1
|
Ju F, Hua L, Xu J, Li T, Wei T, Lv A, Yang H. Probing the aggregation behavior of collagen molecules regulated by dibenzaldehyde-terminated-PEG with varying molecular weights in solution. Int J Biol Macromol 2024:136920. [PMID: 39481711 DOI: 10.1016/j.ijbiomac.2024.136920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Rigid and fragile nature of collagen-based materials cross-linked with biocompatible aldehyde-functionalized polysaccharides remains a challenge. Drawing inspiration from the pangolins' protective barrier, we introduce a novel cross-linker with a flexible chain to impart a "rigid-flexible coupled structure" to the collagen-based matrix. Successful integration of dibenzaldehyde-terminated-PEG (DF-PEG) into collagen molecules was confirmed by XRD and FTIR analyses. CD measurements demonstrated that the intact triple-helical structure was preserved in all samples. Distinct effects of DF-PEG with varying molecular weights on the aggregation behavior of collagen molecules were evaluated using multiple quantitative analysis techniques. Specifically, when the molecular weight of DF-PEG was below 20,000, multipoint hydrogen bonds and Schiff-base linkages were produced as the molecular weight of DF-PEG increased, which synergistically enhanced the aggregation behavior of collagen molecules. While the aggregation behavior of collagen molecules was slightly diminished upon the molecular weight of DF-PEG reached 20,000. This reduction can be attributed to the limited accessibility of the molecular reactive sites in the extended DF-PEG chains. Finally, a computational test of the binding interactions between collagen molecules and DF-PEG was conducted to validate the experimental results. Our biomimetic design strategy offers a new approach for the preparation of collagen-based materials with exceptional physicochemical properties.
Collapse
Affiliation(s)
- Fengxian Ju
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Lingyu Hua
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Tao Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Aijie Lv
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Huan Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
2
|
Huang D, Wang L, Li K, Liu L, Chen X, He L, Wang L, Song A. Alkali-assisted extraction, characterization and encapsulation functionality of enzymatic hydrolysis-resistant prolamin from distilled spirit spent grain. Int J Biol Macromol 2024; 271:132664. [PMID: 38801853 DOI: 10.1016/j.ijbiomac.2024.132664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Curcumin is a natural lipophilic polyphenol that exhibits significant various biological properties such as antioxidant and anti-inflammatory properties following oral administration. However, its uses have shown limitations concerning aqueous solubility, bioavailability and biodegradability that could be improved by prolamin-based nanoparticle. In this study, curcumin was encapsulated into prolamin from sorghum (SOP) and wheat (WHP) and distilled spirit spent grain (DSSGP), which was obtained after microbial proteolysis of the former two cereal grains. All the three prolamins showed clear variation of protein profiles and microstructure as confirmed by electrophoresis analysis, disulfide bond determination and Fourier-transform infrared spectroscopy (FTIR). For curcumin-loaded nanospheres (NPs) fabrication, three prolamin-based NPs shared features of spherical shape, uniform particle size, and smooth surface. The average size ranged from 122 to 193 nm depending on the prolamin variety and curcumin loading. In the experiments in vitro, curcumin showed significantly improved UV/thermal stability. Furthermore, DSSGP was more resistant to enzymatic digestion in vitro, hence achieving the controlled release of curcumin in gastrointestinal tract. Collectively, the results indicated the improved bioavailability and biodegradability of curcumin encapsulated by DSSGP, which would be an innovative potential encapsulant for effective protection and targeted delivery of hydrophobic compounds.
Collapse
Affiliation(s)
- Diandian Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingyuan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Keting Li
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Xingyi Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Angxin Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
3
|
Han Y, Jiang J, Li J, Zhao L, Xi Z. Influences of Polyphenols on the Properties of Crosslinked Acellular Fish Swim Bladders: Experiments and Molecular Dynamic Simulations. Polymers (Basel) 2024; 16:1111. [PMID: 38675029 PMCID: PMC11054729 DOI: 10.3390/polym16081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Acellular fish swim bladders (AFSBs) are a promising biomaterial in tissue engineering, however, they may suffer from rapid degradation due to enzyme invasion. In this work, natural polyphenols, including epigallocatechin gallate (EGCG), proanthocyanidin (PC), tannic acid (TA) and protocatechuic acid (PCA), were utilized to improve the properties of AFSBs through crosslinking modifications. Fourier transform infrared (FTIR) results indicate that the triple helix of the collagen in AFSBs is well preserved after crosslinking. The differential scanning calorimetry (DSC), water contact angle (WCA) and in vitro degradation tests indicate that the polyphenol-crosslinked AFSBs exhibit improved thermal stability, enzymatic stability, hydrophilicity and mechanical properties. Among them, EGCG with multiple phenolic hydroxyl groups and low potential resistance is more favorable for the improvement of the mechanical properties and enzymatic stability of AFSBs, as well as their biocompatibility and integrity with the collagen triple helix. Moreover, the crosslinking mechanism was demonstrated to be due to the hydrogen bonds between polyphenols and AFSBs, and was affected by the molecular size, molecular weight and the hydroxyl groups activity of polyphenol molecules, as clarified by molecular dynamic (MD) simulations. The approach presented in this work paves a path for improving the properties of collagen materials.
Collapse
Affiliation(s)
- Yuqing Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Jie Jiang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Jinjin Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Massima Mouele ES, Bediako JK, El Ouardi Y, Anugwom I, Butylina S, Mukaba JL, Petrik LF, Zar Myint MT, Kyaw HH, Al-Abri M, Al Belushi MA, Dobretsov S, Laatikainen K, Repo E. Sustainable gliadin - Metal oxide composites for efficient inactivation of Escherichia coli and remediation of cobalt (II) from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122788. [PMID: 37879550 DOI: 10.1016/j.envpol.2023.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Bio-based materials facilitate greener approach to engineering novel materials with multifunctional properties for various applications including water treatment. In this study, we extracted gliadin from wheat gluten using alcoholic solvent. The aggregation limitations of gliadin protein were overcome by functionalisation with metal oxides (MOs) TiO2, AgFe2O3 and AgFe-TiO2 prepared by chemical precipitations. The novel composites were characterised by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), thermogravimetry analysis (TGA), Brunauer Emmet-Teller (BET), and zeta potential. The multifunctionality of MOs-gliadin composites was tested through toxic Escherichia coli (E. coli) inactivation and Co2+ adsorption from water. The antibacterial results showed excellent inhibition under both dark and light conditions. The maximum Co2+ uptake, 101 mg/g was reached with TiO2@gliadin after 24 h and best fitted the Langmuir isotherm model. The adsorption process followed pseudo-second order model with an equilibrium adsorption capacity, qe2= 89.86 mg/g closer to the experimental data. Thermodynamic investigations indicated that ΔG°=-9.677kJ/mol,ΔH°=-123kJ/mol,and ΔS°=0.490J.K/mol, respectively, suggesting that adsorption was spontaneous and endothermic. The regenerated TiO2@gliadin composite was still efficient after five consecutive cycles. This study demonstrates that MOs-gliadin blended composites are sustainable for water purification.
Collapse
Affiliation(s)
- Emile Salomon Massima Mouele
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland; Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Bellville, 7535, South Africa.
| | - John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Youssef El Ouardi
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| | - Ikenna Anugwom
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| | - Svetlana Butylina
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| | - Jean-Luc Mukaba
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Bellville, 7535, South Africa
| | - Leslie F Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Bellville, 7535, South Africa
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, 123 Al-Khoud, Muscat, 123, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, P. O. Box 33, Al-Khoud, Muscat, 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, P. O. Box 33, Al-Khoud, Muscat, 123, Oman
| | - Mohammed A Al Belushi
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agriculture, Fisheries Wealth & Water Resources, PO Box 3094, Airport Central Post, 111, Muscat, Oman
| | - Sergey Dobretsov
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agriculture, Fisheries Wealth & Water Resources, PO Box 3094, Airport Central Post, 111, Muscat, Oman
| | - Katri Laatikainen
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| |
Collapse
|
5
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
6
|
Chen L, Chen N, He Q, Sun Q, Gao MR, Zeng WC. Effects of different phenolic compounds on the interfacial behaviour of casein and the action mechanism. Food Res Int 2022; 162:112110. [DOI: 10.1016/j.foodres.2022.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
7
|
Reiter MP, Ward SH, Perry B, Mann A, Freeman JW, Tiku ML. Intra-articular injection of epigallocatechin (EGCG) crosslinks and alters biomechanical properties of articular cartilage, a study via nanoindentation. PLoS One 2022; 17:e0276626. [PMID: 36282841 PMCID: PMC9595553 DOI: 10.1371/journal.pone.0276626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis and rheumatoid arthritis are debilitating conditions, affecting millions of people. Both osteoarthritis and rheumatoid arthritis degrade the articular cartilage (AC) at the ends of long bones, resulting in weakened tissue prone to further damage. This degradation impairs the cartilage’s mechanical properties leading to areas of thinned cartilage and exposed bone which compromises the integrity of the joint. No preventative measures exist for joint destruction. Discovering a way to slow the degradation of AC or prevent it would slow the painful progression of the disease, allowing millions to live pain-free. Recently, that the articular injection of the polyphenol epigallocatechin-gallate (EGCG) slows AC damage in an arthritis rat model. It was suggested that EGCG crosslinks AC and makes it resistant to degradation. However, direct evidence that intraarticular injection of EGCG crosslinks cartilage collagen and changes its compressive properties are not known. The aim of this study was to investigate the effects of intraarticular injection of EGCG induced biomechanical properties of AC. We hypothesize that in vivo exposure EGCG will bind and crosslink to AC collagen and alter its biomechanical properties. We developed a technique of nano-indentation to investigate articular cartilage properties by measuring cartilage compressive properties and quantifying differences due to EGCG exposure. In this study, the rat knee joint was subjected to a series of intraarticular injections of EGCG and contralateral knee joint was injected with saline. After the injections animals were sacrificed, and the knees were removed and tested in an anatomically relevant model of nanoindentation. All mechanical data was normalized to the measurements in the contralateral knee to better compare data between the animals. The data demonstrated significant increases for reduced elastic modulus (57.5%), hardness (83.2%), and stiffness (17.6%) in cartilage treated with injections of EGCG normalized to those treated with just saline solution when compared to baseline subjects without injections, with a significance level of alpha = 0.05. This data provides evidence that EGCG treated cartilage yields a strengthened cartilage matrix as compared to AC from the saline injected knees. These findings are significant because the increase in cartilage biomechanics will translate into resistance to degradation in arthritis. Furthermore, the data suggest for the first time that it is possible to strengthen the articular cartilage by intraarticular injections of polyphenols. Although this data is preliminary, it suggests that clinical applications of EGCG treated cartilage could yield strengthened tissue with the potential to resist or compensate for matrix degradation caused by arthritis.
Collapse
Affiliation(s)
- Mary Pat Reiter
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Shawn H. Ward
- Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barbara Perry
- Department of Orthopedic Surgery, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Adrian Mann
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Joseph W. Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Moti L. Tiku
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| |
Collapse
|
8
|
Sarker P, Nalband DM, Freytes DO, Rojas OJ, Khan SA. High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels. Biomacromolecules 2022; 23:4696-4708. [PMID: 36198084 DOI: 10.1021/acs.biomac.2c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable collagen-based hydrogels offer great promise for tissue engineering and regeneration, but their use is limited by poor mechanical strength. Herein, we incorporate tannic acid (TA) to tailor the rheology of the corresponding hydrogels while simultaneously adding the therapeutic benefits inherent to this polyphenolic component. TA in the solution form and needle-shaped TA microparticles are combined with collagen and the respective systems studied for their time-dependent sol-gel transitions (from storage to body temperatures, 4-37 °C) as a function of TA concentration. Compared to systems incorporating TA microparticles, those with dissolved TA, applied at a similar concentration, generate a less significant enhancement of the elastic modulus. Premature gelation at a low temperature and associated colloidal arrest of the system are proposed as a main factor explaining this limited performance. A higher yield stress (elastic stress method) is determined for systems loaded with TA microparticles compared to the system with dissolved TA. These results are interpreted in terms of the underlying interactions of TA with collagen, as probed by spectroscopy and isothermal titration calorimetry. Importantly, hydrogels containing TA microparticles show high cell viability (human dermal fibroblasts) and comparative cellular activity relative to the collagen-only hydrogel. Overall, composite hydrogels incorporating TA microparticles demonstrate a new, simple, and better-performance alternative to cell culturing and difficult implantation scenarios.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Zhao Y, He X, Wang H, Wang H, Shi Z, Zhu S, Cui Z. Polyphenol-Enriched Extract of Lacquer Sap Used as a Dentine Primer with Benefits of Improving Collagen Cross-Linking and Antibacterial Functions. ACS Biomater Sci Eng 2022; 8:3741-3753. [PMID: 35793160 PMCID: PMC9472228 DOI: 10.1021/acsbiomaterials.1c01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Commercial dentin adhesive systems are applied to restorations due to their resistant bonding properties, but they suffer from the lack of bioactivity and are prone to hydrolysis. Therefore, to overcome these limitations, an eco-friendly natural monomer, urushiol, was adopted to be a primer in dentin bonding due to its interaction with collagen and antibacterial activity, preventing further hydrolysis development. First, urushiol was determined to be capable of improving the biological stability of dentin collagen through cross-linking. Using high-fidelity analytical chemistry techniques, such as Fourier transform infrared spectroscopy, we quantified the effects of urushiol on collagen molecules. It could also effectively decrease weight loss after collagenase ingestion by improving the stability of dentin. Moreover, urushiol inhibited Streptococcus mutans growth as well as its biofilm formation. Finally, we demonstrated that the urushiol primer could improve the bonding strength, particularly after aging. The cross-linking and antibacterial functions of urushiol have provided promising developmental prospects for biomaterials in dentin adhesion.
Collapse
Affiliation(s)
- Ying Zhao
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xi He
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Han Wang
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huimin Wang
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zuosen Shi
- State
Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, P. R.
China
| | - Song Zhu
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zhanchen Cui
- State
Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, P. R.
China
| |
Collapse
|
10
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
11
|
El Moujahed S, Dinica RM, Cudalbeanu M, Avramescu SM, Msegued Ayam I, Ouazzani Chahdi F, Kandri Rodi Y, Errachidi F. Characterizations of Six Pomegranate ( Punica granatum L.) Varieties of Global Commercial Interest in Morocco: Pomological, Organoleptic, Chemical and Biochemical Studies. Molecules 2022; 27:molecules27123847. [PMID: 35744970 PMCID: PMC9227946 DOI: 10.3390/molecules27123847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Pomegranate variety properties are important not only to demonstrate their diversity but also to satisfy the current market need for high-quality fruits. This study aims to characterize pomological and physico-chemical features as well as the antioxidant capacity of Moroccan local cultivars (Djeibi, Mersi, Sefri 1 and Sefri 2) compared to the imported ones (Mollar de Elche and Hicaz). The pomological characteristics of varieties were relatively diverse. The juice varieties (PJ) displayed a marketed variability in organoleptic and quality properties, such as the flavor, juice yield, and micro/macronutrients contents. Interrelationships among the analyzed properties and PJ varieties were investigated by principal component analysis (PCA). Dimension of the data set was reduced to two components by PCA accounting for 64.53% of the variability observed. The rinds varieties (PR) were studied for their total phenolics, flavonoids, and condensed tannins quantifications. PR varieties extracts exhibited different levels of free radical scavenging activity and local varieties revealed a greater potential with stability over time. The HPLC-DAD analyses of PR extracts revealed (+) catechin as the major compound, where the highest content was found for the local varieties. The SEC analysis showed the molecular weight distribution of phenolic compounds with a high size of condensed tannins formed by the polymerization of the catechin monomer. Given these properties, this research provides an easy selection of high-quality fruits as potential candidates for local market needs.
Collapse
Affiliation(s)
- Sara El Moujahed
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
- Laboratory of Organic Chemistry, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
- Correspondence: (S.E.M.); or (R.-M.D.)
| | - Rodica-Mihaela Dinica
- Laboratory of Organic Chemistry, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
- Correspondence: (S.E.M.); or (R.-M.D.)
| | - Mihaela Cudalbeanu
- Research Center for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.C.); (S.M.A.)
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (M.C.); (S.M.A.)
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Iman Msegued Ayam
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (I.M.A.); (F.E.)
| | - Fouad Ouazzani Chahdi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
| | - Youssef Kandri Rodi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (F.O.C.); (Y.K.R.)
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco; (I.M.A.); (F.E.)
| |
Collapse
|
12
|
Biocompatible Films of Collagen-Procyanidin for Wound Healing Applications. Appl Biochem Biotechnol 2022; 194:4002-4017. [PMID: 35579739 DOI: 10.1007/s12010-022-03956-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
The study investigated the effect of polyphenols present in Cassia auriculata (CA) leaves in enhancing the stability of the collagen protein and the wound healing potential of collagen films. The crude ethanol extract of CA was analyzed for the presence of phytochemicals and purified by column chromatography using solvents with increasing polarity. The ethanol eluted active fractions (EEAF) that precipitated gelatin was characterized using HP-TLC, FTIR spectroscopy, ESI-FT-MS/MS, and 1H NMR spectroscopy. The active compound was identified to be procyanidin B belonging to the proanthocyanidins group. The wound healing property of EEAF and collagen type I extracted from Clarias batrachus fish skin and the bovine tendon was assessed by in vitro scratch assay on L929 mice fibroblast cell lines. The EEAF-treated collagen coating enhanced in vitro wound closure in comparison with the uncoated dish. It was observed that EEAF treatment improved the physical strength of collagen films. The in vivo wound healing of the EEAF-treated collagen film was examined in male Wister rats and the wound site tissues were assessed. In vivo wound examination showed enhanced healing with EEAF incorporated collagen films. Comparatively, the EEAF-treated bovine tendon collagen films showed improved physical properties and better wound healing property than fish collagen films.
Collapse
|
13
|
Omar H, Gao F, Yoo H, Bim O, Garcia C, LePard KJ, Mitchell JC, Agostini-Walesch G, Carrilho MR. Changes to dentin extracellular matrix following treatment with plant-based polyphenols. J Mech Behav Biomed Mater 2022; 126:105055. [PMID: 34929591 DOI: 10.1016/j.jmbbm.2021.105055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
This study investigated whether treatment with plant-based polyphenols (PB-P) affected the biochemical and/or biomechanical properties of dentin extracellular matrix (ECM). Three PB-Ps were evaluated: luteolin (LT), galangin (GL), and proanthocyanidin (PAC). Because dentin ECM requires demineralization before treatment, this study also assessed the effect of these PB-Ps on dentin demineralized by two different chemicals. Dentin samples from extracted third molars were obtained, sectioned, and randomly assigned for demineralization with either phosphoric acid (PA) or ethylenediaminetetraacetic acid (EDTA). Following demineralization, baseline infrared (IR) spectra and apparent elastic modulus (AE) of each specimen were independently acquired. Based upon these initial tests, samples were randomly assigned to one of the PB-P treatments to ensure that distribution of baseline AE was similar across treatment groups. IR and AE specimens were individually immersed in either 0.2% LT, 0.4% GL or 1% PAC for 2 min. IR spectra of treated samples were compared to baseline IR spectra, looking for any interaction of PB-Ps with the demineralized dentin. The IR spectrum and AE of each PB-P-treated specimen were compared with their own correspondent baseline measurement. The ability of PB-Ps to inhibit proteolytic activity of dentin ECM was assessed by the hydroxyproline assay. Finally, the effect of PB-Ps on immediate bond strength of a dental adhesive to PA- or EDTA-etched dentin was also evaluated. PB-Ps exhibited distinctively binding affinity to dentin ECM and promoted significant increase in AE. PB-P treatment reduced the degradation rate of dentin ECM without causing detrimental effect on immediate bond strength to dentin. Our work represents the first-time that LT and GL have been assessed as dentin ECM biomodifiers.
Collapse
Affiliation(s)
- Hussan Omar
- College of Graduate Studies, Biomedicals Science Program, Midwestern University, Downers Grove, IL, USA; College of Pharmacy - Arizona, Midwestern University, Glendale, AZ, USA
| | - Feng Gao
- College of Dental Medicine - Illinois, Midwestern University, Downers Grove, IL, USA
| | - Hyemin Yoo
- College of Dental Medicine - Illinois, Midwestern University, Downers Grove, IL, USA
| | - Odair Bim
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Carolina Garcia
- College of Dental Medicine - Illinois, Midwestern University, Downers Grove, IL, USA
| | - Kathy J LePard
- College of Graduate Studies, Biomedicals Science Program, Midwestern University, Downers Grove, IL, USA
| | - John C Mitchell
- College of Dental Medicine - Illinois, Midwestern University, Downers Grove, IL, USA; College of Dental Medicine - Arizona, Midwestern University, Glendale, IL, USA
| | | | - Marcela R Carrilho
- College of Dental Medicine - Illinois, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
14
|
Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in Healing Wound: Role of Complementary and Alternative Medicine. Front Nutr 2022; 8:791899. [PMID: 35127787 PMCID: PMC8811258 DOI: 10.3389/fnut.2021.791899] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Although the word wound sounds like a simple injury to tissue, individual's health status and other inherent factors may make it very complicated. Hence, wound healing has gained major attention in the healthcare. The biology wound healing is precise and highly programmed, through phases of hemostasis, inflammation, proliferation and remodeling. Current options for wound healing which includes, use of anti-microbial agents, healing promoters along with application of herbal and natural products. However, there is no efficient evidence-based therapy available for specific chronic wounds that can result in definitive clinical outcomes. Under co-morbid conditions, chronic would poses numerous challenges. Use of Complementary and Alternative Medicines (CAMs) in health care sector is increasing and its applications in wound management remains like to "separate the diamonds from ore." Attempts have been made to understand the wound at the molecular level, mainly through the analysis of signature genes and the influence of several synthetic and natural molecules on these. We have outlined a review of challenges in chronic wound healing and the role of CAMs in chronic wound management. The main focus is on the applications and limitations of currently available treatment options for a non-healing wound and the best possible alternates to consider. This information generates broader knowledge on challenges in chronic wound healing, which can be further addressed using multidisciplinary approach and combination therapies.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - P. Veena Waiker
- Department of Plastic Surgery, Ramaiah Medical College and Hospitals, Bangalore, India
| | | |
Collapse
|
15
|
Bełdowski P, Przybyłek M, Sionkowska A, Cysewski P, Gadomska M, Musiał K, Gadomski A. Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:463. [PMID: 35057179 PMCID: PMC8781747 DOI: 10.3390/ma15020463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
The ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of deacetylation degree on the chitosan affinity to type III collagen. The computational procedure employed docking and geometry optimizations of different chitosan structures characterized by randomly distributed deacetylated groups. The eight different degrees of deacetylation from 12.5% to 100% were taken into account. We found an increasing linear trend (R2 = 0.97) between deacetylation degree and the collagen-chitosan interaction energy. This can be explained by replacing weak hydrophobic contacts with more stable hydrogen bonds involving amino groups in N-deacetylated chitosan moieties. In this study, the properties of chitosan were compared with hyaluronic acid, which is a natural component of synovial fluid and cartilage. As we found, when the degree of deacetylation of chitosan was greater than 0.4, it exhibited a higher affinity for collagen than in the case of hyaluronic acid.
Collapse
Affiliation(s)
- Piotr Bełdowski
- Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland;
| | - Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (M.P.); (P.C.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (M.P.); (P.C.)
| | - Magdalena Gadomska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Katarzyna Musiał
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; (A.S.); (M.G.); (K.M.)
| | - Adam Gadomski
- Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland;
| |
Collapse
|
16
|
Shuai H, Xiaoni Z, Yan L, Yanle L, Yan D, Lu M, Yingliang S, Wei M. Fabrication method for a magnetically induced highly oriented nanohydroxyapatite/collagen composite. J Appl Biomater Funct Mater 2022; 20:22808000221105727. [PMID: 35787019 DOI: 10.1177/22808000221105727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Both collagen fibres and nanohydroxyapatite crystals have anisotropic magnetisation, which allows them to be oriented by a high magnetic field. Highly oriented nanohydroxyapatite/collagen composites were prepared using a high magnetic field combined with in situ synthesis. These highly oriented composites were investigated and compared with conventional composites. The results showed that the collagen fibres in the magnetically induced highly oriented nanohydroxyapatite/collagen composites had a preferred orientation and smaller molecular spacing, while the nanohydroxyapatite crystals were tightly adhered along the collagen fibre surface. The magnetically induced composites exhibited superior resistance to swelling and degradation along with high compressive strength. This artificial composite, with a structure and composition similar to natural bone, represents a new idea for improving materials for vertical or horizontal bone augmentation.
Collapse
Affiliation(s)
- Huang Shuai
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Zhou Xiaoni
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Liu Yan
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Liu Yanle
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Duan Yan
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Meng Lu
- Sannie Bioengineering Technology Co., Ltd., Tianjin, China
| | - Song Yingliang
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Ma Wei
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| |
Collapse
|
17
|
Wisuitiprot W, Ingkaninan K, Jones S, Waranuch N. Effect of green tea extract loaded chitosan microparticles on facial skin: A split-face, double-blind, randomized placebo-controlled study. J Cosmet Dermatol 2021; 21:4001-4008. [PMID: 34965006 DOI: 10.1111/jocd.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The bioactivities of green tea extract were indicated to promote skin health in vitro. Few clinical studies reported on skin nourishment of topical applying green tea extract due to the limited skin absorption. METHODS This current study evaluated the clinical effectiveness and safety of green tea extract encapsulated chitosan microparticles (GTP) in emulsion base on a split-face, double-blind, randomized placebo-controlled study. Twenty-nine female volunteers were recruited into the study. They were randomly assigned to apply GTP and placebo creams on each half face for 8 weeks. The facial skin properties on both sides were monitored and evaluated every 2 weeks. RESULTS The results revealed that skin elasticity (R2) of half face treated with GTP cream (0.748 ± 0.05) was superior to another that received placebo cream (0.722 ± 0.05) at 4th week. In addition, melanin index implying skin dullness of the half face that received GTP cream significantly improved within the 6th week after application (placebo =295.60 ± 58.81, GTP =282.70 ± 59.62). Most importantly, the photographs clearly indicated that the decreasing in facial wrinkles of volunteers applied with GTP cream was more than those applying placebo cream. Signs of skin irritation were not evident in both treatment and placebo cream groups. CONCLUSION Based on study outcomes, the green tea extract encapsulated chitosan microparticles appear to be the promising active candidate for promoting skin elasticity and improving skin dullness and wrinkles.
Collapse
Affiliation(s)
- Wudtichai Wisuitiprot
- Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Thai Traditional Medicine, Sirindhorn College of Public Health, Praboromarajchanok Institute, Phitsanulok, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmacognosy and Pharmaceutical Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Sirada Jones
- Select Specialty Hospital-Madison, Madison, Wisconsin, USA
| | - Neti Waranuch
- Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
18
|
Carsote C, Şendrea C, Micu MC, Adams A, Badea E. Micro-DSC, FTIR-ATR and NMR MOUSE study of the dose-dependent effects of gamma irradiation on vegetable-tanned leather: The influence of leather thermal stability. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
A mussel glue-inspired monomer-etchant cocktail for improving dentine bonding. J Dent 2021; 116:103888. [PMID: 34762990 DOI: 10.1016/j.jdent.2021.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The humid oral environment adversely affects the interaction between a functionalised primer and dentine collagen after acid-etching. Robust adhesion of marine mussels to their wet substrates instigates the quest for a strategy that improves the longevity of resin-dentine bonds. In the present study, an etching strategy based on the incorporation of biomimetic dopamine methacrylamide (DMA) as a functionalised primer into phosphoric acid etchant was developed. The mechanism and effect of this DMA-containing acid-etching strategy on bond durability were examined. METHODS Etchants with different concentrations of DMA (1, 3 or 5 mM) were formulated and tested for their demineralisation efficacy. The interaction between DMA and dentine collagen, the effect of DMA on collagen stability and the collagenase inhibition capacity of the DMA-containing etchants were evaluated. The effectiveness of this new etching strategy on resin-dentine bond durability was investigated. RESULTS All etchants were capable of demineralising dentine and exposing the collagen matrix. The latter strongly integrated with DMA via covalent bond, hydrogen bond and Van der Waals' forces. These interactions significantly improve collagen stability and inhibited collagenase activity. Application of the etchant containing 5 mM DMA achieved the most durable bonding interface. CONCLUSION Dopamine methacrylamide interacts with dentine collagen in a humid environment and improves collagen stability. The monomer effectively inactivates collagenase activity. Acid-etching with 5 mM DMA-containing phosphoric acid has the potential to prolong the longevity of bonded dental restorations without compromising clinical operation time. CLINICAL SIGNIFICANCE The use of 5 mM dopamine methacrylamide-containing phosphoric acid for etching dentine does not require an additional clinical step and has potential to improve the adhesive performance of bonded dental restorations.
Collapse
|
20
|
Soleimanifar M, Jafari SM, Assadpour E, Mirarab A. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhang R, Olomthong M, Fan YU, Wang L, Pan D, Shi Y, Ye W. Dissipation of Chlorpyrifos in Bottled Tea Beverages and the Effects of (-)-Epigallocatechin-3-Gallate. J Food Prot 2021; 84:1836-1843. [PMID: 34115868 DOI: 10.4315/jfp-21-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bottled tea beverages (BTB) are popular for the health benefits and convenience. Because chlorpyrifos (CP) is commonly used as a biomarker for exposure, as well as a pesticide in the field, it is important to determine the dynamics of CP dissipation in BTB to better perform risk assessments. This study focused on the dynamic behavior of CP for 22 days by fortifying bottled green tea, dark tea, and oolong tea beverages with the parent chemical and analyzing the degradation products. Photoinduction was used to generate the two transient intermediates: the reactive oxygen species from H2O2 and the triplet excited state of CP from the parent chemical in water were designed to observe the effects of (-)-epigallocatechin-3-gallate (EGCG) on the dissipation and transformation of CP. The results indicated that the CP degraded in BTB and the main products were detected. The half-life values of CP illustrated that EGCG increased the dissipation of CP by combination with CP and inhibited the generation of CP-oxon by scavenging the emerged oxidant, the reactive oxygen species, and interfering with the transformation of the triplet excited state of CP. This work suggests EGCG could play various roles in the dissipation and transformation of CP. Thus, a comprehensive identification of CP degradation should be performed when assessing the exposure risk in drinking BTB. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Mekky Olomthong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Y U Fan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Yanhong Shi
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Wenlin Ye
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| |
Collapse
|
22
|
Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106758] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Bleve G, Ramires FA, De Domenico S, Leone A. An Alum-Free Jellyfish Treatment for Food Applications. Front Nutr 2021; 8:718798. [PMID: 34497822 PMCID: PMC8419267 DOI: 10.3389/fnut.2021.718798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Jellyfish, marketed and consumed as food in The Far East, are traditionally processed using salt and alum mixtures. In recent years, the interest of Western consumers in jellyfish (JF) as a food source is increasing. In Europe [European Union (EU)], JF-derived food products are regulated by a novel food law, but methods for JF treatment and processing have not been developed yet. In this study, a protocol for the stabilization and processing of JF into semi-finished food products without the use of alum is proposed for the first time. Safety and quality parameters, together with a series of technological and nutritional traits, were used to monitor the proposed process and for the characterization of the JF-derived products. Calcium lactate (E327), calcium citrate (E333), and calcium acetate (E263), which are food thickening/stabilizing agents allowed by EU regulations, were used in order to control the presence of possible microbial pathogens and spoilage species. The use of calcium lactate and citrate led to an increase in texture values (~1.7-1.8-fold higher than in starting raw materials) and in several nutritional traits such as antioxidant activity, and protein and fatty acid content. In particular, the combination of JF treatments with calcium salts and phenolic compounds resulted in an antioxidant activity increase of up to 8-fold, protein concentration increase of up to 2.6-fold, fatty acid composition maintenance, and a ω6/ω3 ratio lower than 1. For the first time, the application of phenolic compounds to improve JF technological and nutritional features was verified. This study proposes a new procedure for JF treatment and stabilization useful for future potential food applications in Western countries.
Collapse
Affiliation(s)
- Gianluca Bleve
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Stefania De Domenico
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Antonella Leone
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Lecce, Italy
| |
Collapse
|
24
|
Abstract
Many recent studies in the field of cosmetics have focused on organically sourced substances. Products made from organic materials are safe, high quality, cruelty-free, and more effective than those made from synthetic materials. Many organic compounds are known to be physiologically active in humans and have an extended storage capacity and long-lasting environmental effects. Agro-industrial waste has recently increased substantially, and the disposal of date palm waste, often performed in primitive ways such as burning, is harmful to the environment. Fruit processing industries generate over 10% of the total date seed waste daily, which could be converted into useful food products. Date fruit and seed are rich in sugar, vitamins, fiber, minerals, and phenolic compounds with antioxidant and anti-inflammatory properties that significantly promote human and animal health. This waste is rich in bioactive compounds and essential oils used in many kinds of food, medicine, and cosmetics. Most active cosmetic ingredients come from natural sources such as fruit, fish, and dairy, and recent research shows that date extract and seed oil help to reduce melanin, eczema, acne, and dry patches, while increasing skin moisture and elasticity. This review details the bioactive compounds and nutraceutical properties of date fruit and seed, and their use as cosmetic ingredients.
Collapse
|
25
|
Interaction effect of phenolic compounds on Alaska Pollock skin gelatin and associated changes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Proietti N, Di Tullio V, Carsote C, Badea E. 13 C solid-state NMR complemented by ATR-FTIR and micro-DSC to study modern collagen-based material and historical leather. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:840-859. [PMID: 32250473 DOI: 10.1002/mrc.5024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Ancient vegetable tanned leathers and parchments are very complex materials in which both different manufacturing and deterioration processes make their study and chemical characterisation difficult. In this research, solid-state nuclear magnetic resonance (NMR) spectroscopy was applied to identify different tannin families (condensed and hydrolysable) in historical leather objects such as bookbindings, wall upholsters, footwear and accessories, and military apparel. Furthermore, leather deterioration with special focus on collagen gelatinisation was investigated. A comparison with Fourier transform infrared (FTIR) spectroscopy and micro-differential scanning calorimetry (micro-DSC) was also performed to support the 13 C CP-MAS NMR findings and to point out the advantages and limitations of solid-state NMR in analysing historical and archaeological leathers. A wide database of NMR and FTIR spectra of commercial tannins compounds was also collected in order to characterise historical and archaeological leathers.
Collapse
Affiliation(s)
- Noemi Proietti
- "Segre-Capitani" NMR Laboratory, Institute for Biological Systems (ISB-CNR), National Research Council of Italy, Rome, Italy
| | - Valeria Di Tullio
- "Segre-Capitani" NMR Laboratory, Institute for Biological Systems (ISB-CNR), National Research Council of Italy, Rome, Italy
| | - Cristina Carsote
- Center for Research and Physical-Chemical and Biological Investigations, National Museum of Romanian History, Bucharest, Romania
| | - Elena Badea
- Advanced Research for Cultural Heritage Group (ARCH Lab), National Research and Development Institute for Textiles and Leather, ICPI Division, Bucharest, Romania
- Department of Chemistry, Faculty of Sciences, University of Craiova, Craiova, Romania
| |
Collapse
|
27
|
Fathima A, Manikandamathavan VM, Jonnalagadda RR, Unni Nair B. Chromium-catechin complex, synthesis and toxicity check using bacterial models. Heliyon 2020; 6:e04563. [PMID: 32793825 PMCID: PMC7415841 DOI: 10.1016/j.heliyon.2020.e04563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/08/2019] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Chromium-catechin complex was synthesized by reacting [Cr(H2O)6]2+ (hexa-aqua) with catechin as a ligand. Toxicity studies were carried out for the complex using bacterial models for safer application of this complex in the future as a drug. Chromium-catechin complex was characterized using ESI Mass spectrometry, electronic spectroscopy, FT-IR spectroscopy and cyclic voltammetry. The complex was found mildly inhibitory towards B. subtilis with the mode of action being oxidative damage, targeting cell membrane. The complex was supportive towards E. coli, which was evident from the growth profile and inhibition studies. SEM analysis supported the results of membrane integrity studies, where the bacterial liposomes upon treatment with the complex revealed slight morphological changes in the case of B. subtilis, without any change in the case of E. coli. The toxicity studies on chromium-catechin complex using bacterial model saves time, as well as resources by providing quick and reliable results, which could ease up the work to be done in future with higher group of organisms like animal model. Therefore, in the future, this complex can be used as an antidiabetic drug after performing toxicity studies with animal model.
Collapse
Affiliation(s)
- Aafreen Fathima
- Chemical Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | | | - Raghava Rao Jonnalagadda
- Chemical Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | - Balachandran Unni Nair
- Chemical Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| |
Collapse
|
28
|
Yang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, Zhang X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Mater Chem B 2020; 8:4680-4693. [PMID: 32391834 DOI: 10.1039/d0tb00172d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (BMSCs) into functional chondrocytes is crucial for successful cartilage tissue engineering. Since the extracellular matrix (ECM) microenvironment can regulate the behaviours of BMSCs and guide their differentiation, it is important to simulate the natural cartilage ECM to induce the chondrogenesis of BMSCs. As the most abundant protein in the ECM, collagen hydrogels were found to provide a structural and chemical microenvironment for natural cartilage, and regulate the chondrogenic differentiation of BMSCs. However, as the negatively charged ECM microenvironment is crucial for chondrogenesis and homeostasis within cells in cartilage tissue, the electrical properties of collagen hydrogels need to be further optimized. In this study, three collagen hydrogels with different electrical properties were fabricated using methacrylic anhydride (MA) and succinic anhydride (SA) modification. The collagen hydrogels had a similar composition, storage modulus and integral triple helix structure of collagen, but their different negatively charged microenvironments significantly impacted the hydrophilicity, protein diffusion and binding, and consequently influenced BMSC adhesion and spreading on the surface of the hydrogels. Moreover, the BMSCs encapsulated in the collagen hydrogels also demonstrated improved sGAG secretion and chondrogenic and integrin gene expression with the increased negative charge in vitro. Similar results were also observed in subcutaneous implantation in vivo, where higher secretions of sGAG, SOX9 and collagen type II proteins were found in the collagen hydrogels with higher negative charge. Together, our results demonstrated that more negative charges introduced into the collagen hydrogel microenvironment would enhance the chondrogenic differentiation of BMSCs in vitro and in vivo. This revealed that the electrical properties are an important consideration in designing future collagen hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Zhang J, Chen W, Astruc D, Gu H. Microwave‐irradiated tanning reaction of aluminum with collagen. J Appl Polym Sci 2020. [DOI: 10.1002/app.48682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
| | - Wuyong Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
| | - Didier Astruc
- ISM, UMR CNRS No 5255, University Bordeaux Talence Cedex France
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
| |
Collapse
|
30
|
Yang H, Xie B, Wang Y, Cui Y, Yang H, Wang X, Yang X, Bao GH. Effect of tea root-derived proanthocyanidin fractions on protection of dentin collagen. J Int Med Res 2020; 48:300060519891303. [PMID: 31818172 PMCID: PMC7265569 DOI: 10.1177/0300060519891303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives Proanthocyanidins (PAs) have been widely used as effective agents for dentin
collagen cross-linking to enhance the biomechanics and biostability of
dentin in vitro. However, the effects and protective mechanisms of various
tea root-derived PA components on dentin remain undefined. This study
evaluated the effects of these tea root-derived PA components on dentin
biomechanics and biostability. Methods In this study, ethyl acetate and n-butyl alcohol were used to extract PAs
with different degrees of polymerization from tea roots; the effects of
these PA extracts on dentin were evaluated. Results Dentin was treated with glutaraldehyde, ethyl acetate, n-butyl alcohol, or
water. PAs with a high degree of polymerization, extracted using n-butyl
alcohol, were able to more effectively improve dentin collagen
cross-linking, increase resistance to bacterial collagenase digestion, and
enhance dentin elasticity, relative to treatment with glutaraldehyde or PAs
with a low degree of polymerization (extracted using ethyl acetate).
Additionally, treatment with aqueous extract of tea roots was detrimental to
dentin stability and function. Conclusions PAs with a high degree of polymerization were effective for dentin protection
and restoration in vitro, suggesting clinical treatment potential for tea
root-derived PAs.
Collapse
Affiliation(s)
- Honglin Yang
- School of life sciences, Anhui Agricultural University, Hefei, China.,School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Bingqing Xie
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Yue Wang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Yayun Cui
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Hui Yang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Xiaoting Wang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Xi Yang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Guan-Hu Bao
- School of life sciences, Anhui Agricultural University, Hefei, China.,Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei , Anhui, China
| |
Collapse
|
31
|
Antihypertensive Effects of Polyphenolic Extract from Korean Red Pine ( Pinus densiflora Sieb. et Zucc.) Bark in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9040333. [PMID: 32325920 PMCID: PMC7222369 DOI: 10.3390/antiox9040333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Korean red pine (Pinus densiflora Sieb. et Zucc.) bark is a by-product of the wood industry and contains a high level of antioxidative phenolics including flavonoids, which have a variety of beneficial health effects. This study aimed to investigate the antihypertensive effects of P. densiflora bark extract (Korean red pine bark extract; KRPBE) in spontaneously hypertensive rats (SHRs). A group of Wistar-Kyoto rats (WKRs) as a normotensive group was orally fed tap water. Four groups of SHRs were orally fed tap water, captopril (a positive control), 50 mg/kg/day of KRPBE, and 150 mg/kg/day of KRPBE, respectively. Blood pressure of rats was measured once every week for seven weeks of oral administration. After seven weeks, the lungs, kidneys, and serum were collected from rats, then angiotensin-converting enzyme (ACE) activity, angiotensin II content, and malondialdehyde (MDA) content were determined. Blood pressure of the captopril- and KRPBE-treated groups was significantly lower than that of the SHR control group. The ACE activity, angiotensin II content, and MDA content significantly decreased in the captopril- and KRPBE-treated groups than those in the SHR control group. High-performance liquid chromatography analysis revealed six phenolics in KRPBE: protocatechuic acid, procyanidin B1, catechin, caffeic acid, vanillin, and taxifolin. KRPBE, which contains plenty of antioxidative phenolics, has antihypertensive effects partly due to reduction of ACE activity and angiotensin II content, and its antioxidative effect.
Collapse
|
32
|
Stability of the Meat Protein Type I Collagen: Influence of pH, Ionic Strength, and Phenolic Antioxidant. Foods 2020; 9:foods9040480. [PMID: 32290387 PMCID: PMC7231291 DOI: 10.3390/foods9040480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
The water-holding capacity (WHC) is among the key factors in determining the quality of meat and its value, which is strongly influenced by the content and quality of the connective tissue proteins like collagen. Therefore, the factors that influence the proteins’ stability, e.g., pH, ionic strength, and the antioxidants which are used to increase the meat shelf-life, also affect the WHC. The interaction of collagen, whose structure is strongly influenced by the interaction with water molecules, can be studied following the behavior of water diffusion by low-resolution 1H NMR experiments. The present study is addressed to study the collagen stability as a function of pH, ionic strength, and phenolic antioxidants like catechin. The experimental study demonstrated how the 1H NMR time domain (TD) experiments are able to evaluate the hydration properties of collagen, not only as a function of ionic strength and pH, but also in determining the ability of catechin to interact both on the surface of the collagen fibrils and inside the fibrillar domain.
Collapse
|
33
|
Han Y, Jiang Y, Hu J. Tea-polyphenol treated skin collagen owns coalesced adaptive-hydration, tensile strength and shape-memory property. Int J Biol Macromol 2020; 158:1-8. [PMID: 32251748 DOI: 10.1016/j.ijbiomac.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Tea-polyphenol, as non-toxic skincare, even a therapeutic agent, was extensively studied from chemical, biological and physiological perspectives. This study reveals physical intelligences of a tea-polyphenol treated skin collagen (TP-treated SC) through a material-approach. Compared to untreated one, the TP-treated SC shows resistance to over-swelling and dehydration damage. There exists an inflection point in stress value of TP-treated SC below extension of 25%. Such promptly transformation from flexibility to stiffness is self-adaptive stretch behavior. Moreover, TP-treated SC owns water responsive shape-memory property. These effects are attributed to polyphenol as plasticizer with chains crosslinked to multi-sites on collagen-fibers as netpoints. The discovery, mechanism and method, which have not been reported before, may help to develop new shape memory device, skincare products, as well as provides insights into the physiological behavior of collagen contained tissue.
Collapse
Affiliation(s)
- Yanting Han
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuanzhang Jiang
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Yang J, Ding C, Tang L, Deng F, Yang Q, Wu H, Chen L, Ni Y, Huang L, Zhang M. Novel Modification of Collagen: Realizing Desired Water Solubility and Thermostability in a Conflict-Free Way. ACS OMEGA 2020; 5:5772-5780. [PMID: 32226856 PMCID: PMC7097890 DOI: 10.1021/acsomega.9b03846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
Because of poor water solubility and low thermostability, the application of collagen is limited seriously in fields such as injectable biomaterials and cosmetics. In order to overcome the two drawbacks simultaneously, a novel bifunctional modifier based on the esterification of polyacrylic acid (PAA) with N-hydroxysuccinimide (NHS) was prepared. The esterification degree of PAA-NHS esters was increased upon increasing the NHS dose, which was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance spectrascopy. FTIR results indicated that the triple helix of the modified collagens remained integrated, whereas the molecular weight became larger, as reflected by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern. The modified collagens displayed excellent water solubility under neutral condition, owing to lower isoelectric point (3.1-4.3) than that of native collagen (7.1). Meanwhile, denaturation temperatures of the modified collagens were increased by 4.8-5.9 °C after modification. The modified collagen displayed hierarchical microstructures, as reflected by field-emission scanning electron microscopy, while atomic force microscopy further revealed a "fishing net-like" network in the nanoscale, reflecting a unique aggregation behavior of collagen macromolecules after modification. As a whole, the PAA-NHS ester as a bifunctional modifier endowed collagen with desired water solubility and thermostability in a conflict-free manner, which was beneficial to the process and application of the water-soluble collagen.
Collapse
Affiliation(s)
- Junhui Yang
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Cuicui Ding
- College
of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Lele Tang
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Feng Deng
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Qili Yang
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Hui Wu
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Lihui Chen
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Yonghao Ni
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
- Department
of Chemical Engineering and Limerick Pulp & Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Liulian Huang
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| | - Min Zhang
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
35
|
Abstract
Background Catechins, which are polyphenol compounds found in many plants and are an important component of tea leaves, are strong anti-oxidants. Research Many studies seek to enhance the effects of catechins on the human body and boost their protective power against UV radiation. There are many examples of the positive anti-microbial, anti-viral, anti-inflammatory, anti-allergenic, and anti-cancer effects of catechins. Catechins increase the penetration and absorption of healthy functional foods and bio cosmetics into the body and the skin, thus improving their utility. High value-added anti-oxidant substances have been extracted from food and plant sludge, and experiments have shown that catechins are safe when applied to the human body. The stability of catechins is very important for their absorption into the human body and the effectiveness of their anti-oxidant properties. Conclusion Continued research on the strong anti-oxidant effects of catechins is expected to result in many advances in the food, cosmetics, and pharmaceutical industries.
Collapse
|
36
|
Leme-Kraus AA, Phansalkar RS, Dos Reis MC, Aydin B, Sousa ABS, Alania Y, McAlpine J, Chen SN, Pauli GF, Bedran-Russo AK. Dimeric Proanthocyanidins on the Stability of Dentin and Adhesive Biointerfaces. J Dent Res 2019; 99:175-181. [PMID: 31826696 DOI: 10.1177/0022034519892959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A dentin biomodification strategy with selective proanthocyanidin (PAC)-enriched extracts reinforces dentin and dentin-resin interfaces. Enrichment of the extracts according to the degree of polymerization allows exploration of bioactive principles of PACs and structure-activity relationships. This study investigated the sustained dentin matrix biomodification and dentin-resin bioadhesion of 2 fractions consisting exclusively of B-type PAC dimers with or without a single galloyl motif (specifically, DIMERG and DIMERNG) and their precursor material, enriched grape seed extract (e-GSE; Vitis vinifera). The biomodification potential was determined by long-term evaluation of the apparent modulus of elasticity and collagen solubility (hydroxyproline release). Chemical characterization of the dentin matrix was performed by attenuated total reflectance-Fourier-transform infrared spectroscopy. The bioadhesive properties were assessed by a microtensile bond strength test at different time points, and macro-hybrid layers were produced to verify the degree of conversion of the adhesive resin. Fractions consisting of DIMERG, DIMERNG, and their precursor, e-GSE, increased the modulus of elasticity at all time points and reduced collagen degradation. Specimens treated with DIMERNG remained stable throughout 12 mo of storage, whereas a significant drop in the modulus of elasticity was observed for the DIMERG and e-GSE groups at 6 mo. The fractions and precursor did not affect the degree of resin conversion at the hybrid layer. Changes in infrared resonances corresponding to collagen cross-links in the dentin matrix occurred for all treatments. Higher bond strength was observed for dentin treated with e-GSE as compared with DIMERG and DIMERNG; all biointerfaces remained stable after 12 mo. Nongalloylated PACs mediate stable dentin biomodification, which includes protective activity against collagen degradation and reinforcement of the anchoring dentin matrix. Collectively, PACs with a higher degree of oligomerization offer a robust bioadhesion between the hydrophilic dentin matrix and the hydrophobic adhesive.
Collapse
Affiliation(s)
- A A Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - R S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - M C Dos Reis
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - B Aydin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - A B S Sousa
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Alania
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - J McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - S N Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - G F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - A K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia 2019; 137:104270. [DOI: 10.1016/j.fitote.2019.104270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
|
38
|
Lei X, Jia YG, Song W, Qi D, Jin J, Liu J, Ren L. Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking. ACS APPLIED BIO MATERIALS 2019; 2:3861-3869. [DOI: 10.1021/acsabm.9b00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyue Lei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dawei Qi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiahong Jin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
39
|
|
40
|
Wu L, Shao H, Fang Z, Zhao Y, Cao CY, Li Q. Mechanism and Effects of Polyphenol Derivatives for Modifying Collagen. ACS Biomater Sci Eng 2019; 5:4272-4284. [PMID: 33417783 DOI: 10.1021/acsbiomaterials.9b00593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zehui Fang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Quanli Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
41
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
42
|
Leone A, Lecci RM, Milisenda G, Piraino S. Mediterranean jellyfish as novel food: effects of thermal processing on antioxidant, phenolic, and protein contents. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03248-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Lucarini M, Sciubba F, Capitani D, Di Cocco ME, D'Evoli L, Durazzo A, Delfini M, Lombardi Boccia G. Role of catechin on collagen type I stability upon oxidation: a NMR approach. Nat Prod Res 2019; 34:53-62. [PMID: 30821504 DOI: 10.1080/14786419.2019.1570509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study focuses on the understanding, at molecular level, the mechanism of interaction between protein and flavonoids. Collagen and catechin interactions were investigated by NMR in solution and solid state. The effect of catechin on the stability of collagen to oxidation was also explored. Collagen was treated with two concentrations of catechin solutions. Oxidation was carried out by incubation of collagen solution with three oxidation systems: Fe(II)/H2O2, Cu(II)/H2O2, and NaOCl/H2O2. The effects of oxidation systems were evaluated by high resolution 1 D and 2 D proton spectroscopy and solid state NMR (13C CP MAS) experiments. Interactions between collagen and catechin preferentially occur between catechin B ring and the amino acids Pro and Hyp of collagen. Results showed that both iron and copper oxidation systems were able to interact with collagen by site specific attack. Moreover, catechin protects collagen proline from oxidation by metal/H2O2 systems, preventing copper and iron approach to collagene molecule;this behaviour was more evident for the copper/H2O2 system.
Collapse
Affiliation(s)
| | - Fabio Sciubba
- Department of Chemistry, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council (CNR), Monterotondo (RM), Italy
| | | | - Laura D'Evoli
- CREA - Research Centre for Food and Nutrition, Rome, Italy
| | | | - Maurizio Delfini
- Department of Chemistry, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
44
|
Way DV, Nele M, Pinto JC. Preparation of gelatin beads treated with glucose and glycerol. POLIMEROS 2018. [DOI: 10.1590/0104-1428.04317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Márcio Nele
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
45
|
The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar Drugs 2018; 16:md16100396. [PMID: 30347869 PMCID: PMC6213208 DOI: 10.3390/md16100396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Jellyfish is a compartment in the marine food web that often achieves high increases of biomass and that it is starting to be explored for several human potential uses. In this paper, a recently rediscovered large jellyfish, Rhizostoma luteum, is studied for the first time to describe its organic compounds for the isolation and production of bioactive compounds in several fields of food, cosmetics, or biomedical industries. The biogeochemical composition (Carbon, Nitrogen and Sulfur content), protein and phenols content, together with their antioxidant activity, and the analysis of lipid content (identifying each of the fatty acids presented) was analyzed. The results presented here suggested this jellyfish has the highest antioxidant activity ever measured in a jellyfish, but also with high content in polyunsaturated fatty acids (PUFAs), including the essential fatty acid linoleic. The large natural biomass of Rhizostoma luteum in nature, the wide geographical spread, the fact that already its life cycle has been completed in captivity, establishes a promising positive association of this giant jellyfish species and the isolation of bioactive compounds for future use in marine biotechnology.
Collapse
|
46
|
Yang T, Yang H, Fan Y, Li B, Hou H. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin. Int J Biol Macromol 2018; 118:124-131. [DOI: 10.1016/j.ijbiomac.2018.06.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
47
|
Jayamani J, Naisini A, Madhan B, Shanmugam G. Ferulic acid, a natural phenolic compound, as a potential inhibitor for collagen fibril formation and its propagation. Int J Biol Macromol 2018; 113:277-284. [DOI: 10.1016/j.ijbiomac.2018.01.225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
|
48
|
Gaspar-Pintiliescu A, Seciu AM, Miculescu F, Moldovan L, Ganea E, Craciunescu O. Enhanced extracellular matrix synthesis using collagen dressings loaded with Artemisia absinthium plant extract. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518783216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this study was to develop three-dimensional porous composites of collagen (Col) incorporating polyphenolic-rich wormwood extract and to investigate their interaction with human skin cells, in order to optimize wound healing treatments. The scaffolds’ ultrastructure was observed by scanning electron microscopy, and biodegradability and bioactive compounds release were investigated in physiologic environment. Interaction of composites in direct and indirect contact with human skin cells was evaluated using two in vitro experimental models. ColWE scaffolds presented high porosity, swelling degree, and increased stability against enzymatic degradation, compared to Col scaffold. Composite scaffolds incorporating higher quantities of wormwood extract allowed better control of polyphenolics release. ColWE 0.5 variant favored the attachment and proliferation of human dermal fibroblasts and keratinocyte cells. In addition, the composite scaffold stimulated the synthesis of skin extracellular matrix components. All these results demonstrated that ColWE composites with improved physico-chemical and biological properties could be used in advanced wound healing applications.
Collapse
Affiliation(s)
| | - Ana-Maria Seciu
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Florin Miculescu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, Bucharest, Romania
| | - Lucia Moldovan
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena Ganea
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Oana Craciunescu
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
49
|
Ganesan VV, Dhanasekaran M, Thangavel N, Dhathathreyan A. Elastic compliance of fibrillar assemblies in type I collagen. Biophys Chem 2018; 240:15-24. [PMID: 29857170 DOI: 10.1016/j.bpc.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
Fibrillary assemblies of Type I collagen find important applications in tissue engineering and as matrices for biophysical studies. The mechanical and structural properties of these structures are governed by factors such as protein concentration, temperature, pH and ionic strength. This study reports on an impedance based analysis of the elastic compliance of fibrillary assemblies of Type I collagen using quartz crystal microbalance with dissipation (QCM-D) at a fundamental frequency of 5 MHz and overtones (n = 3,5,7,9,11). Here, In situ partial fibrillation of the adsorbing collagen followed by its fibrillary assemblies on hydrophilic gold coated quartz surface have been crosslinked using Gallic acid (GA), Chromium (III) gallate (Cr-GA), Catechin (Cat), Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and Oxazolidine (Ox). This approach allows direct comparison of how viscoelastic properties track the structural evolution of the fiber and network length scales. The collagen crosslinking shows significant positive impact on the protein's mechanical behaviour and on the type of crosslinking agents used. The elastic modulus increases as collagen <GA < THPS < Cr-GA < Cat < Ox. Atomic force microscopic studies on the adsorbed collagen after cross linking confirmed the presence of fibrous assemblies. The results indicate stabilization and reinforcement through strong physical entanglement between the molecules of collagen as well as chemical interaction between collagen matrix and fibrils during cross linking. The elastic compliance evaluated from ΔDissipation/Δfreq. from QCM-D showed that cross linking with GA, Cr-GA and Ox resulted in flexible fibrillary network while agents like THPS and Cat showed elastic moduli similar to that of pure collagen. Results suggest that optimal collagen-crosslinking agent ratio and degree of crosslinking of collagen can help tailor the mechanical properties for specific applications in design of bio-materials of these composites.
Collapse
|
50
|
Isik BS, Altay F, Capanoglu E. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chem 2018; 265:260-273. [PMID: 29884382 DOI: 10.1016/j.foodchem.2018.05.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/27/2023]
Abstract
Sour cherry (Prunus cerasus L.) is rich in polyphenols which are known to be protective agents against several diseases. Polyphenols are highly sensitive against temperature, pH, oxygen, and light conditions, leading to low bioaccessibility. In this study, polyphenols of sour cherry concentrate (SCC) were encapsulated by uniaxial or coaxial electrospinning with gelatin or gelatin-lactalbumin. Results showed that phenolic acids had higher encapsulation efficiencies than anthocyanins. Encapsulation efficiencies were found as 89.7 and 91.3% in terms of phenolic acids and 70.3 and 77.8% in terms of flavonoids for the uniaxially electrospun samples with gelatin and gelatin-lactalbumin, respectively. The content of polyphenols in SCC decreased after intestinal tract whereas all electrospun samples showed improved bioaccessibility. According to in vitro digestion results, electrospinning encapsulation provided 8 times better protection of cyanidin-3-glucoside compared to the non-encapsulated SCC. Results showed that especially coaxial electrospinning encapsulation is an effective method for sour cherry polyphenols.
Collapse
Affiliation(s)
- Beyza Sukran Isik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Filiz Altay
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|