1
|
Chen P, Shang X, Huang X, Zhang M, Guo J. Recent advance of physicochemical, structural properties, potential health benefits and application of bioactive macromolecules from Porphyra haitanensis: A review. Int J Biol Macromol 2024; 279:135497. [PMID: 39260651 DOI: 10.1016/j.ijbiomac.2024.135497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Porphyra haitanensis (P. haitanensis) belongs to the class Rhodophyta and the family Bangiaceae, which is a unique artificially cultivated seaweed in China, especially in the coastal areas of Fujian and Zhejiang province. P. haitanensis is rich in amino acids, mineral elements, proteins, polysaccharides, and trace elements, with proteins and polysaccharides being the main components. P. haitanensis proteins and polysaccharides have variety of biological activities, including antioxidant, anticancer, immunomodulatory, anti-allergic and anti-aging activities, among others. This review introduced and summarized the preparation, isolation and purification, phytochemistry and structural properties, and biological activities of P. haitanensis proteins and polysaccharide, as well as their biomedical and food applications. Furthermore, a thorough analysis of the current trends and perspectives on P. haitanensis bioactive macromolecules were highlighted and prospected. Hopefully, this review can provide a useful reference value for the development and application of P. haitanensis bioactive macromolecules in the field of biomedical and food in the future.
Collapse
Affiliation(s)
- Peilin Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Xuke Shang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Xiaozhou Huang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Min Zhang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China
| | - Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian, China.
| |
Collapse
|
2
|
Sun M, Zhang Y, Gao W, He Y, Wang Y, Sun Y, Kuang H. Polysaccharides from Porphyra haitanensis: A Review of Their Extraction, Modification, Structures, and Bioactivities. Molecules 2024; 29:3105. [PMID: 38999057 PMCID: PMC11243187 DOI: 10.3390/molecules29133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Porphyra haitanensis (P. haitanensis), an important food source for coastal residents in China, has a long history of medicinal and edible value. P. haitanensis polysaccharides are some of the main active ingredients in P. haitanensis. It is worth noting that P. haitanensis polysaccharides have a surprising and satisfactory biological activity, which explains the various benefits of P. haitanensis to human health, such as anti-oxidation, immune regulation, anti-allergy, and anticancer properties. Hence, a systematic review aimed at comprehensively summarizing the recent research advances in P. haitanensis polysaccharides is necessary for promoting their better understanding. In this review, we systematically and comprehensively summarize the research progress on the extraction, purification, structural characterization, modification, and biological activity of P. haitanensis polysaccharides and address the shortcomings of the published research and suggest area of focus for future research, providing a new reference for the exploitation of polysaccharides from P. haitanensis in the fields of medicine and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| |
Collapse
|
3
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Yuan M, Wang J, Geng L, Wu N, Yang Y, Zhang Q. A review: Structure, bioactivity and potential application of algal polysaccharides in skin aging care and therapy. Int J Biol Macromol 2024; 272:132846. [PMID: 38834111 DOI: 10.1016/j.ijbiomac.2024.132846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.
Collapse
Affiliation(s)
- Mengyao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China.
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Kim DW, Lee TK, Ahn JH, Yang SR, Shin MC, Cho JH, Won MH, Kang IJ, Park JH. Porphyran Attenuates Neuronal Loss in the Hippocampal CA1 Subregion Induced by Ischemia and Reperfusion in Gerbils by Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation. Mar Drugs 2024; 22:170. [PMID: 38667787 PMCID: PMC11050983 DOI: 10.3390/md22040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Republic of Korea;
| | - Se-Ran Yang
- Department of Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Moo-Ho Won
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea; (M.C.S.); (J.H.C.); (M.-H.W.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| |
Collapse
|
6
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wang C, Ye Z, Wang Y, Fu L. Effect of the harvest period on the structure and anti-allergic activity of Porphyra haitanensis polysaccharides. Food Funct 2022; 13:10034-10045. [PMID: 36069516 DOI: 10.1039/d2fo01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.
Collapse
Affiliation(s)
- Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Ziqiang Ye
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
8
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Chen P, Xu Y, Yang S, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Application of X-ray diffraction and energy dispersive spectroscopy in the isolation of sulfated polysaccharide from Porphyra haitanensis and its antioxidant capacity under in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6452-6462. [PMID: 33997981 DOI: 10.1002/jsfa.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The separation and purification of Porphyra haitanensis polysaccharide (PHP), and the determination of changes in molecular weight (Mw) and antioxidant capacity after in vitro digestion, were undertaken. RESULTS Analysis of two polysaccharide fractions (PHP0.5-1-UF and PHP1.0-1-UF) by various techniques showed that they were very pure sulfated polysaccharides without pigment or protein. PHP0.5-1-UF was filamentous or 'tape-like' sheets, whereas PHP1.0-1-UF had some filaments and large numbers of rounded aggregates. The Mw of PHP, PHP0.5-1-UF and PHP1.0-1-UF was 2.06 × 106 (±2.02%), 6.68 × 106 (±3.17%), and 1.14 × 106 (±3.44%) (g mol-1 ), respectively. After in vitro digestion, the Mw of PHP, PHP0.5-1-UF, and PHP1.0-1-UF decreased. Their antioxidant capacities were markedly higher than before digestion, especially PHP0.5-1-UF and its digestion products, which might be related to the reductions in Mw. CONCLUSION These findings provide a greater understanding of the separation and purification of sulfated polysaccharides and the influence of digestion on biological activity. They also contribute to the practical application of sulfated polysaccharides in functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Chang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
11
|
Enhancement of the Antioxidant and Antimicrobial Activities of Porphyran through Chemical Modification with Tyrosine Derivatives. Molecules 2021; 26:molecules26102916. [PMID: 34068969 PMCID: PMC8156949 DOI: 10.3390/molecules26102916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.
Collapse
|
12
|
Yi LT, Zhang MM, Cheng J, Wan HQ, Li CF, Zhu JX, Zhang QP, Liu Q, Xu GH. Antidepressant-like Effects of Degraded Porphyran Isolated from Porphyra haitanensis. Mol Nutr Food Res 2021; 65:e2000869. [PMID: 33783973 DOI: 10.1002/mnfr.202000869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/17/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Degraded porphyran is a bioactive polysaccharide extracted from Porphyra haitanensis (P. haitanensis). According to the previous studies, it produced anti-inflammatory activity, but little is known about its effects on depression. METHODS AND RESULTS As inflammation is one of the critical factors involved in the development of depression, this study aims to elucidate the potential antidepressant-like effects of degraded porphyran. The results show that acute porphyran treatment decreased the immobility time in despair tests. In addition, subchronic porphyran administration reverses depressive-like behaviors in lipopolysaccharide (LPS)-treated mice. Meanwhile, porphyran inhibits NF-κB/NLRP3 signaling, proinflammatory cytokine release, and microglial activation in the hippocampus. Moreover, chronic porphyran treatment activates hippocampal brain derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway in chronic unpredictable mild stress (CUMS) in mice. As a result, neurogenesis and spinogenesis are maintained. CONCLUSIONS The findings of the present study indicate that degraded porphyran intake provides a potential strategy for depression treatment, which is mediated by the inhibition of neuroinflammation and the enhancement of neurogenesis and spinogenesis in the central nervous systems.
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Hui-Qi Wan
- Xiamen Medicine Research Institute, Xiamen, Fujian Province, 361008, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, 361009, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330004, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, 361009, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, Fujian Province, 361008, PR China
| |
Collapse
|
13
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
14
|
Choi SY, Lee SY, Jang DH, Lee SJ, Cho JY, Kim SH. Inhibitory effects of Porphyra dentata extract on 3T3-L1 adipocyte differentiation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:854-863. [PMID: 33987565 PMCID: PMC7721580 DOI: 10.5187/jast.2020.62.6.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022]
Abstract
This study was aimed to investigate the inhibitory effects of Porphyra
dentata (P. dentata) extract on the adipogenesis
of 3T3-L1 cells and evaluate its anti-obesity effect. The proliferation of
3T3-L1 cells and differentiation of adipocytes under treatment of P.
dentata extract was examined by measuring the cell viability using
alamarBlue assay and lipid droplets by Oil Red O staining. Results showed that
P. dentata extract has no cytotoxicity effect and lipid
droplets formation decreased in a concentration-dependent manner in 3T3-L1
cells. It has been confirmed that transcription factors affecting lipid
accumulation and anti-adipogenic effects during cell differentiation are linked
to P. dentata extract. We observed that P.
dentata shows lowering the mRNA expression of peroxisome
proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer
binding protein α (C/EBPα) that adipogenesis-associated key
transcription factors and inhibiting adipogenesis in the early stages of
differentiation. Treating the cells with P. dentata did not
only suppressed PPARγ2 and C/EBPα but also significantly decreased
the mRNA expression of adiponectin, Leptin, fatty acid synthase, adipocyte
protein 2, and Acetyl-coA carboxylase 1. Overall, the P.
dentata extract demonstrated inhibitory property in adipogenesis,
which has a potential effect in anti-obesity in 3T3-L1 cells.
Collapse
Affiliation(s)
- Su-Young Choi
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Su Yeon Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Da Hye Jang
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk 28503, Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
15
|
Dong M, Jiang Y, Wang C, Yang Q, Jiang X, Zhu C. Determination of the Extraction, Physicochemical Characterization, and Digestibility of Sulfated Polysaccharides in Seaweed- Porphyra haitanensis. Mar Drugs 2020; 18:md18110539. [PMID: 33126712 PMCID: PMC7694159 DOI: 10.3390/md18110539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to extract Porphyra haitanensis polysaccharides (PHPs) using the water extraction and alcohol precipitation methods and explore their antioxidant activity and physicochemical properties. The single-factor and Box-Behnken response surface methodologies were used to optimize the extraction of polysaccharides from Porphyra haitanensis. Our results showed that the polysaccharide yield was as high as 20.48% with a raw material to water ratio of 0.04, and extraction time of 3 h at 80 °C. The extraction rate observed was similar to the actual extraction rate, thus proving the reliability of the optimization model. The extracted polysaccharides primarily consisted of galactose, glucose, and fucose in the molar ratio 76.2:2.1:1, respectively. The high performance gel permeation chromatography (HPGPC) results showed that the molecular weight of the PHPs obtained was 6.3 × 105 Da, and the sulfate content was 2.7 mg/mL. Fourier infrared spectroscopy was used to analyze the functional groups and structures of the polysaccharides. The effect of concentration, temperature, and pH on the apparent viscosity of the PHPs solution were studied using rheology experiments, which revealed that PHPs were a “non-Newtonian fluid” with shear-thinning behavior. The viscosity of the PHPs gradually increased with increasing sugar concentration, and decreased with increasing temperature, acidity, and alkalinity. Detection of the antioxidant activity of OH*, DPPH*, and ABTS* revealed that the scavenging activity of ABTS* was higher than that of OH* and DPPH* in the concentration range of 1–5 mg/mL. In the experiments of simulating gastric juice and alpha amylase in vitro, it was found that PHPs can better resist digestion of alpha amylase, and have better resistance than fructooligosaccharide (FOS), so PHPs have potential prebiotic activity. These findings demonstrate the potential of PHPs for use in the food and cosmetic industries.
Collapse
|
16
|
Huang TY, Huang MY, Tsai CK, Su WT. Phosphorylation of levan by microwave-assisted synthesis enhanced anticancer ability. J Biosci Bioeng 2020; 131:98-106. [PMID: 32962963 DOI: 10.1016/j.jbiosc.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022]
Abstract
Levan is an exopolysaccharide produced by Bacillus licheniformis (strain FRI MY-55) that shows promising pharmacological activity. Phosphorylation is a chemical modification that can increase the biological and antioxidant properties of levan. In this study, levan was phosphorylated by microwave-assisted synthesis to achieve a degree of substitution of 0.29. The hydroxyl radical scavenging activity of microwave-assisted phosphorylated levan (microwave P) increased significantly (6-fold) over native levan; this activity was only slightly lower than vitamin C. Other free radical scavenging and reducing power tests revealed that Microwave P activity was increased by 30-40%. Microwave P inhibited the proliferation of HCT-116 and A549 cancer cell lines more readily than native levan with an IC50 of 1.03 mg/mL and 1.38 mg/mL for HCT-116 and A549 cells, respectively. Cells treated with native levan and its derivatives remained in the sub-G1 phase according to cell cycle analysis, whereas Microwave P treatment increased the proportion of cells undergoing apoptosis. Furthermore, Microwave P effectively upregulated pro-apoptosis marker Bax and downregulated anti-apoptosis marker Bcl-2, in addition to inducing the expression of caspase-9 and caspase-3. These findings show that levan phosphorylated via microwave-assisted synthesis showed increased antioxidant and antitumor activity over native levan or levan phosphorylated via traditional long-term heating. In particular, Microwave P possesses antiproliferative activity and can induce apoptosis through mitochondrial pathways in cancerous cells.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Mei-Ying Huang
- Fisheries Research Institute, Council of Agriculture, Keelung 20246, Taiwan
| | - Chung-Kang Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
17
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, Fendri I, Abdelkafi S, Michaud P. Bioactive Polysaccharides from Seaweeds. Molecules 2020; 25:E3152. [PMID: 32660153 PMCID: PMC7397078 DOI: 10.3390/molecules25143152] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
Bioactive compounds with diverse chemical structures play a significant role in disease prevention and maintenance of physiological functions. Due to the increase in industrial demand for new biosourced molecules, several types of biomasses are being exploited for the identification of bioactive metabolites and techno-functional biomolecules that are suitable for the subsequent uses in cosmetic, food and pharmaceutical fields. Among the various biomasses available, macroalgae are gaining popularity because of their potential nutraceutical and health benefits. Such health effects are delivered by specific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), bioactive peptides and polysaccharides. Abundant and recent studies have identified valuable biological activities of native algae polysaccharides, but also of their derivatives, including oligosaccharides and (bio)chemically modified polysaccharides. However, only a few of them can be industrially developed and open up new markets of active molecules, extracts or ingredients. In this respect, the health and nutraceutical claims associated with marine algal bioactive polysaccharides are summarized and comprehensively discussed in this review.
Collapse
Affiliation(s)
- Faiez Hentati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Latifa Tounsi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46 Maroua, Cameroon;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Alina Violeta Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| |
Collapse
|
19
|
Geng L, Wang J, Zhang Z, Yue Y, Zhang Q. Structure and Bioactivities of Porphyrans and Oligoporphyrans. Curr Pharm Des 2020; 25:1163-1171. [PMID: 31208306 DOI: 10.2174/1381612825666190430111725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pyropia (Porphyra), commonly known as nori or laver, is an important food source in many parts of the world. Edible dried Pyropia contains numerous nutrients and biofunctional components, including proteins, vitamins, eicosapentaenoic acid, minerals, carotenoids, mycosporine-like amino acids, and carbohydrate, and one of the compounds which we are interested in is porphyran, a sulfated polysaccharide comprising the hot-water-soluble portion of Pyropia cell walls. Researchers have performed a large number of in-depth studies on the biological activity and potential therapeutic applications of porphyrans and oligoporphyrans. METHODS This mini review aims to provide comprehensive and update overview on the source, extraction, structure, biological activities and structure-activity relationships of porphyrans and oligoporphyrans based on the studies in the past 30 years which were included in Web of Science. RESULTS The structure of porphyran has been basically determined given that its straight chain is relatively simple, and the skeleton structure has been described. The extraction methods were simplified continuously, but different extraction methods and post- processing methods still had great influence on the structure and composition of porphyran, so there was no standardized extraction process which can achieve quality control until now. In order to obtain oligoporphyrans, there are a variety of degradation methods, including chemical method, physical method and enzymatic method, but it is worth mentioning that specific degradation enzyme is still unavailable. Studies on the biological and pharmacology properties include antioxidant, anti-tumor, anti-inflammatory, immunomodulation, anti-cardiovascular and cerebrovascular diseases and drug delivery. CONCLUSION Owing to the therapeutic potential and drug delivery applications, porphyran and oligoporphyrans are expected to be further developed as a medicine against human diseases, as well as a supplement in cosmetics and health products.
Collapse
Affiliation(s)
- Lihua Geng
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jing Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhongshan Zhang
- Department of Pharmacology, Huzhou University, Huzhou 313000, China
| | - Yang Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Quanbin Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
20
|
Hu H, Li H, Han M, Cao Q, Liang H, Yuan R, Sun J, Zhang L, Wu Y. Chemical modification and antioxidant activity of the polysaccharide from Acanthopanax leucorrhizus. Carbohydr Res 2020; 487:107890. [DOI: 10.1016/j.carres.2019.107890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/31/2022]
|
21
|
Cho TJ, Rhee MS. Health Functionality and Quality Control of Laver ( Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar Drugs 2019; 18:E14. [PMID: 31877971 PMCID: PMC7024182 DOI: 10.3390/md18010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
The growing interest in laver as a food product and as a source of substances beneficial to health has led to global consumer demand for laver produced in a limited area of northeastern Asia. Here we review research into the benefits of laver consumption and discuss future perspectives on the improvement of laver product quality. Variation in nutritional/functional values among product types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and seasoning on the contents of both beneficial and harmful substances highlight the importance of managing laver processing conditions. Most research into health benefits has focused on substances present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as key strategies for the further improvement of laver product quality. Comprehensive analysis of the literature regarding laver as a food product and as a source of biomedical compounds highlights the possibilities and challenges for application of laver products.
Collapse
Affiliation(s)
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
22
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. The protective effect of icariin and phosphorylated icariin against LPS-induced intestinal epithelial cells injury. Biomed Pharmacother 2019; 118:109246. [PMID: 31387006 DOI: 10.1016/j.biopha.2019.109246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Icariin (ICA) and phosphorylated icariin (pICA) have excellent antiviral and antioxidant effects. However, whether ICA and pICA cause anti-LPS-induced intestinal damage remains unclear. In this study, we used Caco-2 cells as a model to investigate the protective effects of ICA and pICA on human colonic epithelial cells and explore their potential mechanisms. Our results indicated that ICA and pICA increased cell viability and decreased lactate dehydrogenase activity in Caco-2 cells. ICA and pICA also attenuated LPS-induced changes in intestinal epithelial cell permeability and reduced the levels of oxidative stress indicators, such as reactive oxygen species, malondialdehyde, and hydrogen peroxide, in Caco-2 cells. Antioxidant indicators, such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity, were increased, while the levels of IL-1β, IL-6, IL-8 and TNF-α were reduced in the ICA and pICA groups. Furthermore, ICA and pICA decreased the gene abundance and enzyme activities of caspase-3, -8, -9 and -10 in Caco-2 cells. Our data suggest that ICA and pICA effectively attenuated LPS-induced changes in the oxidative stress, inflammation, apoptosis and intestinal permeability of intestinal epithelial cells. These findings provide new insight for treating LPS-induced intestinal injury.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Jian Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Sargassum muticum Hydrothermal Extract: Effects on Serum Parameters and Antioxidant Activity in Rats. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sargassum muticum was processed by hydrothermal extraction under previously optimized non-isothermal conditions (up to 187 °C). The alginate free crude hydrolysate was further concentrated by ultrafiltration, operating in diafiltration mode to produce an extract (SmE) enriched in the fucoidan and the phlorotannin fractions and with low mineral content and antiradical capacity equivalent to that of Trolox. In order to explore the potential of this concentrated product for food or feed additive, the in vivo antioxidant potential was assessed. Male Sprague–Dawley rats were fed SmE dissolved in distilled water at doses of 0.5, 1.0 or 2.0 g kg−1, administered via an intragastric tube daily for three weeks. The weight and organ gain was not significantly affected in the different groups in relation to the control group fed a standard diet. Serum glucose was significantly lowered in the groups receiving the higher SmE doses, liver GPx levels were reduced and liver TBARS levels decreased in rats administered the extract, but no effect on SOD activity in either liver or erythrocytes was observed.
Collapse
|
24
|
Seong H, Bae JH, Seo JS, Kim SA, Kim TJ, Han NS. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Synthesized sulfated and acetylated derivatives of polysaccharide extracted from Gracilariopsis lemaneiformis and their potential antioxidant and immunological activity. Int J Biol Macromol 2019; 124:568-572. [DOI: 10.1016/j.ijbiomac.2018.11.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
|
26
|
Kim JH, Lee JE, Kim KH, Kang NJ. Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Mar Drugs 2018; 16:md16110459. [PMID: 30469402 PMCID: PMC6266229 DOI: 10.3390/md16110459] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023] Open
Abstract
Marine algae are considered to be an abundant sources of bioactive compounds with cosmeceutical potential. Recently, a great deal of interest has focused on the health-promoting effects of marine bioactive compounds. Carbohydrates are the major and abundant constituent of marine algae and have been utilized in cosmetic formulations, as moisturizing and thickening agents for example. In addition, marine carbohydrates have been suggested as promising bioactive biomaterials for their various properties beneficial to skin, including antioxidant, anti-melanogenic and skin anti-aging properties. Therefore, marine algae carbohydrates have potential skin health benefits for value-added cosmeceutical applications. The present review focuses on the various biological capacities and potential skin health benefits of bioactive marine carbohydrates.
Collapse
Affiliation(s)
- Ji Hye Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41566, Korea.
| | - Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea.
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
27
|
Zhang K, Liu Y, Zhao X, Tang Q, Dernedde J, Zhang J, Fan H. Anti-inflammatory properties of GLPss58, a sulfated polysaccharide from Ganoderma lucidum. Int J Biol Macromol 2018; 107:486-493. [DOI: 10.1016/j.ijbiomac.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/13/2023]
|
28
|
Guo Y, Gu X, Jiang Y, Zhu W, Yao L, Liu Z, Gao H, Wang L. Antagonistic Effect of Laver, Pyropia yezonensis and P. haitanensis, on Subchronic Lead Poisoning in Rats. Biol Trace Elem Res 2018; 181:296-303. [PMID: 28577234 DOI: 10.1007/s12011-017-1050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Lead, one of the most harmful heavy metals, can cause various hazardous effects on living organisms. This study was undertaken to evaluate the antagonistic and protective effects of two economically important laver species, Pyropia yezoensis and P. haitanensis, against subchronic lead poisoning in rats by a 30-day feeding test. Sixty-four healthy Wistar rats were randomly divided into eight groups with eight rats (4♂ + 4♀) per group, among which, one group was served as the control, the others were respectively treated with lead acetate (5 mg/kg b w), and a combination of lead acetate and P. yezoensis or P. haitanensis at different dosages. Weight gain of rats was observed and recorded. Changes in antioxidant indexes, and liver and renal function markers were determined to evaluate the antagonistic effect. Lead content in rats was determined to investigate lead excretion effect of laver. The results showed that exposure to lead caused lead accumulation in kidney and liver, thus leading to significant oxidative damage and impaired liver and renal function compared to the control group. The co-treatment of laver slightly increased body weight compared to the lead-treated group. The co-administration of laver restored liver and renal function of rats by preventing the increment in the activities of alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate transaminase (AST), and the levels of blood urea nitrogen (BUN) and creatinine (Cr). The increasing of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, and lowering of the enhanced malondialdehyde (MDA) contents of rats were observed in the laver co-treated groups, which indicated that laver enhanced the antioxidative capacity of rats. The laver also enhanced lead content in feces and reduced it in liver and kidney. The results indicated that P. yezoensis and P. haitanensis could maintain or promote the normal physiological and biochemical function of lead-induced subchronic poisoning of rats, probably owing to their enhancements of antioxidant capacity and lead excretion.
Collapse
Affiliation(s)
- Yingying Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Xiaohui Gu
- Department of Food Engineering, Weihai Ocean Vocational College, 264300, Weihai, People's Republic of China
| | - Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China.
| | - Wenjia Zhu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | - Zhantao Liu
- Medical College, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Hua Gao
- Medical College, Qingdao University, 266021, Qingdao, People's Republic of China
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China.
| |
Collapse
|
29
|
Bito T, Teng F, Watanabe F. Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10685-10692. [PMID: 29161815 DOI: 10.1021/acs.jafc.7b04688] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyra sp. (nori) is widely cultivated as an important marine crop. Dried nori contains numerous nutrients, including vitamin B12, which is the only vitamin absent from plant-derived food sources. Vegetarian diets are low in iron and vitamin B12; depletion of both causes severe anemia. Nori also contains large amounts of iron compared with other plant-derived foods and eicosapentaenoic acid, which is an important fatty acid found in fish oils. In nori, there are also many bioactive compounds that exhibit various pharmacological activities, such as immunomodulation, anticancer, antihyperlipidemic, and antioxidative activities, indicating that consumption of nori is beneficial to human health. However, Porphyra sp. contains toxic metals (arsenic and cadmiun) and/or amphipod allergens, the levels of which vary significantly among nori products. Further evidence from human studies of such beneficial or adverse effects of nori consumption is required.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| | - Fei Teng
- Department of Food Quality and Safety, College of Food Science, Northeast Agricultural University , Harbin 150030, China
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| |
Collapse
|
30
|
Xiong W, Zhang W, Yuan W, Du H, Ming K, Yao F, Bai J, Chen Y, Liu J, Wang D, Hu Y, Wu Y. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways. Front Microbiol 2017; 8:1850. [PMID: 29018425 PMCID: PMC5622922 DOI: 10.3389/fmicb.2017.01850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more antioxidant activity that could regulate oxidative stress-related indicators, and inhibited the phosphorylation of MAPKs signaling pathway.
Collapse
Affiliation(s)
- Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjuan Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingying Bai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Yu P, Zhang Y. Separation and purification ofPorphyra haitanensispolysaccharide and its preliminary structural characterization. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1296464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yishu Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
32
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Suganya AM, Sanjivkumar M, Chandran MN, Palavesam A, Immanuel G. Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan. Biomed Pharmacother 2016; 84:1300-1312. [PMID: 27810787 DOI: 10.1016/j.biopha.2016.10.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Pharmacological properties of native carrageenan (κ) extracted from Kappaphycus alvarezii and commercial carrageenan (Sigma-Aldrich) were evaluated using in vitro antioxidant, anticancer and antidiabetic studies. Phytochemical analysis of native and commercial carrageenans showed the presence of alkaloids, saponins, steroids, gums & mucilages and carbohydrate. Both native and commercial carrageenans exhibited better antioxidant activities such as total antioxidant capacity (87±0.47 and 82.6±0.47μg A.A/g), hydroxyl radical scavenging activity (61.4±0.27 and 58.66±0.31μg/ml), nitric oxide radical scavenging activity (80.42±0.22 and 73.66±0.22μg/ml), DPPH radical scavenging activity (56.26±0.20 and 53.67±0.082μg/ml) and reducing power assay (46.57±0.32 and 42.54±0.27μg/ml) at the maximum concentration of 100μg/ml carrageenans. These results indicated that native carrageenan from K. alvarezii possessed better antioxidant potential in comparison with commercial carrageenan. Anticancer activities of both carrageenans showed excellent inhibition on the growth of breast, colon, liver and osteosarcoma cell lines at the maximum concentration of 150μg/ml. Native carrageenan exhibited an excellent anticancer activity on colon carcinoma cell lines (67.66±0.168%) with the IC50 value of 73.87μg/ml and commercial carrageenan possessed a potent inhibition on the growth of breast cancer cell lines (67.33±0.077%) with the IC50 value of 123.8μg/ml. These results clearly indicated the beneficial effect of native and commercial carrageenans as anticancer agents being a free radical scavenger. Anti-diabetic property of both carrageenans showed inhibition effect on α- glucosidase enzyme. The inhibitory effect depends on concentration of carrageenans and it was recorded that maximum (74.49±1.05 and 67.42±0.63) inhibitory effect of α- glucosidase enzyme at 500μg/ml concentration.
Collapse
Affiliation(s)
| | - Muthusamy Sanjivkumar
- MNP laboratory, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam-629502, Tamilnadu, India
| | - Manohar Navin Chandran
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli-627012, India
| | - Arunachalam Palavesam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli-627012, India
| | - Grasian Immanuel
- MNP laboratory, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam-629502, Tamilnadu, India.
| |
Collapse
|
34
|
Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides. PLoS One 2016; 11:e0163536. [PMID: 27685320 PMCID: PMC5042491 DOI: 10.1371/journal.pone.0163536] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/10/2016] [Indexed: 01/06/2023] Open
Abstract
In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000-100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara.
Collapse
|
35
|
Lee JH, Kim HH, Ko JY, Jang JH, Kim GH, Lee JS, Nah JW, Jeon YJ. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system. Carbohydr Polym 2016; 153:512-517. [PMID: 27561523 DOI: 10.1016/j.carbpol.2016.07.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022]
Abstract
This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant.
Collapse
Affiliation(s)
- Ji-Hyeok Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyung-Ho Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ju-Young Ko
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jun-Ho Jang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Gwang-Hoon Kim
- Department of Biology, College of Natural Sciences, Kongju National University, Kongju 314-701, Republic of Korea
| | - Jung-Suck Lee
- Industry-Academic Cooperation Foundation, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jae-Woon Nah
- Department of High Polymer Engineering, Sunchon National University, Jungang-ro, Suncheon, Jeollanam-do, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
36
|
Mohibbullah M, Bhuiyan MMH, Hannan MA, Getachew P, Hong YK, Choi JS, Choi IS, Moon IS. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons. Cell Mol Neurobiol 2016; 36:669-82. [PMID: 26259718 DOI: 10.1007/s10571-015-0247-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.
Collapse
Affiliation(s)
- Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | | | - Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Paulos Getachew
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
- Department of Biological Science, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 780-714, Republic of Korea.
| |
Collapse
|
37
|
Cao J, Wang J, Wang S, Xu X. Porphyra Species: A Mini-Review of Its Pharmacological and Nutritional Properties. J Med Food 2016; 19:111-9. [DOI: 10.1089/jmf.2015.3426] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jin Cao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jianping Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Shicheng Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Wang W, Song N, Jia F, Xie J, Zhang Q, Jiang H. Neuroprotective effects of porphyran derivatives against 6-hydroxydopamine-induced cytotoxicity is independent on mitochondria restoration. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:39. [PMID: 25815300 DOI: 10.3978/j.issn.2305-5839.2015.01.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/14/2022]
Abstract
We previously reported that acetylated and phosphorylated derivatives of porphyran extracted from Porphyra haitanensis exhibit antioxidant activity in cell-free system. The aim of the present study was to investigate the neuroprotective effects of porphyran and its derivatives on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure cell viability. Changes in the mitochondrial transmembrane potential (ΔΨm) were measured by rhodamine123 using flow cytometry. The results showed that porphyran and its two derivatives, acetylated porphyran (AP) and phosphorylated porphyran (PP) (<1 mg/mL) alone did not have any toxic effects on MES23.5 cells. The cell viability decreased when cells were treated with 25 µmol/L 6-OHDA. Both AP and PP, rather than porphyran, significantly antagonized 25 µmol/L 6-OHDA-induced cytotoxicity. However, neither AP nor PP could antagonize 6-OHDA-induced mitochondrial transmembrane potential (ΔΨm) collapse. None of the three materials were effective on cell survival when cells were cotreated with 75 µmol/L 6-OHDA. These results suggest that two derivatives of porphyran, AP and PP, could antagonize the weak toxicity of 6-OHDA on MES23.5 dopaminergic cells, possessing minor neuroprotective effects independent of mitochondria restoration.
Collapse
Affiliation(s)
- Weiwei Wang
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Song
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengjv Jia
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Junxia Xie
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hong Jiang
- 1 Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, China ; 2 Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao 266071, China ; 3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
39
|
Galactans and Its Applications. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
40
|
Deng C, Xu J, Fu H, Chen J, Xu X. Characterization, antioxidant and cytotoxic activity of sulfated derivatives of a water-insoluble polysaccharides from Dictyophora indusiata. Mol Med Rep 2014; 11:2991-8. [PMID: 25484243 DOI: 10.3892/mmr.2014.3060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
The present study described the characterization and biological properties of water‑soluble sulfated polysaccharides prepared from water‑insoluble polysaccharide (DIP), which were extracted from Dictyophora indusiata. The sulfation of DIP was performed using the chlorosulfonic acid‑pyridine method. The water solubilities of the sulfated derivatives were measured at room temperature according to the Chinese Pharmacopoeia. The scavenging activity of hydroxyl radicals and 1,1‑diphenyl‑2‑picrylhydrazyl (DPPH) as determined, together with the reduction ability of the sulfated polysaccharides. The cytotoxic and antiproliferative effects of DIP and the sulfated derivatives on MCF‑7 and B16 cells were then determined using an MTT assay. The substitution degrees of the sulfated polysaccharides were 0.584 (S1‑DIP), 0.989 (S2‑DIP) and 1.549 (S3‑DIP) according to barium chloride‑gelatin nephelometry. Infrared spectroscopy and 13C‑nuclear magnetic resonance indicated that the substitution of S‑DIP occurred mainly at the C‑6 position, followed by the C‑4 and C‑2 positions. A significant increase was noted in the antioxidant activity of the sulfated derivatives compared with that of DIP. In addition, the S‑DIPs exhibited a more marked reducing capacity and clearing activity of hydroxyl radicals and DPPH. This indicated that the antioxidant capacity of the polysaccharides was significantly higher following sulfation. Furthermore, in in vitro cell investigations, DIP exhibited no inhibitory effects on the growth of the B16 or MCF‑7 tumor cells. However, the sulfated derivatives exerted marked inhibitory effects on these cell lines. Sulfate modification may therefore contribute to an improvement in water solubility and in the antioxidant and antitumor activities of natural DIP.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jingjing Xu
- Clinical Laboratory, Wuxi No. 4 People's Hospital, Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Haitian Fu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jinghua Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xin Xu
- Cardiovascular Department, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
41
|
Chemical modification, characterization and bioactivity of a released exopolysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconj J 2014; 32:17-27. [DOI: 10.1007/s10719-014-9567-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022]
|
42
|
Fidelis GP, Camara RBG, Queiroz MF, Santos Pereira Costa MS, Santos PC, Rocha HAO, Costa LS. Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae. Molecules 2014; 19:18511-26. [PMID: 25401396 PMCID: PMC6271000 DOI: 10.3390/molecules191118511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022] Open
Abstract
The sulfated polysaccharides (SP) from the edible red seaweed, Gracilaria birdiae, were obtained using five different extraction conditions: Gracilaria birdiae 1 (GB1)-water; GB1s-water/sonication; GB1sp-water/sonication/proteolysis; GB2s-NaOH/sonication; and GB2sp-NaOH/sonication/proteolysis. The yield (g) increased in the following order: GB2sp>GB1sp>GB2s>GB1s>GB1. However, the amount of SP extracted increased in a different way: GB2sp>GB1>GB1sp>GB1s>GB2s. Infrared and electrophoresis analysis showed that all conditions extracted the same SP. In addition, monosaccharide composition showed that ultrasound promotes the extraction of polysaccharides other than SP. In the prothrombin time (PT) test, which evaluates the extrinsic coagulation pathway, none of the samples showed anticoagulant activity. While in the activated partial thromboplastin time (aPTT) test, which evaluates the intrinsic coagulation pathway, all samples showed anticoagulant activity, except GB2s. The aPTT activity decreased in the order of GB1sp>GB2sp>GB1>GB1s>GB2s. The total capacity antioxidant (TCA) of the SP was also affected by extraction condition, since GB2s and GB1 showed lower activity in comparison to the other conditions. In conclusion, the conditions of SP extraction influence their biological activities and chemical composition. The data revealed that NaOH/sonication/proteolysis was the best condition to extract anticoagulant and antioxidant SPs from Gracilaria birdiae.
Collapse
Affiliation(s)
- Gabriel Pereira Fidelis
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Rafael Barros Gomes Camara
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Moacir Fernandes Queiroz
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Mariana Santana Santos Pereira Costa
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Pablo Castro Santos
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| | - Leandro Silva Costa
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil.
| |
Collapse
|
43
|
Wang X, Zhang Z. The antitumor activity of a red alga polysaccharide complexes carrying 5-fluorouracil. Int J Biol Macromol 2014; 69:542-5. [DOI: 10.1016/j.ijbiomac.2014.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/26/2022]
|
44
|
|
45
|
Li X, Gao WY, Cao Y, Cao JG, Zhang LM. Antioxidant Activity Relationships of Pachymaran Derivatives. J Food Biochem 2013. [DOI: 10.1111/jfbc.12049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xia Li
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Wen-Yuan Gao
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Yu Cao
- College of Material Science and Chemical Engineering; Tianjin University of Science and Technology; Tianjin China
| | - Jing-Guo Cao
- Institute of Biological Engineering of Traditional Chinese Medicine; Tianjin University of Science and Technology; Tianjin China
| | - Li-Ming Zhang
- Institute of Biological Engineering of Traditional Chinese Medicine; Tianjin University of Science and Technology; Tianjin China
| |
Collapse
|
46
|
Levansucrase optimization using solid state fermentation and levan biological activities studies. Carbohydr Polym 2013; 96:332-41. [DOI: 10.1016/j.carbpol.2013.03.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 01/07/2023]
|
47
|
Zhang CY, Wu WH, Lan MB. The protection of polysaccharide from the Brown Seaweed Sargassum graminifolium against ethylene glycol-induced mitochondrial damage. Mar Drugs 2013; 11:870-80. [PMID: 23528953 PMCID: PMC3705376 DOI: 10.3390/md11030870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study is to evaluate the protective effect of polysaccharide from the Brown Seaweed Sargassum graminifolium (SGP) on ethylene glycol-induced kidney damage and the mechanism of SGP-mediated protection. Mitochondrial lipid peroxidation, mitochondrial swelling, the activity of succinate dehydrogenase (SDH), ATPases and mitochondrial antioxidant enzymes was observed in hyperoxaluric rats. Administration of SGP (25, 100 and 400 mg·kg-1, intragastrically) increased the activities of antioxidant enzymes, SDH and Na+/K+-ATPases, Ca2+-ATPases, Mg2+-ATPases, also decreased mitochondrial lipid peroxidation and mitochondrial swelling. SGP exhibited a protective effect by improving antioxidant enzymes and restoring mitochondrial dysfunction in the kidney of hyperoxaluric rats. It may be used as a promising therapeutic agent to provide superior renal protection.
Collapse
Affiliation(s)
- Chao-Yan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; E-Mail:
- College of Food Science and Technology, Institutes of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; E-Mails: (T.-K.); (W.-H.W.)
| | - Wen-Hui Wu
- College of Food Science and Technology, Institutes of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; E-Mails: (T.-K.); (W.-H.W.)
| | - Min-Bo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; E-Mail:
| |
Collapse
|
48
|
Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol 2012; 50:767-72. [DOI: 10.1016/j.fct.2011.11.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/23/2022]
|
49
|
Zhang CY, Wu WH, Wang J, Lan MB. Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization. Mar Drugs 2012; 10:119-130. [PMID: 22363225 PMCID: PMC3280541 DOI: 10.3390/md10010119] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 02/07/2023] Open
Abstract
We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC₅₀ = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties.
Collapse
Affiliation(s)
- Chao-Yan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Center of Analysis and Testing, East China University of Science and Technology, Shanghai 200237, China
- College of Food Science and Technology, Institutes of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.-Y.Z.); (W.-H.W.); (J.W.)
| | - Wen-Hui Wu
- College of Food Science and Technology, Institutes of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.-Y.Z.); (W.-H.W.); (J.W.)
| | - Jue Wang
- College of Food Science and Technology, Institutes of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (C.-Y.Z.); (W.-H.W.); (J.W.)
| | - Min-Bo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Center of Analysis and Testing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Synthesized oversulfated and acetylated derivatives of polysaccharide extracted from Enteromorpha linza and their potential antioxidant activity. Int J Biol Macromol 2011; 49:1012-5. [DOI: 10.1016/j.ijbiomac.2011.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 12/20/2022]
|