1
|
Zeng W, Han C, Mohammed S, Li S, Song Y, Sun F, Du Y. Indole-containing pharmaceuticals: targets, pharmacological activities, and SAR studies. RSC Med Chem 2024; 15:788-808. [PMID: 38516587 PMCID: PMC10953485 DOI: 10.1039/d3md00677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
Indole is a prestigious heterocyclic skeleton widely found in both naturally-occurring and biologically-active compounds. Pharmaceutical agents containing an indole skeleton in their framework possess a wide range of pharmacological properties, including antiviral, antitumor, analgesic, and other therapeutic activities, and many indole-containing drugs have been proven to have excellent pharmacokinetic and pharmacological effects. Over the past few decades, the FDA has approved over 40 indole-containing drugs for the treatment of various clinical conditions, and the development of indole-related drugs has attracted significant attention from medicinal chemists. This review aims to provide an overview of all the approved drugs that contain an indole nucleus, focusing on their targets, pharmacological activities, and SAR studies.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chi Han
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Sarah Mohammed
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Shanshan Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yixuan Song
- Department of Chemical Engineering & Biotechnology, University of Cambridge CB2 3RA Cambridge UK
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
2
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Wang Z, Yan H, He F, Wang J, Zhang Y, Sun L, Hao C, Wang W. Inhibition of herpes simplex virus by wedelolactone via targeting viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways. Int J Antimicrob Agents 2023; 62:107000. [PMID: 37838148 DOI: 10.1016/j.ijantimicag.2023.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fujie He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, PR China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
4
|
Kang Y, Shi Y, Xu S. Arbidol: The current demand, strategies, and antiviral mechanisms. Immun Inflamm Dis 2023; 11:e984. [PMID: 37647451 PMCID: PMC10461429 DOI: 10.1002/iid3.984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND High morbidity and mortality of influenza virus infection have made it become one of the most lethal diseases threatening public health; the lack of drugs with strong antiviral activity against virus strains exacerbates the problem. METHODS Two independent researchers searched relevant studies using Embase, PubMed, Web of Science, Google Scholar, and MEDLINE databases from its inception to December 2022. RESULTS Based on the different antiviral mechanisms, current antiviral strategies can be mainly classified into virus-targeting approaches such as neuraminidase inhibitors, matrix protein 2 ion channel inhibitors, polymerase acidic protein inhibitors and other host-targeting antivirals. However, highly viral gene mutation has underscored the necessity of novel antiviral drug development. Arbidol (ARB) is a Russian-made indole-derivative small molecule licensed in Russia and China for the prevention and treatment of influenza and other respiratory viral infections. ARB also has inhibitory effects on many other viruses such as severe acute respiratory syndrome coronavirus 2, Coxsackie virus, respiratory syncytial virus, Hantaan virus, herpes simplex virus, and hepatitis B and C viruses. ARB is a promising drug which can not only exert activity against virus at different steps of virus replication cycle, but also directly target on hosts before infection to prevent virus invasion. CONCLUSION ARB is a broad-spectrum antiviral drug that inhibits several viruses in vivo and in vitro, with high safety profile and low resistance; the antiviral mechanisms of ARB deserve to be further explored and more high-quality clinical studies are required to establish the efficacy and safety of ARB.
Collapse
Affiliation(s)
- Yue Kang
- Jiangsu Key Laboratory of NeurodegenerationSchool of Pharmacy, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yin Shi
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Silu Xu
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Yan H, Wang J, Yang J, Xu Z, Li C, Hao C, Wang S, Wang W. Inhibition Effects and Mechanisms of Marine Polysaccharide PSSD against Herpes Simplex Virus Type 2. Mar Drugs 2023; 21:364. [PMID: 37367689 DOI: 10.3390/md21060364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Genital herpes is a common sexually transmitted disease mainly caused by herpes simplex virus type 2 (HSV-2), which can increase the risk of HIV transmission and is a major health problem in the world. Thus, it is of great significance to develop new anti-HSV-2 drugs with high efficiency and low toxicity. In this study, the anti-HSV-2 activities of PSSD, a marine sulfated polysaccharide, was deeply explored both in vitro and in vivo. The results showed that PSSD had marked anti-HSV-2 activities in vitro with low cytotoxicity. PSSD can directly interact with virus particles to inhibit the adsorption of virus to the cell surface. PSSD may also interact with virus surface glycoproteins to block virus-induced membrane fusion. Importantly, PSSD can significantly attenuate the symptoms of genital herpes and weight loss in mice after gel smear treatment, as well as reducing the titer of virus shedding in the reproductive tract of mice, superior to the effect of acyclovir. In summary, the marine polysaccharide PSSD possesses anti-HSV-2 effects both in vitro and in vivo, and has potential to be developed into a novel anti-genital herpes agent in the future.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiayi Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhongqiu Xu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266100, China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266100, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
Oliveira TZ, Fonseca DP, Dos Santos AH, da Silva TR, Lazarin-Bidóia D, Din ZU, Filho BPD, Nakamura CV, Rodrigues-Filho E, Ueda-Nakamura T. Synthetic dibenzylideneketones as promising anti-herpes simplex virus type 1 agents. Arch Virol 2023; 168:153. [PMID: 37140819 DOI: 10.1007/s00705-023-05777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
New antiviral agents for the treatment of herpes simplex virus type 1 (HSV-1) infection, which causes a highly prevalent and incurable disease, are needed. Here, we report for the first time the in vitro anti-HSV-1 activity of two dibenzylideneketone compounds: DBK1 and DBK2. DBK1 demonstrated virucidal activity, and high-resolution scanning electron microscopy showed that it caused morphological changes in the HSV-1 envelope. DBK2 was able to reduce HSV-1 plaque size in vitro. The DBKs are promising anti-HSV-1 candidates, as they exhibit low toxicity and exert an antiviral effect by acting at the early stages of HSV-1-host cell interaction.
Collapse
Affiliation(s)
- Thalita Zago Oliveira
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Dyenefer Pereira Fonseca
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - André Henrique Dos Santos
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Thays Rosa da Silva
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Zia Ud Din
- Laboratory of Micromolecular Biochemistry of Microorganisms, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Benedito Prado Dias Filho
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Tania Ueda-Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
7
|
Kasabe B, Ahire G, Patil P, Punekar M, Davuluri KS, Kakade M, Alagarasu K, Parashar D, Cherian S. Drug repurposing approach against chikungunya virus: an in vitro and in silico study. Front Cell Infect Microbiol 2023; 13:1132538. [PMID: 37180434 PMCID: PMC10174255 DOI: 10.3389/fcimb.2023.1132538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes mosquitoes. There are no licenced antivirals or vaccines for treatment or prevention. Drug repurposing approach has emerged as a novel concept to find alternative uses of therapeutics to battle pathogens. In the present study, anti CHIKV activity of fourteen FDA-approved drugs was investigated by in vitro and in silico approaches. Focus-forming unit assay, immunofluorescence test, and quantitative RT-PCR assay were used to assess the in vitro inhibitory effect of these drugs against CHIKV in Vero CCL-81 cells. The findings showed that nine compounds, viz., temsirolimus, 2-fluoroadenine, doxorubicin, felbinac, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol exhibit anti chikungunya activity. Furthermore, in silico molecular docking studies performed by targeting CHIKV structural and non-structural proteins revealed that these drugs can bind to structural protein targets such as envelope protein, and capsid, and non-structural proteins NSP2, NSP3 and NSP4 (RdRp). Findings from in vitro and in silico studies reveal that these drugs can suppress the infection and replication of CHIKV and further in vivo studies followed by clinical trials are warranted.
Collapse
Affiliation(s)
- Bhagyashri Kasabe
- Bioinformatics Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Gunwant Ahire
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Poonam Patil
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Madhura Punekar
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Kusuma Sai Davuluri
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Mahadeo Kakade
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
- *Correspondence: Deepti Parashar, ; Sarah Cherian,
| | - Sarah Cherian
- Bioinformatics Group, Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
- *Correspondence: Deepti Parashar, ; Sarah Cherian,
| |
Collapse
|
8
|
Evaluation of (S)-10-Hydroxycamptothecin Inhibitor of Herpes Simplex Type 1 Identified from Screening of a Library of Natural Products. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-130237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Herpes simplex virus type 1 (HSV-1) causes serious illness in humans, especially in newborns and immunocompromised hosts. Public health requires the development of new, less toxic anti-HSV-1 drugs. Objectives: This study aimed to evaluate the potential anti-herpesvirus activity of natural products in an extensive library of 133 compounds by examining viral titers and the number of viral plaques. Methods: (S)-10-hydroxycamptothecin (10-HCPT) as an inhibitor against viral DNA replication in the lowest concentration ranges from a set of natural products consisting of screening 133 compounds. Each step of the viral replication cycle of HSV-1 on A549 cells was evaluated with different assays, including adsorption, penetration, time-of-addition assay, and quantitative polymerase chain reaction (PCR). The respective antiviral effects on HSV-1AN95 infection were assessed in vitro. Results: 10-HCPT was found to be a potent inhibitor of HSV-1 infection in the lowest concentration range from screening of a natural product library. The results showed that 10-HCPT significantly affects HSV-1 viral plaque formation inhibition, with a half maximal effective concentration (EC50) of 0.07 μM. The time of addition assay suggested that 10-HCPT had a viral inhibitory effect when added 8 hours after infection. It was further confirmed by reducing the expression of late viral genes including glycoprotein (g) and viral protein (VP) (gB, gD, gH, VP1/2, and VP16) 4 hours after infection in the 10-HCPT treatment group compared to positive controls by quantitative real-time PCR. The Western blotting results are inconsistent with other reported results. It showed that 10-HCPT did not affect gD and ICP4 during HSV-1 infection, and 10-HCPT appeared to affect other genes in the immediate-early (IE) and late (L) steps. Conclusions: 10-HCPT demonstrated anti-HSV activity on HSV-1. Their dose-dependent antiviral activity showed that specific cellular components might mediate their function rather than cytotoxicity. This survey suggests a new outlook in exploring effective treatment options for HSV-1 infections.
Collapse
|
9
|
Aliabadi N, Jamalidoust M, Pouladfar G, Ziyaeyan A, Ziyaeyan M. Antiviral activity of triptolide on herpes simplex virus in vitro. Immun Inflamm Dis 2022; 10:e667. [PMID: 35759241 PMCID: PMC9208287 DOI: 10.1002/iid3.667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Herpes simplex virus-type 1 (HSV-1) can cause diseases, especially amongst neonates and immunocompromised hosts. Hence, developing a novel anti-HSV-1 drug with low-level toxicity is vital. Triptolide (TP), a diterpenoid triepoxide is a natural product with range of bioactivity qualities. METHODS In this study, viral infection was assessed in different phases of the HSV-1 replication cycle on A549 cells, using various assays, such as adsorption inhibition assay, penetration inhibition assay, time-of-addition assay, and quantitative polymerase chain reaction (qPCR). RESULTS The results indicate that TP can effectively inhibit HSV-1 infection in the lowest range of concentration. TP exhibited significant inhibitory effect on HSV-1 plaque formation, with 50% effective concentration (EC50) of 0.05 µM. Furthermore, the time-of-addition assay suggests that TP has viral inhibitory effects when it was added less than 8 h postinfection (h.p.i.). This result is further confirmed by decline in the expression viral immediate-early genes (ICP4, ICP22, and ICP27) in 6 h.p.i in the TP-treated group compared to the control group, evaluated by real-time qPCR. The Western blotting result was also consistent with the previous findings, which confirms that TP can positively affect ICP4 during HSV-1 infection. CONCLUSIONS The TP also showed antiviral activity against HSV-1. This dose-dependent activity is an indication of a particular cellular component, rather than cytotoxicity that has mediated its function. Finally, the result suggest a new approach for an effective treatment option of the HSV-1 infections.
Collapse
Affiliation(s)
- Nasrin Aliabadi
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Marzieh Jamalidoust
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Gholamreza Pouladfar
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Atoosa Ziyaeyan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroder Arthritis InstituteUniversity Health NetworkTorontoCanada
| | - Mazyar Ziyaeyan
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Pan X, Zhang Y, Zhao Y, Yao S, Guan C, Wang L, Chen L. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 2022; 167:1619-1636. [PMID: 35648293 DOI: 10.1007/s00705-022-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50-90% of the world's population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.
Collapse
Affiliation(s)
- Xuanhe Pan
- Department of Clinical Laboratory, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yiming Zhao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Siqi Yao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Chaxiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Linqian Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Punekar M, Kshirsagar M, Tellapragada C, Patil K. Repurposing of antiviral drugs for COVID-19 and impact of repurposed drugs on the nervous system. Microb Pathog 2022; 168:105608. [PMID: 35654381 PMCID: PMC9160731 DOI: 10.1016/j.micpath.2022.105608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022]
Abstract
The recent pandemic, Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has devastated humanity and is continuing to threaten us. Due to the high transmissibility of this pathogen, researchers are still trying to cope with the treatment and prevention of this disease. Few of them were successful in finding cure for COVID-19 by including repurposed drugs in the treatment. In such pandemic situations, when it is nearly impossible to design and implement a new drug target, previously designed antiviral drugs could help against novel viruses, referred to as drug repurposing/redirecting/repositioning or re-profiling. This review describes the current landscape of the repurposing of antiviral drugs for COVID-19 and the impact of these drugs on our nervous system. In some cases, specific antiviral therapy has been notably associated with neurological toxicity, characterized by peripheral neuropathy, neurocognitive and neuropsychiatric effects within the central nervous system (CNS).
Collapse
Affiliation(s)
- Madhura Punekar
- ICMR National Institute of Virology, 20-A, P B No 11, Dr Ambedkar Road, Pune, 411001, Maharashtra, India.
| | - Manas Kshirsagar
- Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, the Netherlands.
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine (LABMED), Karolinska Institutet, Solnavägen 1, 171 77, Stockholm, Sweden.
| | - Kanchankumar Patil
- ICMR National Institute of Virology, 20-A, P B No 11, Dr Ambedkar Road, Pune, 411001, Maharashtra, India.
| |
Collapse
|
13
|
Biswas P, Hasan MM, Dey D, Dos Santos Costa AC, Polash SA, Bibi S, Ferdous N, Kaium MA, Rahman MDH, Jeet FK, Papadakos S, Islam K, Uddin MS. Candidate antiviral drugs for COVID-19 and their environmental implications: a comprehensive analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59570-59593. [PMID: 34510341 PMCID: PMC8435122 DOI: 10.1007/s11356-021-16096-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
Emerging from Wuhan, China, SARS-CoV-2 is the new global threat that killed millions of people, and many are still suffering. This pandemic has not only affected people but also caused economic crisis throughout the world. Researchers have shown good progress in revealing the molecular insights of SARS-CoV-2 pathogenesis and developing vaccines, but effective treatment against SARS-CoV-2-infected patients are yet to be found. Several vaccines are available and used in many countries, while many others are still in clinical or preclinical studies. However, this involves a long-term process, considering the safety procedures and requirements and their long-term protection capacity and in different age groups are still questionable. Therefore, at present, the drug repurposing of the existing therapeutics previously designed against other viral diseases seems to be the only practical approach to mitigate the current situation. The safety of most of these therapeutic agents has already been tested. Recent clinical reports revealed promising therapeutic efficiency of several drugs such as remdesivir, tenofovir disoproxil fumarate, azithromycin, lopinavir/ritonavir, chloroquine, baricitinib, and cepharanthine. Besides, plasma therapies were used to treat patients and prevent fatal outcomes. Thus, in this article, we have summarized the epidemiological and clinical data from several clinical trials conducted since the beginning of the pandemic, emphasizing the efficiency of the known agents against SARS-CoV-2 and their harmful side effects on the human body as well as their environmental implications. This review shows a clear overview of the current pharmaceutical perspective on COVID-19 treatment.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | | | - Shabana Bibi
- Yunnan Herbal Laboratory, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Abu Kaium
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M D Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fardin Kamal Jeet
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Stavros Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Khairul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| |
Collapse
|
14
|
Lu JZ, Ye D, Chen L, Ma BL. Pharmacokinetic comparison of four arbidol hydrochloride preparations in beagle dogs. Biomed Chromatogr 2021; 36:e5245. [PMID: 34532879 DOI: 10.1002/bmc.5245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to compare the pharmacokinetic properties of four preparations (dispersible tablets, ordinary tablets, capsules and granules) of arbidol hydrochloride, a broad-spectrum antiviral drug, in beagle dogs. Briefly, a single dose of 100 mg of the four preparations of arbidol hydrochloride was orally administered to dogs; blood was then collected from the veins of the foreleg at different times after administration to prepare plasma samples. The plasma concentration of arbidol hydrochloride was measured using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that when orally administered with dispersible tablets, ordinary tablets, capsules and granules suspended with water, there were no significant differences in the pharmacokinetic parameters (including peak time, peak concentration, elimination half-life, area under the curve (AUC0-t ), and mean retention time) of arbidol hydrochloride. However, in the case of the dispersible tablets, the pharmacokinetics of arbidol hydrochloride was significantly affected by the mode of administration. Compared with direct feeding, peak time [0.50 (0.13, 0.50) vs. 1.00 (0.50, 2.00)] was significantly shortened (P = 0.033) and the AUC0-48 h (8726.5 ± 2509.3 vs. 3650.8 ± 1536.9 ng h/ml) was significantly increased (P = 0.012) when the dispersible tablets were orally administered as water dispersion. In conclusion, the pharmacokinetics of four preparations of arbidol hydrochloride were not significant different in beagle dogs. However, compared with direct feeding, the absorption of arbidol hydrochloride was faster and the bioavailability was better when the dispersible tablets were orally administered as water dispersion.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Dorababu A. Indole - a promising pharmacophore in recent antiviral drug discovery. RSC Med Chem 2020; 11:1335-1353. [PMID: 34095843 PMCID: PMC8126882 DOI: 10.1039/d0md00288g] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
The bicyclic molecule indole has been in the limelight because of its numerous pharmacological potencies. It is used as an excellent scaffold in drug discovery of medicinal drugs such as antimicrobials, anticancer agents, antihypertensives, anti-proliferative agents and anti-inflammatory agents. In spite of its diverse therapeutic activity, it is used as a key pharmacophore in synthesizing the most potent biological agents. Besides, viral infections are ubiquitous and their prevention and cure have become a great challenge. In this regard, the design of indole-containing antiviral drugs is accomplished to combat viral infections. A lot of research is being carried out towards antiviral drug discovery by many researchers round the clock. Herein, the antiviral activity of recently discovered indole scaffolds is compiled and critically evaluated to give a meaningful summary. In addition, the structure-activity relationship of remarkable antiviral agents is discussed. Also, the structural motifs attributed to noteworthy antiviral properties are highlighted to guide future antiviral research.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Govt. First Grade College Huvinahadagali-583219 Karnataka India
| |
Collapse
|
16
|
Wang C, Chen H, Chen D, Zhao M, Lin Z, Guo M, Xu T, Chen Y, Hua L, Lin T, Tang Y, Zhu B, Li Y. The Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Surface Decoration of Selenium Nanoparticles with β-Thujaplicin through Reactive Oxygen Species-Mediated AKT and p53 Signaling Pathways. ACS OMEGA 2020; 5:30633-30642. [PMID: 33283112 PMCID: PMC7711941 DOI: 10.1021/acsomega.0c04624] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/02/2020] [Indexed: 05/26/2023]
Abstract
β-Thujaplicin possess a variety of biological activities. The use of modified biological nanoparticles (NPs) to develop novel anti-influenza drugs has increased in recent years. Selenium nanoparticles (SeNPs) with antiviral activity have attracted increasing attention for biomedical intervention. Functionalized SeNPs by β-thujaplicin (Se@TP) surface modified with superior antiviral activity were synthesized in this study. Compared to a virus group (43%), when treated with Se@TP (88%), the cell survival rate of MDCK cells was 45% higher. Se@TP could inhibit H1N1 from infecting Madin-Darby canine kidney (MDCK) cells and block chromatin condensation and DNA fragmentation. Se@TP obviously prevented MDCK cells from generating reactive oxygen species. Furthermore, Se@TP prevents lung injury in H1N1-infected mice through eosin staining and hematoxylin in vivo. Mechanistic investigation revealed that Se@TP inhibited H1N1 influenza virus from infecting MDCK cells through induction of apoptosis via suppressing AKT and p53 signaling pathways through immunohistochemical assay. Our results suggest that β-thujaplicin-modified SeNPs as carriers are an efficient way to achieve an antiviral pharmaceutical candidate for H1N1 influenza.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing Zhu
- . Tel: +86 20-81330740. Fax: +86 20 81885978
| | | |
Collapse
|
17
|
Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 2020; 155:105522. [PMID: 32827661 PMCID: PMC7438372 DOI: 10.1016/j.ejps.2020.105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The importance of coronaviruses as human pathogen has been highlighted by the recent outbreak of SARS-CoV-2 leading to the search of suitable drugs to overcome respiratory infections caused by the virus. Due to the lack of specific drugs against coronavirus, the existing antiviral and antimalarial drugs are currently being administered to the patients infected with SARS-CoV-2. The scientists are also considering repurposing of some of the existing drugs as a suitable option in search of effective drugs against coronavirus till the establishment of a potent drug and/or vaccine. Computer-aided drug discovery provides a promising attempt to enable scientists to develop new and target specific drugs to combat any disease. The discovery of novel targets for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins present in the virus. Targeting viral proteins will make the drug specific against the virus, thereby, increasing the chances of viral mortality. Hence, this review provides the structure of SARS-CoV-2 virus along with the important viral components involved in causing infection. It also focuses on the role of various target proteins in disease, the mechanism by which currently administered drugs act against the virus and the repurposing of few drugs. The gap arising from the absence of specific drugs is addressed by proposing potential antiviral drug targets which might provide insights into structure-based drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India.
| |
Collapse
|
18
|
Zhou HY, Gao SQ, Gong YS, Lin T, Tong S, Xiong W, Shi CY, Wang WQ, Fang JG. Anti-HSV-1 effect of dihydromyricetin from Ampelopsis grossedentata via the TLR9-dependent anti-inflammatory pathway. J Glob Antimicrob Resist 2020; 23:370-376. [PMID: 33161114 DOI: 10.1016/j.jgar.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/09/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Herpes simplex virus 1 (HSV-1) is one of the most prevalent viruses in humans worldwide. Owing to limited therapeutic options mainly with acyclovir (ACV) and analogues and the emergence of ACV-resistant strains, new drugs with different modes of action and low toxicity are required. The aim of this study was to determine the anti-HSV-1 effect and mechanism of action of the flavonoid compound dihydromyricetin (DHM) from Ampelopsis grossedentata. METHODS The HSV-1 inhibitory effect of DHM was evaluated by measuring plaque formation and generation of progeny virus as well as expression of HSV-1-related genes in Vero cells. The molecular mechanism of the antiviral activity of DHM against HSV-1 was explored by real-time quantitative PCR and ELISA. RESULTS DHM presented a significant inhibitory effect on HSV-1 plaque formation and generation of progeny virus, with an EC50 (50% effective concentration) of 12.56 μM in Vero cells. Furthermore, expression of HSV-1 immediate-early genes (ICP4 and ICP22), early genes (ICP8 and UL42) and late genes (gB, VP1/2) was decreased by DHM at concentrations of 16 μM and 32 μM. DHM specifically suppressed mRNA levels of Toll-like receptor 9 (TLR9), leading to inhibition of the inflammatory transcriptional factor NFκB and a decrease in TNFα. CONCLUSION These findings indicate that the effective inhibitory activity of DHM was achieved by suppressing TNFα production in a TLR9-dependent manner. Although further studies are needed to better characterise the activity of DHM in vivo, the results suggest this extract as a promising new anti-HSV-1 agent.
Collapse
Affiliation(s)
- Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Yu-Sheng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Tong Lin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuai Tong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chun-Yang Shi
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wen-Qing Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Guo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
19
|
El Kantar S, Nehmeh B, Saad P, Mitri G, Estephan C, Mroueh M, Akoury E, Taleb RI. Derivatization and combination therapy of current COVID-19 therapeutic agents: a review of mechanistic pathways, adverse effects, and binding sites. Drug Discov Today 2020; 25:1822-1838. [PMID: 32801052 PMCID: PMC7422796 DOI: 10.1016/j.drudis.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Current treatment of patients with coronavirus 2019 (COVID-19) involves repurposed drugs that inhibit viral infection by either binding to their respective targets or via modulating cellular signal transduction. However, there is still a great deal of efficacy enhancement through combination therapy and derivatization. Combination therapy should involve agents with significant activity and different mechanisms of action. The structural map of the interaction between a drug and its target protein will help guide drug discovery for devising safe and effective ways to treat COVID-19. Herein, we report numerous synthetic designs based on enhanced affinity to the viral carbohydrate-rich protein spikes and protein-binding sites of COVID-19.
Collapse
Affiliation(s)
- Sally El Kantar
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Bilal Nehmeh
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Philippe Saad
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Gabie Mitri
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Celine Estephan
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos Campus, Blat, Lebanon
| | - Elias Akoury
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Robin I. Taleb
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos Campus, Blat, Lebanon,Corresponding author:
| |
Collapse
|
20
|
Al-Horani RA, Kar S, Aliter KF. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. Int J Mol Sci 2020; 21:E5224. [PMID: 32718020 PMCID: PMC7432953 DOI: 10.3390/ijms21155224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The ongoing pandemic of coronavirus disease-2019 (COVID-19) is being caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The disease continues to present significant challenges to the health care systems around the world. This is primarily because of the lack of vaccines to protect against the infection and the lack of highly effective therapeutics to prevent and/or treat the illness. Nevertheless, researchers have swiftly responded to the pandemic by advancing old and new potential therapeutics into clinical trials. In this review, we summarize potential anti-COVID-19 therapeutics that block the early stage of the viral life cycle. The review presents the structures, mechanisms, and reported results of clinical trials of potential therapeutics that have been listed in clinicaltrials.gov. Given the fact that some of these therapeutics are multi-acting molecules, other relevant mechanisms will also be described. The reviewed therapeutics include small molecules and macromolecules of sulfated polysaccharides, polypeptides, and monoclonal antibodies. The potential therapeutics target viral and/or host proteins or processes that facilitate the early stage of the viral infection. Frequent targets are the viral spike protein, the host angiotensin converting enzyme 2, the host transmembrane protease serine 2, and clathrin-mediated endocytosis process. Overall, the review aims at presenting update-to-date details, so as to enhance awareness of potential therapeutics, and thus, to catalyze their appropriate use in combating the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Kholoud F. Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA 70122, USA;
| |
Collapse
|
21
|
Zhang LP, Wang M, Wang Y, Zhu J, Zhang N. Focus on the 2019 novel coronavirus (SARS-CoV-2). Future Microbiol 2020; 15:905-918. [PMID: 32524843 PMCID: PMC7291595 DOI: 10.2217/fmb-2020-0063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
A new coronavirus, severe acute respiratory syndrome coronavirus 2, was first discovered in Wuhan, China, in December 2019. As of 7 April 2020, the new coronavirus has spread quickly to 184 countries and aroused the attention of the entire world. No targeted drugs have yet been available for intervention and treatment of this virus. The sharing of academic information is crucial to risk assessment and control activities in outbreak countries. In this review, we summarize the epidemiological, genetic and clinical characteristics of the virus as well as laboratory testing and treatments to understand the nature of the virus. We hope this review will be helpful to prevent viral infections in outbreak countries and regions.
Collapse
Affiliation(s)
- Ling-Pu Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects & Related Diseases of Women & Children, Ministry of Education, West China Second University Hospital, & State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China
- Energy Saving Technology Service Center (Chengdu Energy Conservation Supervision Center) of Chengdu, Sichuan University, Chengdu, PR China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects & Related Diseases of Women & Children, Ministry of Education, West China Second University Hospital, & State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects & Related Diseases of Women & Children, Ministry of Education, West China Second University Hospital, & State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects & Related Diseases of Women & Children, Ministry of Education, West China Second University Hospital, & State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects & Related Diseases of Women & Children, Ministry of Education, West China Second University Hospital, & State Key Laboratory of Biotherapy, Sichuan University, Chengdu, PR China
| |
Collapse
|
22
|
Li W, Xu C, Hao C, Zhang Y, Wang Z, Wang S, Wang W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res 2020; 177:104714. [PMID: 32165083 PMCID: PMC7111628 DOI: 10.1016/j.antiviral.2020.104714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Myricetin, a common dietary flavonoid, was reported to possess many different biological activities such as anti-oxidant, anti-inflammatory, and antiviral effects. In this study, we explored the anti-HSV effects and mechanisms of myricetin both in vitro and in vivo. The results showed that myricetin possessed anti-HSV-1 and HSV-2 activities with very low toxicity, superior to the effects of acyclovir. Myricetin may block HSV infection through direct interaction with virus gD protein to interfere with virus adsorption and membrane fusion, which was different from the nucleoside analogues such as acyclovir. Myricetin also down-regulate the cellular EGFR/PI3K/Akt signaling pathway to further inhibit HSV infection and its subsequent replication. Most importantly, intraperitoneal therapy of myricetin markedly improved mice survival and reduced virus titers in both lungs and spinal cord. Therefore, the natural dietary flavonoid myricetin has potential to be developed into a novel anti-HSV agent targeting both virus gD protein and cellular EGFR/PI3K/Akt pathway. Myricetin possessed anti-HSV-1 and HSV-2 activities in vitro with low toxicity. Myricetin may be able to block HSV binding and entry process in HeLa cells. Myricetin may directly bind to virus gD protein rather than cellular receptors of HSV. The EGFR/PI3K/Akt pathway may be involved in the anti-HSV actions of myricetin. Myricetin markedly improved survival and reduced virus titers in HSV infected mice.
Collapse
Affiliation(s)
- Wenmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Zhaoqi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
23
|
Ma N, Shen M, Chen T, Liu Y, Mao Y, Chen L, Xiong H, Hou W, Liu D, Yang Z. Assessment of a new arbidol derivative against herpes simplex virus II in human cervical epithelial cells and in BALB/c mice. Biomed Pharmacother 2019; 118:109359. [PMID: 31545243 DOI: 10.1016/j.biopha.2019.109359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the highly contagious forms, herpes simplex virus type 2 (HSV-2) commonly caused severe genital diseases and closely referred to the HIV infection. The lack of effective vaccines and drug-resistance proclaimed the preoccupation for alternative antiviral agents against HSV-2. Molecules bearing indole nucleus presented diverse biological properties involving antiviral and anti-inflammatory activities. In this study, one of the indole molecules, arbidol derivative (ARD) was designed and synthesized prior to the evaluation of its anti-HSV-2 activity. Our data showed that the ARD effectively suppressed HSV-2-induced cytopathic effects and the generation of progeny virus, with 50% effective concentrations of 3.386 and 1.717 μg/mL, respectively. The results of the time-course assay suggested that the ARD operated in a dual antiviral way by interfering virus entry and impairing the earlier period of viral cycle during viral DNA synthesis. The ARD-mediated HSV-2 inhibition was partially attained by blocking NF-κB pathways and down-regulating the expressions of several inflammatory cytokines. Furthermore, in vivo studies showed that oral administration of ARD protected BALB/c mice from intravaginal HSV-2 challenge by alleviating serious vulval lesions and histopathological changes in the target organs. Besides, the treatment with ARD also made the levels of viral protein, NF-κB protein and inflammatory cytokines lower, in consistent with the in-vitro studies. Collectively, ARD unveiled therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Nian Ma
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Mengxin Shen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Tian Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yidong Mao
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Liangjun Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Dongying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| | - Zhanqiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
24
|
Du Q, Gu Z, Leneva I, Jiang H, Li R, Deng L, Yang Z. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis. Int Immunopharmacol 2019; 68:58-67. [PMID: 30612085 PMCID: PMC7106079 DOI: 10.1016/j.intimp.2018.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Objective HSV-2 infection has increased significantly in recent years, which is closely associated with cervical cancer and HIV infection. The lack of success in vaccine development and the emergence of drug resistance to commonly used drugs emphasize the urgent need for alternative antivirals against HSV-2 infection. Arbidol (ARB) has been demonstrated to be a broad spectrum antiviral drug that exhibits immunomodulatory properties that affect the HSV-2 life cycle. This study investigated the efficacy and mechanism of ARB against HSV-2 in vivo and in vitro to further explore the clinical application of ARB. Methods The efficacy of ARB on HSV-2 infection in vitro was examined by CPE and MTT assays. A vaginitis model was established to monitor changes in histopathology and inflammatory cytokine (IL-2, IL-4, TNF-α and TGF-β) expression by H&E staining and ELISA, respectively, and the efficacy of ARB was evaluated accordingly. Furthermore, flow cytometry was used to determine the ratio of CD4+/CD8+ T cells in the peripheral blood of the vaginitis animals. Considering the balance of efficacy and pharmacokinetics, ARB ointment was strictly prepared to observe formulation efficacy differences compared to the oral dosing form. Results The results showed that, in vitro, the TC50 and IC50 of ARB were 32.32 μg/mL and 4.77 μg/mL (SI = 6.82), respectively, indicating that ARB presents effective activity against HSV-2 in a dose-dependent manner. The results of the time-course assay suggested that 25 μg/mL ARB affected the late stage of HSV-2 replication. However, ARB did not inhibit viral attachment or cell penetration. The in vivo results showed that ARB ointment can improve the survival rate, prolong the survival time and reduce the reproductive tract injury in mice infected with HSV-2, regulate cytokine expression; and balance the CD4+ and CD8+ T lymphocyte ratio in the peripheral blood to participate in the regulation of immune response. Conclusion ARB showed anti-HSV-2 activity in vitro in a dose-dependent manner and played a role in inhibiting the late replication cycle of the virus. The vaginitis model was successfully established, according to immunomodulation outcomes, responded better to ARB in ointment form than in oral form. ARB showed anti-HSV-2 activity in vitro in a dose-dependent manner. ARB inhibited the late replication cycle of HSV-2. ARB ointment participated in the regulation of immune response to reduce the reproductive tract injury. ARB in ointment form responded to vaginitis better than in oral form.
Collapse
Affiliation(s)
- Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Zhen Gu
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China; Luke Medical Center, Rua de Joao de Almeida No 10 LJB RC, Macau SAR, PR China
| | - Irina Leneva
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute for Vaccines and Sera", Moscow, Russia
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Liehua Deng
- Department of Dermatology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, PR China.
| |
Collapse
|
25
|
Li Y, Lin Z, Gong G, Guo M, Xu T, Wang C, Zhao M, Xia Y, Tang Y, Zhong J, Chen Y, Hua L, Huang Y, Zeng F, Zhu B. Inhibition of H1N1 influenza virus-induced apoptosis by selenium nanoparticles functionalized with arbidol through ROS-mediated signaling pathways. J Mater Chem B 2019. [DOI: 10.1039/c9tb00531e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an effective antiviral agent, the clinical application of arbidol is limited by the appearance of drug-resistant viruses.
Collapse
|
26
|
Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection. Pharmaceutics 2018; 10:pharmaceutics10040255. [PMID: 30513856 PMCID: PMC6320969 DOI: 10.3390/pharmaceutics10040255] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chloroquine diphosphate (CQ) is a hydrophilic drug with low entrapment efficiency in hydrophobic nanoparticles (NP). Herpes simplex virus type 1 (HSV-1) is an enveloped double-stranded DNA virus worldwide known as a common human pathogen. This study aims to develop chloroquine-loaded poly(lactic acid) (PLA) nanoparticles (CQ-NP) to improve the chloroquine anti- HSV-1 efficacy. CQ-NP were successfully prepared using a modified emulsification-solvent evaporation method. Physicochemical properties of the NP were monitored using dynamic light scattering, atomic force microscopy, drug loading efficiency, and drug release studies. Spherical nanoparticles were produced with modal diameter of <300 nm, zeta potential of −20 mv and encapsulation efficiency of 64.1%. In vitro assays of CQ-NP performed in Vero E6 cells, using the MTT-assay, revealed different cytotoxicity levels. Blank nanoparticles (B-NP) were biocompatible. Finally, the antiviral activity tested by the plaque reduction assay revealed greater efficacy for CQ-NP compared to CQ at concentrations equal to or lower than 20 µg mL−1 (p < 0.001). On the other hand, the B-NP had no antiviral activity. The CQ-NP has shown feasible properties and great potential to improve the antiviral activity of drugs.
Collapse
|