-abh-tet(X4)-ΔISCR2-ISEc57-IS26 in one isolate. The role of efflux pumps in tigecycline resistance was evaluated by using inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The MIC values of tigecycline showed a 2- to 4-fold reduction in the presence of CCCP, indicating the involvement of active efflux pumps in tigecycline resistance in E. fergusonii. The tet(X4) gene was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquisition of tigcycline resistances in the transconjugants. Whole-genome multilocus sequence typing (wgMLST) and phylogenetic analysis showed a close relationship of five isolates originating from different pig farms, suggesting the transmission of tet(X4)-positive E. fergusonii between farms. In conclusion, our findings suggest that E. fergusonii strains in pigs are reservoirs of a transferable tet(X4) gene and provide insights into the tigecycline resistance mechanism as well as the diversity and complexity of the genetic context of tet(X4) in E. fergusonii.
Collapse
Affiliation(s)
- Junlin Wang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2820 Frederiksberg, Denmark
| | - Xun Chen
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Li S, Feng X, Li M, Shen Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front Microbiol 2023; 14:1159912. [PMID: 37007508 PMCID: PMC10061107 DOI: 10.3389/fmicb.2023.1159912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Klebsiella pneumoniae is one of the leading pathogens contributing to antimicrobial resistance. The emergence of carbapenem-resistant K. pneumoniae (CRKP) has put the use of clinical antimicrobial agents in a dilemma. In particular, CRKP exhibiting resistance to ceftazidime/avibactam, tigecycline and colistin have raised great clinical concern, as these are the last-resort antibiotics for the treatment of CRKP infections. Within-host evolution is a survival strategy closely related to the emergence of antimicrobial resistance, while little attention has been paid to the in vivo genetic process of conversion from antibiotic-susceptible to resistant K. pneumoniae. Here we have a literature review regarding the in vivo evolution of resistance to carbapenems, ceftazidime/avibactam, tigecycline, and colistin in K. pneumoniae during antibacterial therapy, and summarized the detailed resistance mechanisms. In general, acquiring bla KPC and bla NDM harboring-plasmid, specific mutations in bla KPC, and porin genes, such as ompK35 and ompK36, upregulation of bla KPC, contribute to the development of carbapenem and ceftazidime/avibactam resistance in vivo. Overexpression of efflux pumps, acquiring plasmid-carrying tet (A) variants, and ribosomal protein change can lead to the adaptive evolution of tigecycline resistance. Specific mutations in chromosomes result in the cationic substitution of the phosphate groups of lipid A, thus contributing to colistin resistance. The resistant plasmid might be acquired from the co-infecting or co-colonizing strains, and the internal environment and antibiotic selection pressure contribute to the emergence of resistant mutants. The internal environment within the human host could serve as an important source of resistant K. pneumoniae strains.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Laboratory Medicine, Ningbo Hospital, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Shen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
He T, Li J, Gong L, Wang Y, Li R, Ji X, Luan F, Tang M, Zhu L, Wei R, Wang R. Comprehensive Analysis of Antimicrobial, Heavy Metal, and Pesticide Residues in Commercial Organic Fertilizers and Their Correlation with Tigecycline-Resistant tet(X)-Variant Genes. Microbiol Spectr 2023; 11:e0425122. [PMID: 36916994 PMCID: PMC10100909 DOI: 10.1128/spectrum.04251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
With the issue of the antimicrobial additive ban in feed in Chinese animal husbandry, it is important to determine the potential drivers of the spread of the newly discovered tigecycline-resistant tet(X)-variant genes. Here, we investigated the correlations between residues of heavy metals, antimicrobials, and pesticides and the relative abundance of tet(X)-variant genes in 94 commercial organic-fertilizer samples collected from 9 Chinese provinces. A total of 5 heavy metals (mercury, lead, arsenic, chromium, and cadmium), 10 antimicrobials, and 18 pesticides were detected. The tet(X)-variant genes, including tet(X)/(X2), tet(X3), tet(X4), tet(X5), and tet(X6) were detected in 39 (41.5%) samples. Although tet(X)-variant-carrying bacteria were not isolated from these samples, the tet(X4)-carrying plasmids could be captured by exogenous Escherichia coli. Correlation analysis revealed that heavy metals, other than antimicrobials, showed a significant positive association with the relative abundance of the tet(X)-variant genes, especially tet(X3) and tet(X4) (R = 0.346 to 0.389, P < 0.001). The correlation was attributed to the coselection of the tet(X3)/tet(X4) gene on the same plasmid and the conjugation-promoting effect of tet(X3)/tet(X4)-carrying plasmids by subinhibitory concentrations of heavy metals. The heavy metals increased the permeability of the bacterial outer membrane and upregulated the transcription of type IV secretion system (T4SS)-encoding genes on tet(X)-variant-carrying plasmids, therefore enhancing the bacterial conjugation rates. Taken together, our findings have indicated that heavy metals may play an important role in spreading tet(X)-variant genes within the animal manure-related environment. IMPORTANCE An antimicrobial resistance gene (ARG) is considered a novel contaminant for the environment. Most animal feces are usually made into commercial organic fertilizers in China and will pose a threat to the farmland soil and agricultural product if fertilizers harboring clinically significant antimicrobial-resistant (AMR) genes are applied on farmland. This study has indicated that heavy metals may play an important role in the transmission of transferable tigecycline resistance genes [tet(X3) and tet(X4)]. The mechanism was that heavy metals posed a coselection effect of the tet(X3)/tet(X4) gene on the same plasmid and could increase the conjugation ability of tet(X3)/tet(X4)-carrying plasmids. The conjugation-promoting concentrations of heavy metals are lower than the maximal limits defined in the national standard for fertilizers, indicating a high transmission risk of tet(X3)/tet(X4) genes within the animal manure-related environment. The findings in this study will provide scientific evidence for the future development of effective measures to reduce AMR dissemination.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengting Luan
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Minmin Tang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
17
|
Zheng W, Huang Y, Wu W, Zhu J, Zhang T. Analysis of Efflux Pump System and Other Drug Resistance Related Gene Mutations in Tigecycline-Resistant Acinetobacter baumannii. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:8611542. [PMID: 36846201 PMCID: PMC9957652 DOI: 10.1155/2023/8611542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 02/19/2023]
Abstract
Background The isolation of tigecycline-resistant Acinetobacter baumannii in recent years has brought great difficulties to clinical prevention and treatment. Purpose To explore the effect of efflux pump system and other resistance related gene mutations on tigecycline resistance in Acinetobacter baumannii. Methods Fluorescence quantitative PCR was used to detect the expression levels of major efflux pump genes (adeB, adeJ, and adeG) in extensive drug-resistant Acinetobacter baumannii. The minimum inhibitory concentration (MIC) of tigecycline was detected by the broth microdilution testing and efflux pump inhibition experiment to assess the role of efflux pump in tigecycline resistance of Acinetobacter baumannii. Efflux pump regulatory genes (adeR and adeS) and tigecycline resistance related genes (rpsJ, trm, and plsC) were amplified by PCR and sequenced. By sequence alignment, tigecycline sensitive and tigecycline-insensitive Acinetobacter baumannii were compared with standard strains to analyze the presence of mutations in these genes. Results The relative expression of adeB in the tigecycline-insensitive Acinetobacter baumannii was significantly higher than that in the tigecycline sensitive Acinetobacter baumannii (114.70 (89.53-157.43) vs 86.12 (27.23-129.34), P = 0.025). When efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was added, the percentage of tigecycline-insensitive Acinetobacter baumannii with tigecycline MIC decreased was significantly higher than that of tigecycline-sensitive Acinetobacter baumannii (10/13 (76.9%) vs 26/59 (44.1%)), P = 0.032); the relative expression of adeB in the MIC decreased group was significantly higher than that in the MIC unchanged group (110.29 (63.62-147.15) vs 50.06 (26.10-122.59), P = 0.02); The relative expression levels of efflux pumps adeG and adeJ did not increase significantly, and there was no significant difference between these groups. One adeR point mutation (Gly232Ala) and eight adeS point mutations (Ala97Thr, Leu105Phe, Leu172Pro, Arg195Gln, Gln203Leu, Tyr303Phe, Lys315Asn, Gly319Ser) were newly detected. Consistent mutations in trm and plsC genes were detected in both tigecycline-insensitive and tigecycline-sensitive Acinetobacter baumannii, but no mutation in rpsJ gene was detected in them. Conclusion Tigecycline-insensitive Acinetobacter baumannii efflux pump adeABC overexpression was an important mechanism for tigecycline resistance, and the mutations of efflux pump regulator genes (adeR and adeS) are responsible for adeABC overexpression. The effect of trm, plsC, and rpsJ gene mutations on the development of tigecycline resistance in Acinetobacter baumannii remains controversial.
Collapse
Affiliation(s)
- Wenzheng Zheng
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, and Institute of Respiratory Diseases, Guangzhou 510000, China
| | - Yubo Huang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, and Institute of Respiratory Diseases, Guangzhou 510000, China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, and Institute of Respiratory Diseases, Guangzhou 510000, China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, and Institute of Respiratory Diseases, Guangzhou 510000, China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, and Institute of Respiratory Diseases, Guangzhou 510000, China
| |
Collapse
|
18
|
Elbatrawi YM, Gerrein T, Anwar A, Makwana KM, Degen D, Ebright RH, Del Valle JR. Total Synthesis of Pargamicin A. Org Lett 2022; 24:9285-9289. [PMID: 36516292 PMCID: PMC10680435 DOI: 10.1021/acs.orglett.2c03861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the total synthesis and configurational assignment of pargamicin A, a highly oxidized nonribosomal peptide that potently inhibits the growth of drug-resistant bacteria. Our synthetic approach relies on late-stage piperazine ring formation and careful selection of condensation reagents to assemble the densely substituted hexapeptide backbone. This work enables the synthesis of pargamicin congeners for the development of structure-activity relationships and informs strategies for accessing other sterically congested piperazic acid-containing natural products.
Collapse
Affiliation(s)
- Yassin M. Elbatrawi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Taylor Gerrein
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Avraz Anwar
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kamlesh M. Makwana
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Degen
- Waksman Institute and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H. Ebright
- Waksman Institute and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
19
|
LaPlante KL, Dhand A, Wright K, Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Ann Med 2022; 54:1686-1700. [PMID: 35723082 PMCID: PMC9225766 DOI: 10.1080/07853890.2022.2085881] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The progressive increase in antibiotic resistance in recent decades calls for urgent development of new antibiotics and antibiotic stewardship programs to help select appropriate treatments with the goal of minimising further emergence of resistance and to optimise clinical outcomes. Three new tetracycline-class antibiotics, eravacycline, omadacycline, and tigecycline, have been approved within the past 15 years, and represent a new era in the use of tetracyclines. These drugs overcome the two main mechanisms of acquired tetracycline-class resistance and exhibit a broad spectrum of in vitro activity against gram-positive, gram-negative, anaerobic, and atypical pathogens, including many drug-resistant strains. We provide an overview of the three generations of tetracycline-class drugs, focussing on the efficacy, safety, and clinical utility of these three new third-generation tetracycline-class drugs. We also consider various scenarios of unmet clinical needs where patients might benefit from re-engagement with tetracycline-class antibiotics including outpatient treatment options, patients with known β-lactam antibiotic allergy, reducing the risk of Clostridioides difficile infection, and their potential as monotherapy in polymicrobial infections while minimising the risk of any potential drug-drug interaction. KEY MESSAGESThe long-standing safety profile and broad spectrum of activity of tetracycline-class antibiotics made them a popular choice for treatment of various bacterial infections; unfortunately, antimicrobial resistance has limited the utility of the early-generation tetracycline agents.The latest generation of tetracycline-class antibiotics, including eravacycline, tigecycline, and omadacycline, overcomes the most common acquired tetracycline resistance mechanisms.Based on in vitro characteristics and clinical data, these newer tetracycline agents provide an effective antibiotic option in the treatment of approved indications in patients with unmet clinical needs - including patients with severe penicillin allergy, with renal or hepatic insufficiency, recent Clostridioides difficile infection, or polymicrobial infections, and those at risk of drug-drug interactions.
Collapse
Affiliation(s)
- Kerry L LaPlante
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Abhay Dhand
- Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Kelly Wright
- Paratek Pharmaceuticals, Inc, King of Prussia, PA, USA
| | | |
Collapse
|
20
|
Zeng Y, Deng L, Zhou X, Zhang C, Hu Z, Chen Y, Zheng W. Prevalence and risk factors of tet(X4)-positive Enterobacteriaceae in human gut microbiota. J Glob Antimicrob Resist 2022; 31:15-21. [PMID: 35850430 DOI: 10.1016/j.jgar.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This work is aimed to investigate the prevalence of tet(X4) in healthy individuals and patients and assess risk factors associated with tet(X4)-positive populations. METHODS A total of 662 patients and 120 healthy individuals from three municipal hospitals during August 2021 to September 2021 were selected to investigate the prevalence of tet(X4) in gut microbiota. A further case-control study was conducted to identify the risk factors associated with tet(X4)-positive populations. The tet(X4)-positive isolates were characterised by antimicrobial susceptibility testing, multilocus sequence typing (MLST), whole genome sequencing, and bioinformatics analyses. RESULTS The prevalence of tet(X4)-positive Enterobacteriaceae in healthy individuals and patients (19.1%, 95% CI: 16.3%-21.8%) was substantially higher than previous studies in China (less than 1%). Patients ranging from 19 to 45 years of age had significantly higher odds of tet(X4)-positive bacterial colonization (OR = 2.545, 95% CI: 1.106-5.856). All tet(X4)-positive Enterobacteriaceae were resistant to tigecycline. In addition, tet(X4)-positive Escherichia coli were highly diverse, with CC10 belonging to the dominant clone. Genome analysis showed that tet(X4) was adjacent to ISVsa3 on the plasmids. CONCLUSION Data from this study suggested that geographic region may partly explain the high prevalence of tet(X4)-positive Enterobacteriaceae in healthy individuals and patients. Young and middle-aged populations were associated with the colonization of tet(X4)-positive isolates.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China
| | - Li Deng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China
| | - Xianyuan Zhou
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China
| | - Chi Zhang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China
| | - Zhen Hu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China
| | - Yunsheng Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen City, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen City, China.
| |
Collapse
|
21
|
Wang Q, Lei C, Cheng H, Yang X, Huang Z, Chen X, Ju Z, Zhang H, Wang H. Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. Microbiol Spectr 2022; 10:e0161522. [PMID: 36125305 PMCID: PMC9602804 DOI: 10.1128/spectrum.01615-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as blaNDM-1 and cfr. Additionally, we were the first to report that tet(X4) and blaNDM-1 coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10-2 to 10-7. These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hansen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zijing Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Haoyu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Jagdmann J, Andersson DI, Nicoloff H. Low levels of tetracyclines select for a mutation that prevents the evolution of high-level resistance to tigecycline. PLoS Biol 2022; 20:e3001808. [PMID: 36170241 PMCID: PMC9550176 DOI: 10.1371/journal.pbio.3001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/10/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
In a collection of Escherichia coli isolates, we discovered a new mechanism leading to frequent and high-level tigecycline resistance involving tandem gene amplifications of an efflux pump encoded by the tet(A) determinant. Some isolates, despite carrying a functional tet(A), could not evolve high-level tigecycline resistance by amplification due to the presence of a deletion in the TetR(A) repressor. This mutation impaired induction of tetA(A) (encoding the TetA(A) efflux pump) in presence of tetracyclines, with the strongest effect observed for tigecycline, subsequently preventing the development of tet(A) amplification-dependent high-level tigecycline resistance. We found that this mutated tet(A) determinant was common among tet(A)-carrying E. coli isolates and analysed possible explanations for this high frequency. First, while the mutated tet(A) was found in several ST-groups, we found evidence of clonal spread among ST131 isolates, which increases its frequency within E. coli databases. Second, evolution and competition experiments revealed that the mutation in tetR(A) could be positively selected over the wild-type allele at sub-inhibitory concentrations of tetracyclines. Our work demonstrates how low concentrations of tetracyclines, such as those found in contaminated environments, can enrich and select for a mutation that generates an evolutionary dead-end that precludes the evolution towards high-level, clinically relevant tigecycline resistance. A study on evolution of antimicrobial resistance reveals how sub-inhibitory concentrations of antibiotics enrich and select for a mutated allele that prevents evolution towards clinically significant levels of antibiotic resistance.
Collapse
Affiliation(s)
- Jennifer Jagdmann
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Dan I. Andersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Hervé Nicoloff
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
23
|
Zhai W, Tian Y, Shao D, Zhang M, Li J, Song H, Sun C, Wang Y, Liu D, Zhang Y. Fecal Carriage of Escherichia coli Harboring the tet(X4)-IncX1 Plasmid from a Tertiary Class-A Hospital in Beijing, China. Antibiotics (Basel) 2022; 11:antibiotics11081068. [PMID: 36009937 PMCID: PMC9405050 DOI: 10.3390/antibiotics11081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the mobile tigecycline-resistance gene, tet(X4), poses a significant threat to public health. To investigate the prevalence and genetic characteristics of the tet(X4)-positive Escherichia coli in humans, 1101 human stool samples were collected from a tertiary class-A hospital in Beijing, China, in 2019. Eight E. coli isolates that were positive for tet(X4) were identified from clinical departments of oncology (n = 3), hepatology (n = 2), nephrology (n = 1), urology (n = 1), and general surgery (n = 1). They exhibited resistance to multiple antibiotics, including tigecycline, but remained susceptible to meropenem and polymyxin B. A phylogenetic analysis revealed that the clonal spread of four tet(X4)-positive E. coli from different periods of time or departments existed in this hospital, and three isolates were phylogenetically close to the tet(X4)-positive E. coli from animals and the environment. All tet(X4)-positive E. coli isolates contained the IncX1-plasmid replicon. Three isolates successfully transferred their tigecycline resistance to the recipient strain, C600, demonstrating that the plasmid-mediated horizontal gene transfer constitutes another critical mechanism for transmitting tet(X4). Notably, all tet(X4)-bearing plasmids identified in this study had a high similarity to several plasmids recovered from animal-derived strains. Our findings revealed the importance of both the clonal spread and horizontal gene transfer in the spread of tet(X4) within human clinics and between different sources.
Collapse
Affiliation(s)
- Weishuai Zhai
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingxin Tian
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongyan Shao
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muchen Zhang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyun Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huangwei Song
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (D.L.); (Y.Z.)
| | - Ying Zhang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (D.L.); (Y.Z.)
| |
Collapse
|
24
|
Yu R, Chen Z, Li D, Schwarz S, Wang X, Du XD. Studies on the Transmission of a Tigecycline Resistance-Mediating tet(A) Gene Variant from Enterobacter hormaechei via a Two-Step Recombination Process. Microbiol Spectr 2022; 10:e0049622. [PMID: 35579466 PMCID: PMC9241890 DOI: 10.1128/spectrum.00496-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate the contribution of a tet(A) variant to tigecycline resistance in Enterobacter hormaechei and the recombination events that occurred during transmission of this variant. MICs were determined by broth microdilution. E. hormaechei G17 was characterized by PCR, transfer assay, S1-PFGE, Southern blot hybridization, and WGS analysis. A tet(A) variant conferring resistance to tigecycline was present in E. hormaechei G17. This strain harbored two resistance plasmids (pG17-1, 264,084 bp and pG17-2, 68,610 bp) and its E. coli transformant Tm-G17TGC one resistance plasmid (pTm-G17, 93,013 bp). The comparative analysis of pG17-1, pG17-2, and pTm-G17 showed that a tet(A) variant-carrying multiresistance gene cluster (~23 kb) originating from pG17-1 had integrated into pG17-2, forming the novel plasmid pTm-G17. In a first step, this multiresistance gene cluster was excised from pG17-1 by recombination of homologous sequences, including △TnAs1 at both termini, thereby generating an unconventional circularizable structure (UCS). In a second step, this UCS integrated into pG17-2 via recombination between homologous sequences, including IS26 present on both, the UCS and pG17-2, thereby giving rise to the new plasmid pTm-G17. In summary, a tet(A) variant conferring resistance to tigecycline was reported in E. hormaechei. Transfer of a tet(A) variant-carrying multiresistance gene cluster between plasmids occurred in a two-step recombination process, in which homologous sequences, including either △TnAs1 or IS26, were involved. IMPORTANCE Tigecycline is an important last-resort broad spectrum antimicrobial agent. This study describes the two-step recombination processes resulting in the transfer of the tet(A) variant gene between different plasmids in E. hormaechei, which depicts the role of recombination processes in the generation of UCSs and new plasmids, both carrying a tet(A) variant conferring resistance to tigecycline. Such processes enhance the dissemination of resistance genes, which is of particular relevance for resistance genes, such as the tet(A) variant. The presence and transmission of a tet(A) variant in E. hormaechei will compromise the efficacy of tigecycline treatment for E. hormaechei associated infection.
Collapse
Affiliation(s)
- Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Zheng Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Danyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Xinwei Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
25
|
Li X, Wang W, Jin X, Zhang X, Zou X, Ma Q, Hu Q, Huang H, Tu Y. Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. Front Cell Infect Microbiol 2022; 12:902774. [PMID: 35646740 PMCID: PMC9134201 DOI: 10.3389/fcimb.2022.902774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo characterize two plasmids co-harboring carbapenem resistance genes and tmexCD2-toprJ2 in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains.MethodsTwo clinical CRKP strains were isolated and characterized by antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, and bioinformatics analysis.ResultsThe two CRKP strains NB4 and NB5 were both resistant to imipenem, meropenem and tigecycline. Whole-genome sequencing revealed that two CRKP strains belonged to the ST11 type and carried multiple resistance genes. The tmexCD2-toprJ2 clusters in both strains were located on the IncFIB(Mar)-like/HI1B-like group of hybrid plasmids, which co-harbored the metallo-β-lactamase gene blaNDM-1. In addition, the co-existence of blaNDM-1 and blaKPC-2 and the presence of tmexCD2-toprJ2 in CRKP strain NB5 was observed.ConclusionsIn this study, tmexCD2-toprJ2 gene clusters were identified in two NDM-1-producing CRKP ST11 strains. These gene clusters will likely spread into clinical high-risk CRKP clones and exacerbate the antimicrobial resistance crisis. In addition, we detected the co-occurrence of blaNDM-1, blaKPC-2 and tmexCD2-toprJ2 in a single strain, which will undoubtedly accelerate the formation of a “superdrug resistant” bacteria. Hence, effective control measures should be implemented to prevent the further dissemination of such organisms in clinical settings.
Collapse
Affiliation(s)
- Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weizhong Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xi Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xuehan Zou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Ma
- Department of Respiratory Medicine, Yuhang Second People’s Hospital, Hangzhou, China
| | - Qingfeng Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qingfeng Hu, ; Haijun Huang, ; Yuexing Tu,
| | - Haijun Huang
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qingfeng Hu, ; Haijun Huang, ; Yuexing Tu,
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Qingfeng Hu, ; Haijun Huang, ; Yuexing Tu,
| |
Collapse
|
26
|
Ng HF, Ngeow YF. Genetic Determinants of Tigecycline Resistance in Mycobacteroides abscessus. Antibiotics (Basel) 2022; 11:antibiotics11050572. [PMID: 35625216 PMCID: PMC9137676 DOI: 10.3390/antibiotics11050572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mycobacteroides abscessus (formerly Mycobacterium abscessus) is a clinically important, rapid-growing non-tuberculous mycobacterium notoriously known for its multidrug-resistance phenotype. The intrinsic resistance of M. abscessus towards first- and second-generation tetracyclines is mainly due to the over-expression of a tetracycline-degrading enzyme known as MabTetX (MAB_1496c). Tigecycline, a third-generation tetracycline, is a poor substrate for the MabTetX and does not induce the expression of this enzyme. Although tigecycline-resistant strains of M. abscessus have been documented in different parts of the world, their resistance determinants remain largely elusive. Recent work on tigecycline resistance or reduced susceptibility in M. abscessus revealed the involvement of the gene MAB_3508c which encodes the transcriptional activator WhiB7, as well as mutations in the sigH-rshA genes which control heat shock and oxidative-stress responses. The deletion of whiB7 has been observed to cause a 4-fold decrease in the minimum inhibitory concentration of tigecycline. In the absence of environmental stress, the SigH sigma factor (MAB_3543c) interacts with and is inhibited by the anti-sigma factor RshA (MAB_3542c). The disruption of the SigH-RshA interaction resulting from mutations and the subsequent up-regulation of SigH have been hypothesized to lead to tigecycline resistance in M. abscessus. In this review, the evidence for different genetic determinants reported to be linked to tigecycline resistance in M. abscessus was examined and discussed.
Collapse
|
27
|
Antibiotic resistance pattern of Klebsiella pneumoniae a major problem for society. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns2.6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim: Antibiotic resistance pattern of klebsiella pneumoniae a major problem for society. Methods: After ethical approval from the institutional ethical committee this study was done in the department of microbiology from April 2021 to march 2022 in genesis institute of dental science and research centre with collaboration of anil baghi hospital, firozpur, Punjab India. Demographic profile of all the patients like age, gender, history of any diseases was noted. All the sample like urine, sputum, blood, pleural fluid and urethral discharge were collected in the department for isolation and identification of K. pneumoniae. After 24hrs those were positive sample, further proceed for grams staining. B D Phoenix advanced automated microbiology system was used for identification and sensitivity of bacteria for 24hrs. Results: The study showed that highest number of patients having Klebsiella pneumonia were from 50-70 years having 20 (40%)patients followed by 30-50 years with 16 (32%), from Above 70 years 12 (24%) and below the age of 30 years having lowest number with two (4%) patients out of all patients. The number of male patients 33(66%) is more than females 17(34%).
Collapse
|
28
|
Li Y, Peng K, Yin Y, Sun X, Zhang W, Li R, Wang Z. Occurrence and Molecular Characterization of Abundant tet(X) Variants Among Diverse Bacterial Species of Chicken Origin in Jiangsu, China. Front Microbiol 2022; 12:751006. [PMID: 34987485 PMCID: PMC8723793 DOI: 10.3389/fmicb.2021.751006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many novel tigecycline-inactivating enzymes encoded by tet(X) variants from different bacteria were discovered since the plasmid-mediated tet(X3) and tet(X4) genes conferring high-level resistance to tigecycline in Enterobacterales and Acinetobacter were reported. However, there have been no comprehensive studies of the prevalence of different tet(X) variants in poultry farms. In this study, we collected 45 chicken fecal samples, isolated tet(X)-positive strains, and performed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing, and bioinformatics analysis. A total of 15 tet(X)-bearing strains were isolated from 13 samples. Species identification and tet(X) subtyping analysis found that the 15 strains belonged to eight different species and harbored four different tet(X) variants. Genomic investigation showed that transmission of tet(X) variants was associated with various mobile genetic elements, and tet(X4) was the most prevalent variant transferred by conjugative plasmids. Meanwhile, we characterized a plasmid co-harboring tet(X6) and blaOXA–58 in Acinetobacter baumannii. In summary, we demonstrated that different tet(X) variants were widely disseminated in the chicken farming environment and dominated by tet(X4). This finding expands the understanding of the prevalence of tet(X) among different animal sources, and it was advocated to reduce the usage of antibiotics to limit the emergence and transmission of novel tet(X) variants in the poultry industry.
Collapse
Affiliation(s)
- Yingshan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xinran Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenhui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
29
|
Li R, Li Y, Peng K, Yin Y, Liu Y, He T, Bai L, Wang Z. Comprehensive Genomic Investigation of Tigecycline Resistance Gene tet(X4)-Bearing Strains Expanding among Different Settings. Microbiol Spectr 2021; 9:e0163321. [PMID: 34937176 PMCID: PMC8694195 DOI: 10.1128/spectrum.01633-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance genes has attracted a great deal of attention globally. Currently, no comprehensive in-depth genomic epidemiology study of tet(X4)-bearing pathogens present of pork origin as the One Health approach has been performed. Herein, 139 fresh pork samples were collected from multiple regions in China and 58 tet(X4)-positive strains were identified. The tet(X4) gene mainly distributed in Escherichia coli (n = 55). Besides, 4 novel tet(X4)-positive bacterial species Klebsiella pneumoniae (n = 2), Klebsiella quasipneumoniae (n = 1), Citrobacter braakii (n = 1) and Citrobacter freundii (n = 1) were first characterized here. Four different core tet(X4)-bearing genetic environments and five types of tet(X4)-bearing tandem duplications were discovered among 58 strains. The results of the phylogenetic tree showed that there was some correlation between E. coli strains from pork, human, pig farms, and slaughterhouses. A total of seven types of plasmid replicons were found in tet(X4)-positive plasmids, among which multireplicon plasmids were observed. Notably, two tet(X4)-positive fusion plasmids pCSZ11R (IncX1-IncFIA-IncFIB-IncFIC) and pCSX5G-tetX4 (IncX1-IncFII-IncFIA) were formed by IS26 in the hot spot. Besides, six samples were identified to harbor two different tet(X4)-bearing strains. More interestingly, the absolute quantitative results showed that the expression levels of tet(X4) between different strains with different tet(X4) copies were approximate. In this study, the genetic environment of tet(X4)-positive plasmids containing different plasmid replicons was analyzed to provide a basis for the further development of effective control measures. It is also highlighted that animal-borne tet(X4)-bearing pathogens incur a transmission risk to consumed food. Therefore, there is an urgent need for large-scale monitoring as well as the development of effective control measures. IMPORTANCE Tigecycline was considered the last-line drug against serious infections caused by multidrug-resistant Gram-negative bacteria. However, the plasmid-mediated tigecycline resistance gene tet(X) has been widely reported in different sources of Enterobacterales and Acinetobacter in China. China is one of the largest pig-producing nations in the world, and in-depth investigation of gene in pork is vital to figure out the fundamental dissemination of these genes and set up a reasonable control framework. In this study, we conducted an in-depth and systematic analysis of the diversity of tet(X4)-positive plasmids and the genetic environment of tet(X4) contained in pork samples from multiple regions of China, providing a basis for further development of effective control measures. It is also highlighted that animal-borne tet(X4)-bearing pathogens incur a transmission risk to consumed food. Therefore, there is an urgent need for large-scale monitoring as well as the development of effective control measures.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yi Yin
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
30
|
Cheng Q, Cheung Y, Liu C, Xiao Q, Sun B, Zhou J, Chan EWC, Zhang R, Chen S. Structural and mechanistic basis of the high catalytic activity of monooxygenase Tet(X4) on tigecycline. BMC Biol 2021; 19:262. [PMID: 34895224 PMCID: PMC8666040 DOI: 10.1186/s12915-021-01199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Tigecycline is a tetracycline derivative that constitutes one of the last-resort antibiotics used clinically to treat infections caused by both multiple drug-resistant (MDR) Gram-negative and Gram-positive bacteria. Resistance to this drug is often caused by chromosome-encoding mechanisms including over-expression of efflux pumps and ribosome protection. However, a number of variants of the flavin adenine dinucleotide (FAD)-dependent monooxygenase TetX, such as Tet(X4), emerged in recent years as conferring resistance to tigecycline in strains of Enterobacteriaceae, Acinetobacter sp., Pseudomonas sp., and Empedobacter sp. To date, mechanistic details underlying the improvement of catalytic activities of new TetX enzymes are not available. Results In this study, we found that Tet(X4) exhibited higher affinity and catalytic efficiency toward tigecycline when compared to Tet(X2), resulting in the expression of phenotypic tigecycline resistance in E. coli strains bearing the tet(X4) gene. Comparison between the structures of Tet(X4) and Tet(X4)-tigecycline complex and those of Tet(X2) showed that they shared an identical FAD-binding site and that the FAD and tigecycline adopted similar conformation in the catalytic pocket. Although the amino acid changes in Tet(X4) are not pivotal residues for FAD binding and substrate recognition, such substitutions caused the refolding of several alpha helixes and beta sheets in the secondary structure of the substrate-binding domain of Tet(X4), resulting in the formation of a larger number of loops in the structure. These changes in turn render the substrate-binding domain of Tet(X4) more flexible and efficient in capturing substrate molecules, thereby improving catalytic efficiency. Conclusions Our works provide a better understanding of the molecular recognition of tigecycline by the TetX enzymes; these findings can help guide the rational design of the next-generation tetracycline antibiotics that can resist inactivation of the TetX variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01199-7.
Collapse
Affiliation(s)
- Qipeng Cheng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yanchu Cheung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chenyu Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.239 Zhangheng Road, Shanghai, 201204, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
31
|
Sato T. [Bacteriological analysis of therapeutic important antimicrobial resistance]. Nihon Saikingaku Zasshi 2021; 76:161-174. [PMID: 34789602 DOI: 10.3412/jsb.76.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antimicrobial resistance in bacterial infections is a major concern for clinical settings. In recent years, the number of Extended-spectrum β-lactamase producing (ESBL)- and fluoroquinolones (FQ)-resistant Escherichia coli has been increasing in Japan, especially against third-generation cephalosporins and FQs, which are frequently used in medical practice. On the other hand, antimicrobial agents such as tazobactam-piperacillin, colistin, and tigecycline, which are not general-purpose agents but last-line drugs for multidrug-resistant bacteria, are also important. Enterobacteriaceae that are resistant to these antimicrobials have been reported, although the isolation rate of resistant bacteria is lower than that of frequent used antimicrobial resistance. The author has been studying antimicrobial drug resistance and multidrug resistance of bacteria isolated from clinical settings. In particular, bacteriological analysis of antimicrobial resistance, which is important for treatment, has been conducted mainly on E. coli isolated from clinical specimens at medical facilities in Sapporo City. In this article, the author describes the findings obtained so far.
Collapse
Affiliation(s)
- Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine.,Present affiliation: Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University
| |
Collapse
|
32
|
Zhang H, Zhu Y, Yang N, Kong Q, Zheng Y, Lv N, Chen H, Yue C, Liu Y, Li J, Ye Y. In vitro and in vivo Activity of Combinations of Polymyxin B with Other Antimicrobials Against Carbapenem-Resistant Acinetobacter baumannii. Infect Drug Resist 2021; 14:4657-4666. [PMID: 34764660 PMCID: PMC8577563 DOI: 10.2147/idr.s334200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To study the in vitro and in vivo antibacterial activities of polymyxin B (PB) and other five antimicrobial agents, including imipenem (IMP), meropenem (MEM), tigecycline (TGC), sulbactam (SUL), and rifampicin (RIF), alone or in combination against carbapenem-resistant Acinetobacter baumannii (CRAB). Methods Microbroth dilution method was used to determine the minimum inhibitory concentration (MIC) of ten strains of CRAB against six antibacterial drugs, and the checkerboard method was used to determine the fractional inhibitory concentration index (FICI). A mouse pneumonia model was established by intranasal instillation of Ab5075 to evaluate the antibacterial activity in vivo. Results The resistance rate of ten CRAB strains to IMP, MEM, and SUL was 100%, that to PB and TGC was 0%, and that to RIF was 20%. When PB was used in combination with the other five antibiotics in vitro, it mainly showed synergistic and additive effects on CRAB. The synergistic effect of PB and RIF was maximal, followed by MEM and IMP but was weak with SUL and TGC. In vivo, compared to the model group (untreated with antibiotics), treatment group (six antibiotics alone and PB combined with the other five antibiotics) reduced the bacterial load in the lung tissue and the serum inflammatory factors (IL-1β, IL-6, and TNF-α). The bacterial load and the inflammatory factors of the combined group decreased significantly than that of the single group (P<0.05). The IL-6 and TNF-α values of the PB combined with the RIF group were significantly lower than the two drugs used individually. Conclusion The combination of PB and IMP, MEM, and RIF exerted robust in vitro synergistic effects on CRAB isolates. The combination of PB and the other five antimicrobial agents had a better effect in the mouse pneumonia model than single agent, while the combination of PB and RIF had the best effect.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunzhu Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ning Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qinxiang Kong
- Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yahong Zheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Na Lv
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haoran Chen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chengcheng Yue
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ying Ye
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
33
|
Plasmids Shape the Current Prevalence of tmexCD1-toprJ1 among Klebsiella pneumoniae in Food Production Chains. mSystems 2021; 6:e0070221. [PMID: 34609171 PMCID: PMC8547460 DOI: 10.1128/msystems.00702-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of novel antimicrobial resistance genes conferring resistance to last-resort antimicrobials poses a serious challenge to global public health security. Recently, one plasmid-mediated RND family multidrug resistance efflux pump gene cluster named tmexCD1-toprJ1, which confers resistance to tigecycline, was identified in bacteria of animal and human origins. However, the comprehensive landscape of the genomic epidemiology of this novel resistance determinant remained unclear. To fill this knowledge gap, we isolated 25 tmexCD1-toprJ1-positive bacteria from 682 samples collected along the pork production chain, including swine farms, slaughterhouses, and retail pork, and characterized the positive strains systematically using antimicrobial susceptibility testing, conjugation assays, single-molecule sequencing, and genomic analyses. We found that tmexCD1-toprJ1-positive bacteria were most prevalent in slaughterhouses (7.32%), followed by retail pork (0.72%). Most of the positive strains were Klebsiella pneumoniae (23/25), followed by Proteus mirabilis (2/25). IncFIB(Mar)/IncHI1B hybrid plasmids were mainly vectors for tmexCD1-toprJ1 and dominated the horizontal dissemination of tmexCD1-toprJ1 among K. pneumoniae isolates. However, in this study, we identified the IncR plasmid as a tmexCD1-toprJ1-positive plasmid with a broad host range, which evidenced that the widespread prevalence of tmexCD1-toprJ1 is possible due to such kinds of plasmids in the future. In addition, we found diversity and heterogeneity of translocatable units containing tmexCD1-toprJ1 in the plasmids. We also investigated the genetic features of tmexCD1-toprJ1 in online databases, which led to the proposal of the umuC gene as the potential insertion site of tmexCD1-toprJ1. Collectively, this study enriches the epidemiological and genomic characterization of tmexCD1-toprJ1 and provides a theoretical basis for preventing an increase in tmexCD1-toprJ1 prevalence. IMPORTANCE Tigecycline, the first member of the glycylcycline class of antibacterial agents, is frequently used to treat complicated infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria. The emergence of a novel plasmid-mediated efflux pump, TmexCD1-ToprJ1, conferring resistance to multiple antimicrobials, including tigecycline, poses a huge risk to human health. In this study, we investigated the prevalence of tmexCD1-toprJ1-positive strains along the food production chain and found that tmexCD1-toprJ1 was mainly distributed in IncFIB(Mar)/HI1B hybrid plasmids of K. pneumoniae. We also observed a potential risk of transmission of such plasmids along the pork processing chain, which finally may incur a threat to humans. Furthermore, the IncFIB(Mar)/HI1B tmexCD1-toprJ1-positive plasmids with a limited host range and specific insertion sites of tmexCD1-toprJ1 are strong evidence to prevent a fulminant epidemic of tmexCD1-toprJ1 among diverse pathogens. The mobilization and dissemination of tmexCD1-toprJ1, especially when driven by plasmids, deserve sustained attention and investigations.
Collapse
|
34
|
An Outbreak of tet(X6)-Carrying Tigecycline-Resistant Acinetobacter baumannii Isolates with a New Capsular Type at a Hospital in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10101239. [PMID: 34680819 PMCID: PMC8532604 DOI: 10.3390/antibiotics10101239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.
Collapse
|
35
|
Li Y, Wang Q, Peng K, Liu Y, Xiao X, Mohsin M, Li R, Wang Z. Distribution and genomic characterization of tigecycline-resistant tet(X4)-positive Escherichia coli of swine farm origin. Microb Genom 2021; 7:000667. [PMID: 34693904 PMCID: PMC8627205 DOI: 10.1099/mgen.0.000667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023] Open
Abstract
Abstract The emergence of plasmid-mediated tigecycline-resistant strains is posing a serious threat to food safety and human health, which has attracted worldwide attention. The tigecycline resistance gene tet (X4) has been found in diverse sources, but the distribution of tet (X4) and its genetic background in the animal farming environment is not fully understood. Thirty-two tet (X)-positive Escherichia coli strains isolated from 159 samples collected from swine farms showed resistance to tigecycline. The tet (X)-positive strains were characterized by antimicrobial susceptibility testing, conjugation assay, PCR, Illumina and long-read Nanopore sequencing, and bioinformatics analysis. A total of 11 different sequence types (STs) were identified and most of them belonged to phylogroup A, except ST641. In total, 196 possible prophage sequences were identified and some of the prophage regions were found to carry resistance genes, including tet (X4). Furthermore, our results showed possible correlations between CRISPR spacer sequences and serotypes or STs. The co-existence of tigecycline-resistant tet (A) variants and tet (X4) complicates the evolution of vital resistance genes in farming environments. Further, four reorganization plasmids carrying tet (X4) were observed, and the formation mechanism mainly involved homologous recombination. These findings contribute significantly to a better understanding of the diversity and complexity of tet (X4)-bearing plasmids, an emerging novel public health concern.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Qian Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| |
Collapse
|
36
|
Characterization of Fitness Cost Caused by Tigecycline-Resistance Gene tet(X6) in Different Host Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10101172. [PMID: 34680753 PMCID: PMC8532885 DOI: 10.3390/antibiotics10101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
The emergence and prevalence of the tet(X) gene and its variants in the environment and in clinical settings constitute a growing concern for public health worldwide. Accordingly, the tigecycline resistance gene variant tet(X6) is widely detected in Proteus spp. and Acinetobacter spp. rather than Enterobacteriaceae, while the underpinning behind this phenomenon is still unclear. To investigate the mechanisms underlying this distinct phenomenon, we assessed the fitness of the engineered plasmid pBAD-tet(X6) in different host bacteria by monitoring their growth curves, relative fitness and the ability of biofilm formation, as well as virulence in a Galleria mellonella model. MIC and qRT-PCR analysis indicated the successful expression of the tet(X6) gene in these strains in the presence of l-arabinose. Furthermore, we found that pBAD-tet(X6) displayed the lowest fitness cost in P. mirabilis compared with that in E. coli or S. Enteritidis, suggesting the fitness difference of tet(X6)-bearing plasmids in different host bacteria. Consistently, the carriage of pBAD-tet(X6) remarkably reduced the biofilm production and virulence of E. coli or S. Enteritidis. These findings not only indicate that the fitness cost difference elicited by the tet(X6) gene may be responsible for its selectivity in host bacteria but also sheds new insight into the dissemination of antibiotic resistance genes (ARGs) in clinical and environmental isolates.
Collapse
|
37
|
Bashir S, Nawaz H, Irfan Majeed M, Mohsin M, Nawaz A, Rashid N, Batool F, Akbar S, Abubakar M, Ahmad S, Ali S, Kashif M. Surface-enhanced Raman spectroscopy for the identification of tigecycline-resistant E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119831. [PMID: 33957452 DOI: 10.1016/j.saa.2021.119831] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Tigecycline (TGC) is recognised as last resort of drugs against several antibiotic-resistant bacteria. Bacterial resistance to tigecycline due to presence of plasmid-mediated mobile TGC resistance genes (tet X3/X4) has broken another defense line. Therefore, rapid and reproducible detection of tigecycline-resistant E. coli (TREC) is required. The current study is designed for the identification and differentiation of TREC from tigecycline-sensitive E. coli (TSEC) by employing SERS by using Ag NPs as a SERS substrate. The SERS spectral fingerprints of E. coli strains associated directly or indirectly with the development of resistance against tigecycline have been distinguished by comparing SERS spectral data of TSEC strains with each TREC strain. Moreover, the statistical analysis including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed to check the diagnostic potential of SERS for the differentiation among TREC and TSEC strains. The qualitative identification and differentiation between resistant and sensitive strains and among individual strains have been efficiently done by performing both PCA and HCA. The successful discrimination among TREC and TSEC at the strain level is performed by PLS-DA with 98% area under ROC curve, 100% sensitivity, 98.7% specificity and 100% accuracy.
Collapse
Affiliation(s)
- Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Ali Nawaz
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Fatima Batool
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
38
|
Yang YS, Jeng WY, Lee YT, Hsu CJ, Chou YC, Kuo SC, Chen CC, Hsu WJ, The Action Study Group, Chen HY, Sun JR. Ser253Leu substitution in PmrB contributes to colistin resistance in clinical Acinetobacter nosocomialis. Emerg Microbes Infect 2021; 10:1873-1880. [PMID: 34468294 PMCID: PMC8451652 DOI: 10.1080/22221751.2021.1976080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infections caused by extensively drug-resistant (XDR) Acinetobacter nosocomialis have become a challenging problem. The frequent use of colistin as the last resort drug for XDR bacteria has led to the emergence of colistin-resistant A. nosocomialis (ColRAN) in hospitals. The mechanism of colistin resistance in A. nosocomialis remains unclear. This study aimed to investigate the mechanisms underlying colistin resistance in clinical ColRAN isolates. We collected 36 A. nosocomialis isolates from clinical blood cultures, including 24 ColRAN and 12 colistin-susceptible A. nosocomialis (ColSAN). The 24 ColRAN isolates clustered with ST1272 (13), ST433 (eight), ST1275 (two), and ST410 (one) by multilocus sequence typing. There was a positive relationship between pmrCAB operon expression and colistin resistance. Further analysis showed that colistin resistance was related to an amino acid substitution, Ser253Leu in PmrB. By introducing a series of recombinant PmrB constructs into a PmrB knockout strain and protein structural model analyses, we demonstrated that the association between Ser253Leu and Leu244 in PmrB was coupled with colistin resistance in ColRAN. To the best of our knowledge, this is the first study demonstrating that the key amino acid Ser253Leu in PmrB is associated with overexpression of the pmrCAB operon and hence colistin resistance. This study provides insight into the mechanism of colistin resistance in A. nosocomialis.
Collapse
Affiliation(s)
- Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tzu Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Ju Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, Taiwan
| | - Wei-Jane Hsu
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | | | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Jun-Ren Sun
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
39
|
Babaei S, Haeili M. Evaluating the performance characteristics of different antimicrobial susceptibility testing methodologies for testing susceptibility of gram-negative bacteria to tigecycline. BMC Infect Dis 2021; 21:709. [PMID: 34315422 PMCID: PMC8314565 DOI: 10.1186/s12879-021-06338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background The current emergence of multi-drug resistance among nosocomial pathogens has led to increased use of last-resort agents including Tigecycline (TGC). Availability of reliable methods for testing TGC susceptibility is crucial to accurately predict clinical outcomes. We evaluated the influence of different methodologies and type of media on TGC susceptibility of different gram-negative bacteria of clinical origin. Methods The TGC susceptibility of 84 clinical isolates of Klebsiella pneumoniae (n = 29), Escherichia coli (n = 30), and Acinetobacter baumannii (n = 25) was tested by broth microdilution (BMD), Etest, agar dilution (AD) and disk diffusion (DD) methods using Mueller Hinton agar from Difco and Mueller Hinton broth (MHB) from two different manufacturers (Difco and Condalab). FDA TGC susceptibility breakpoints issued for Enterobacteriaceae were used for interpretation of the results. Results MICs determined by BMD using MHB from two suppliers showed a good correlation with overall essential agreement (EA) and categorical agreement (CA) being 100% and 95% respectively. However, a twofold rise in BMD-Condalab MICs which was detected in 50% of the isolates, resulted in changes in susceptibility categories of few isolates with MICs close to susceptibility breakpoints leading to an overall minor error (MI) rate of 4.7%. Among the tested methods, Etest showed the best correlation with BMD, being characterized with the lowest error rates (only 1% MI) and highest overall EA (100%) and CA (98.8%) for all subsets of isolates. AD yielded the lowest overall agreement (EA 77%, CA 81%) with BMD in a species dependent manner, with the highest apparent discordance being found among the A. baumannii isolates. While the performance of DD for determination of TGC susceptibility among Enterobacteriaceae was excellent, (CA:100% with no errors), the CA was lower (84%) when it was used for A. baumannii where an unacceptably high minor-error rate was noted (16%). No major error or very major error was detected for any of the tested methods. Conclusions Etest can be reliably used for TGC susceptibility testing in the three groups of studied bacteria. For the isolates with close-to-breakpoint MICs, testing susceptibility using the reference method is recommended.
Collapse
Affiliation(s)
- Sima Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
40
|
Chen HL, Jiang Y, Li MM, Sun Y, Cao JM, Zhou C, Zhang XX, Qu Y, Zhou TL. Acquisition of Tigecycline Resistance by Carbapenem-Resistant Klebsiella pneumoniae Confers Collateral Hypersensitivity to Aminoglycosides. Front Microbiol 2021; 12:674502. [PMID: 34276606 PMCID: PMC8284424 DOI: 10.3389/fmicb.2021.674502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Tigecycline is a last-resort antibiotic for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). This study aimed to broaden our understanding of the acquisition of collateral hypersensitivity by CRKP, as an evolutionary trade-off of developing resistance to tigecycline. Experimental induction of tigecycline resistance was conducted with tigecycline-sensitive CRKP clinical isolates. Antimicrobial susceptibility testing, microbial fitness assessment, genotypic analysis and full-genome sequencing were carried out for these clinical isolates and their resistance-induced descendants. We found that tigecycline resistance was successfully induced after exposing CRKP clinical isolates to tigecycline at gradually increased concentrations, at a minor fitness cost of bacterial cells. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) found higher expression of the efflux pump gene acrB (5.3–64.5-fold) and its regulatory gene ramA (7.4–65.8-fold) in resistance-induced strains compared to that in the tigecycline-sensitive clinical isolates. Stable hypersensitivities to aminoglycosides and other antibiotics were noticed in resistance-induced strains, showing significantly lowered MICs (X 4 – >500 times). Full genome sequencing and plasmid analysis suggested the induced collateral hypersensitivity might be multifaceted, with the loss of an antimicrobial resistance (AMR) plasmid being a possible major player. This study rationalized the sequential combination of tigecycline with aminoglycosides for the treatment of CRKP infections.
Collapse
Affiliation(s)
- Hua-le Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Mei Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Ming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Xiao Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Qu
- Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Tie-Li Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Zeng Y, Dong N, Zhang R, Liu C, Sun Q, Lu J, Shu L, Cheng Q, Chan EWC, Chen S. Emergence of an Empedobacter falsenii strain harbouring a tet(X)-variant-bearing novel plasmid conferring resistance to tigecycline. J Antimicrob Chemother 2021; 75:531-536. [PMID: 31778164 DOI: 10.1093/jac/dkz489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the genomic and phenotypic characteristics of an MDR Empedobacter falsenii strain isolated from a Chinese patient, which was phenotypically resistant to all last-line antibiotics (carbapenems, colistin and tigecycline). METHODS Species identity was determined by MALDI-TOF MS analysis. The complete genome sequence of the isolate was determined by WGS and the genetic elements conferring antimicrobial resistance were determined. The origin of this strain was tracked by phylogenetic analysis. RESULTS The E. falsenii strain was genetically most closely related to an Empedobacter sp. strain isolated from the USA. Members of E. falsenii are speculated to be intrinsically resistant to colistin. The carbapenem resistance of this strain was conferred by a chromosomal blaEBR-2 variant gene. Phylogenetic analysis indicated that the gene encoding the EBR β-lactamase was widely distributed in Empedobacter spp. Tigecycline resistance was mediated by a tet(X) variant gene encoded by a non-conjugative and non-typeable plasmid. CONCLUSIONS The MDR phenotype of the E. falsenii isolate was conferred by different mechanisms. Findings from us and others indicate that E. falsenii may serve as a reservoir for carbapenem and tigecycline resistance determinants.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Ning Dong
- State Key Lab of Chemical Science and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Qipeng Cheng
- State Key Lab of Chemical Science and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Science and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Lab of Chemical Science and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
42
|
CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies. Antibiotics (Basel) 2021; 10:antibiotics10070756. [PMID: 34206474 PMCID: PMC8300728 DOI: 10.3390/antibiotics10070756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) due to their profile of drug resistance and virulence. Therefore, innovative lines of treatment must be developed for these bacteria. In this review, we summarize the different strategies for the treatment and study of molecular mechanisms of AMR in the ESKAPE pathogens based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins’ technologies: loss of plasmid or cellular viability, random mutation or gene deletion as well directed mutations that lead to a gene’s loss of function.
Collapse
|
43
|
Haeili M, Abdollahi A, Ahmadi A, Khoshbayan A. Molecular Characterization of Tigecycline Non-Susceptibility among Extensively Drug-Resistant Acinetobacter baumannii Isolates of Clinical Origin. Chemotherapy 2021; 66:99-106. [PMID: 33823517 DOI: 10.1159/000515100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Tigecycline (TGC) is one of the last-resort therapeutic agents for treating infections caused by extensively drug resistant Acinetobacter baumannii isolates. Although resistance to TGC is not common, non-susceptible A. baumannii (NSAB) isolates have been described. In the current study, we aimed to assess the molecular mechanisms mediating TGC non-susceptibility in 5 clinical isolates of A. baumannii with reduced susceptibility to TGC. METHODS Susceptibility of isolates to TGC as well as various classes of antibiotics was evaluated by broth dilution and disk diffusion methods, respectively. The presence of tetX and tetX1 genes was investigated by PCR. The nucleotide sequences of adeR and adeS genes were assessed by PCR amplicon sequencing. To evaluate the association between reduced susceptibility to TGC and upregulation of AdeABC efflux pump, transcriptional level of adeB gene was quantified by RT-qPCR analysis. RESULTS All 5 TGC-NSAB isolates had a TGC MIC of ≥4 mg/L and were resistant to all antimicrobials tested by disk diffusion method except for minocycline and doxycycline for which a susceptibility rate of 40% and 20% was observed, respectively. The tetX/X1 genes were not detected in any isolates. All TGC non-susceptible isolates harbored genetic alterations in the adeRS operon, including AdeS G186V, N268H, and D60N and AdeR A136V and V120I substitutions among, which G186V and D60N were predicted by PROVEAN tool analysis as inactivating alterations. Reduced TGC susceptibility was associated with upregulation of AdeABC efflux pump in all TGC non-susceptible isolates. CONCLUSION It can be concluded from our results that reduced susceptibility to TGC in the studied isolates was mainly mediated by genetic alterations in the AdeRS system, which resulted in overexpression of AdeABC efflux pump. Emergence of TGC non-susceptibility among isolates that had not been previously exposed to TGC is an issue of great concern.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Abdollahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Ahmadi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Salehi B, Ghalavand Z, Yadegar A, Eslami G. Characteristics and diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with drug-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Resist Infect Control 2021; 10:53. [PMID: 33691788 PMCID: PMC7944621 DOI: 10.1186/s13756-021-00924-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background This study was aimed to characterize the genetic diversity and expression of three putative resistance-nodulation-cell division (RND)-type efflux systems and their contribution to multidrug efflux in clinical isolates of Acinetobacter baumannii. Methods Antimicrobial susceptibility testing of 95 A. baumannii isolates was determined by Kirby-Bauer disk diffusion for 18 antibiotics and minimum inhibitory concentration (MIC) of colistin was determined by the broth microdilution method. Moreover, the MIC of five classes of antibiotics was assessed using E-test strips in the presence and absence of phenylalanine-arginine beta-naphthylamide (PAβN). Regulatory genes of the RND efflux pumps (adeRS, adeL, adeN and baeSR) were subjected to sequencing. The relative expression of adeB, adeG and adeJ genes was determined by quantitative real-time PCR (qRT-PCR). Results Overall, the majority of isolates (94%) were extensively drug-resistant (XDR). In the phenotypic assay, efflux pump activity was observed in 40% of the isolates against multiple antibiotics mainly tigecycline. However, we found no efflux activity against imipenem. Several amino acid substitutions were detected in the products of regulatory genes; except in AdeN. Of note, G186V mutation in AdeS was found to be associated with overexpression of its efflux pump. No insertion sequences were detected. Conclusions Our findings outlined the role of RND efflux pumps in resistance of A. baumannii to multiple antibiotics particularly tigecycline, and pointed out the importance of a variety of single mutations in the corresponding regulatory systems. Further studies are required to decipher the precise role of RND efflux pumps in multidrug-resistant clinical isolates of A. baumannii.
Collapse
Affiliation(s)
- Bahare Salehi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
He T, Wei RC, Zhang L, Gong L, Zhu L, Gu J, Fu YL, Wang Y, Liu DJ, Wang R. Dissemination of the tet(X)-Variant Genes from Layer Farms to Manure-Receiving Soil and Corresponding Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1604-1614. [PMID: 33427447 DOI: 10.1021/acs.est.0c05042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The occurrence of high-level tigecycline resistance tet(X) variant genes represents a new transferable resistance crisis to food safety and human health. Here, we investigated the abundance of tet(X)-variant genes [tet(X), tet(X1) to tet(X6)] in 33 samples collected from layer manures, manured/un-manured soils, and corresponding lettuce from three provinces in China. The results showed the occurrence of tet(X)/(X2), tet(X3), and tet(X4) in 24 samples. The detection rate of tet(X)/(X2) (23/24) is higher than that of tet(X3) (7/24) and tet(X4) (2/24), and tet(X)/tet(X2) and tet(X3) were found to be enriched and more abundant in most manured soil and several lettuce samples from manured soils than that from manure samples. Twenty six tigecycline-resistant bacteria were isolated, and tet(X)-variant genes were found to be disseminated not only by bacterial clone spreading but also via multidrug resistance plasmids. The total concentrations of tet(X)-variant genes showed significantly positive correlations (R = 0.683, p < 0.001) with ISCR2. Two veterinary tetracyclines (tetracycline and oxytetracycline) and other classes of antimicrobials (enrofloxacin, azithromycin, thiamphenicol, and florfenicol) showed significant correlations with the total concentrations of tet(X)-variant genes (R = 0.35-0.516, p < 0.05). The findings indicate the transmission of tet(X)-variant genes from layer manures to their receiving environmental soils and lettuce and highlight the contribution of veterinary antimicrobials to the spread of tet(X)-variant genes.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rui-Cheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lili Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jili Gu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu-Lin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - De-Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
46
|
Characterization of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump in Klebsiella pneumoniae and Klebsiella quasipneumoniae from Patients in China. Antimicrob Agents Chemother 2021; 65:AAC.02075-20. [PMID: 33199390 DOI: 10.1128/aac.02075-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Two multidrug-resistant (MDR) mcr-1-harboring Klebsiella pneumoniae isolates from patients with urinary tract infections and one MDR Klebsiella quasipneumoniae isolate from a patient with bloodstream infection were identified to carry tmexCD1-toprJ1 The addition of the efflux pump inhibitor reduced the tigecycline MIC against all three isolates by 8- to 16-fold. pKQBSI104-1 was transferred from K. quasipneumoniae to Escherichia coli J53 via conjugation. The tmexCD1-toprJ1-carrying plasmids pKP15ZE495-1 (102,569 bp) and pKQBSI104-1 (121,996 bp) were completely sequenced and analyzed.
Collapse
|
47
|
Singkham-in U, Higgins PG, Wannigama DL, Hongsing P, Chatsuwan T. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One 2020; 15:e0243082. [PMID: 33264338 PMCID: PMC7710055 DOI: 10.1371/journal.pone.0243082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determine the activity and synergistic mechanisms of resveratrol in combination with chlorhexidine against carbapenem-resistant Acinetobacter baumannii clinical isolates. The activity of resveratrol plus antimicrobial agents was determined by checkerboard and time-kill assay against carbapenem-resistant A. baumannii isolated from patients at the King Chulalongkorn Memorial Hospital, Bangkok, Thailand. Overexpression of efflux pumps that mediates chlorhexidine susceptibility was characterized by the ethidium bromide accumulation assay. The effect of resveratrol on the expression of efflux pump genes (adeB, adeJ, adeG abeS, and aceI) and the two-component regulators, adeR and adeS was determined by RT-qPCR. The combination of resveratrol and chlorhexidine resulted in strong synergistic and bactericidal activity against carbapenem-resistant A. baumannii. Up-regulation of adeB and aceI was induced by chlorhexidine. However, the addition of resveratrol increased chlorhexidine susceptibility with increased intracellular accumulation of ethidium bromide in A. baumannii indicating that resveratrol acts as an efflux pump inhibitor. Expression of adeB was significantly reduced in the combination of resveratrol with chlorhexidine indicating that resveratrol inhibits the AdeB efflux pump and restores chlorhexidine effect on A. baumannii. In conclusion, reduced adeB expression in A. baumannii was mediated by resveratrol suggesting that AdeB efflux pump inhibition contributes to the synergistic mechanism of resveratrol with chlorhexidine. Our finding highlights the potential importance of resveratrol in clinical applications.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-in
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Mae Fah Luang University, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
48
|
Chromosomal and Plasmid-Borne Tigecycline Resistance Genes tet(X3) and tet(X4) in Dairy Cows on a Chinese Farm. Antimicrob Agents Chemother 2020; 64:AAC.00674-20. [PMID: 32816739 DOI: 10.1128/aac.00674-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
We isolated 47 Acinetobacter strains carrying tet(X3) and 4 ST767 E. coli strains carrying tet(X4) from 296 rectal swab samples from dairy cows on a Chinese farm. tet(X3) was located on chromosomes or diverse plasmids, and tet(X4) was located on IncFIBκ/FIA(HI1)/X1 nontransferable plasmid. The coexistence of tet(X3) and carbapenemase genes, including bla OXA-58 and bla NDM-1, was detected in 9 Acinetobacter spp. These findings suggested that the use of tetracycline and other antibiotics in food production warrants urgent attention.
Collapse
|
49
|
Lim FK, Liew YX, Cai Y, Lee W, Teo JQM, Lay WQ, Chung J, Kwa ALH. Treatment and Outcomes of Infections Caused by Diverse Carbapenemase-Producing Carbapenem-Resistant Enterobacterales. Front Cell Infect Microbiol 2020; 10:579462. [PMID: 33178629 PMCID: PMC7591786 DOI: 10.3389/fcimb.2020.579462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Diverse sequence types (ST) and various carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) infections, which complicate treatment strategies, have emerged in Singapore. We aim to describe these CP-CRE infections and clinical outcomes according to their carbapenemase types and determine the hierarchy of predictors for mortality that are translatable to clinical practice. Methods: Clinically significant CP-CRE infections were identified in Singapore General Hospital between 2013 and 2016. Retrospectively, all clinically relevant data were retrieved from electronic medical records from the hospital. Univariate analysis was performed. To further explore the relationship between the variables and mortality in different subsets of patients with CP-CRE, we conducted recursive partitioning analysis on all study variables using the “rpart” package in R. Results: One hundred and fifty five patients were included in the study. Among them, 169 unique CP-CRE were isolated. Thirty-day all-cause in-hospital mortality was 35.5% (n = 55). There was no difference in the severity of illness, or any clinical outcomes exhibited by patients between the various carbapenemases. Root node began with patients with Acute Physical and Chronic Health Evaluation (APACHEII) score ≥ 15 (n = 98; mortality risk = 52.0%) and <15 (n = 57; mortality risk = 9.0%). Patients with APACHEII score ≥ 15 are further classified based on presence (n = 27; mortality risk = 23.0%) and absence (n = 71, mortality risk = 62.0%) of bacterial eradication. Without bacterial eradication, absence (n = 54) and presence (n = 17) of active source control yielded 70.0 and 35.0% mortality risk, respectively. Without active source control, the mortality risk was higher for the patients with non-receipt of definite combination therapy (n = 36, mortality risk = 83.0%) when compared to those who received (n = 18, mortality risk = 47.0%). Overall, the classification tree has an area under receiver operating characteristic curve of 0.92, with a sensitivity of 0.87 and specificity of 0.91. Conclusion: Different mortality risks were observed with different treatment strategies. Effective source control and microbial eradication were associated with a lower mortality rate but not active empiric therapy for CP-CRE infection. When source control was impossible, definitive antibiotic combination appeared to be associated with a reduction in mortality.
Collapse
Affiliation(s)
- Fang Kang Lim
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Yi Xin Liew
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Yiying Cai
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Winnie Lee
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Jocelyn Q M Teo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Wei Qi Lay
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Andrea L H Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Emerging Infectious Diseases Programme, Duke-National University of Singapore Medical School, Singapore, Singapore.,Singhealth Duke-National University of Singapore Medical School, Medicine Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
50
|
Mei H, Yang T, Wang J, Wang R, Cai Y. Efficacy and safety of tigecycline in treatment of pneumonia caused by MDR Acinetobacter baumannii: a systematic review and meta-analysis. J Antimicrob Chemother 2020; 74:3423-3431. [PMID: 31377765 DOI: 10.1093/jac/dkz337] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Use of tigecycline in treating MDR Acinetobacter baumannii (MDRAB) remains controversial. OBJECTIVES To comprehensively assess the safety and efficacy of tigecycline in pneumonia caused by Acinetobacter baumannii. METHODS PubMed, Embase, Web of Science and Cochrane library databases were searched up to 12 March 2019. Studies were included if they compared tigecycline-based regimens with other antibiotic regimens for treating AB pulmonary infections and we pooled the clinical outcomes, microbiological response, adverse events or mortality. RESULTS One prospective study and nine retrospective studies were included in this meta-analysis. The results showed similar clinical cure rates (OR = 1.04, 95% CI = 0.60-1.81; P = 0.89) and mortality rates (OR = 1.11, 95% CI = 0.65-1.89; P = 0.71) comparing tigecycline groups with the control groups. However, a significantly lower microbiological eradication rate was found in the tigecycline groups (OR = 0.43, 95% CI = 0.27-0.66; P = 0.0001). Incidence of nephrotoxicity in tigecycline-based regimens was significantly lower than in colistin-based regimens (OR = 0.34, 95% CI = 0.16-0.74, I2 = 35%, P = 0.006). There were no randomized controlled trials (RCTs) included; incomplete safety data and regional bias caused by the majority of the studies originating in China are the main limitations of this meta-analysis. CONCLUSIONS Tigecycline can be used for treating MDRAB pulmonary infections owing to efficacy similar to that of other antibiotics. Moreover, tigecycline did not show a higher risk of mortality. Considering the lower microbiological eradication rate for tigecycline, which is likely to induce antimicrobial resistance, well-designed RCTs for high-dose tigecycline in treating pneumonia caused by AB are still needed.
Collapse
Affiliation(s)
- Hekun Mei
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Tianli Yang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|