1
|
Zhang Y, Wang H, Yang R, Zhang Y, Chen Y, Jiang C, Li X. Synergistic Therapeutic Effects of D-Mannitol-Cerium-Quercetin (Rutin) Coordination Polymer Nanoparticles on Acute Lung Injury. Molecules 2024; 29:2819. [PMID: 38930884 PMCID: PMC11206268 DOI: 10.3390/molecules29122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ruiying Yang
- Traditional Chinese Medicine College, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Bag S, Ghosal S, Mukherjee M, Pramanik G, Bhowmik S. Quercetin Exhibits Preferential Binding Interaction by Selectively Targeting HRAS1 I-Motif DNA-Forming Promoter Sequences. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10157-10170. [PMID: 38700902 DOI: 10.1021/acs.langmuir.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
3
|
Ansari MF, Arjmand F. Quercetin-phenylalanine 3d-transition metal-based {Co(II), Ni(II) & Cu(II)} intercalative therapeutic agents: DNA & BSA interaction studies in vitro and cleavage activity. Int J Biol Macromol 2024; 254:127521. [PMID: 37898256 DOI: 10.1016/j.ijbiomac.2023.127521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
New Quercetin-phenylalanine metal-based therapeutic agents of the formulation [Qu(Phe)M(II).(H2O)2].NO3 where M(II) = Co(II) and Ni(II) and [Qu(Phe)Cu(II).(H2O)2] were synthesized and their structure was predicted by IR, UV-vis, EPR and ESI-MS spectroscopic techniques. The bio-molecular interaction studies of the Quercetin-phenylalanine complexes, 1-3 with ct-DNA and BSA were performed using a battery of complimentary biophysical techniques. The corroborative results of these experiments revealed strong binding propensity via electrostatic interactions probably through minor grove binding towards ct-DNA, therapeutic target. The binding affinity of Quercetin-phenylalanine complexes 1-3 was quantified by determining binding constants values, Kb, Ksv, and the magnitude of binding propensity followed the order 3 > 1 > 2, implicating the preferential binding of Cu(II) complex 3 with ct-DNA. The cleavage studies were performed with complexes using gel electrophoretic mobility assay. The complexes 1-3 demonstrated efficient cleaving ability by the hydrolytic cleavage pathway involving hydroxyl (OH) radicals. BSA binding profile of Quercetin-phenylalanine metal therapeutics 1-3 was studied in order to understand the drug carrier potential of these compounds and found that complex 3 was capable of binding preferentially with BSA as compared to other complexes.
Collapse
Affiliation(s)
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
4
|
Benin BM, Hillyer T, Crugnale AS, Fulk A, Thomas CA, Crowder MW, Smith MA, Shin WS. Taxifolin as a Metallo-β-Lactamase Inhibitor in Combination with Augmentin against Verona Imipenemase 2 Expressing Pseudomonas aeruginosa. Microorganisms 2023; 11:2653. [PMID: 38004664 PMCID: PMC10673258 DOI: 10.3390/microorganisms11112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of β-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a β-lactamase inhibitor is administered together with a β-lactam antibiotic-has proven effective against serine-β-lactamases, there are no currently approved metallo-β-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-β-lactamase inhibitors. Through a combined computational and in vitro approach, taxifolin was found to inhibit VIM-2 expressing P. aeruginosa cell proliferation at <4 μg/mL as part of a triple combination with amoxicillin and clavulanate. Furthermore, we tested this combination in mice with abrasive skin infections. Together, these results demonstrate that flavonol compounds, such as taxifolin, may be developed into effective metallo-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Bogdan M. Benin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Aylin S. Crugnale
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Andrew Fulk
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
- Akron Children’s Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| |
Collapse
|
5
|
Yue H, Zhao X, Yong Q, Shi M, Jiang X, Zhang Y, Yu X. Self-assembly of Hyaluronic Acid-Cu-Quercetin flavonoid nanoparticles: synergistic chemotherapy to target tumors. PeerJ 2023; 11:e15942. [PMID: 37663303 PMCID: PMC10470444 DOI: 10.7717/peerj.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background In this study, a natural compound quercetin (Qu) was investigated for its various antitumor effects. However, due to its poor water solubility and low bioavailability, its clinical application is limited. To overcome this constraint, a modification was to Qu, which resulted in the creation of novel flavonoid self-assembling nanoparticles (HCQ NPs). Methods HCQ NPs were synthesized by a self-assembly method and characterized using transmission electron microscopy, the Malvern Zetasizer instrument, X-ray photoelectron spectroscopy (XPS), the ultraviolet-visible spectrophotometric method (UV-vis), Fourier transform infrared (FITR) and inductively coupled plasma mass spectrometry. Extracellular, methylene blue spectrophotometric analysis was used to determine the ability of HCQ NPs to react with different concentrations of H2O2 to form hydroxyl radicals (•OH). Intracellular, DCFH-DA staining was used to detect the ability of HCQ NPs to react with H2O2 to generate reactive oxygen species. Flow cytometry was used to detect the uptake of HCQ NPs by MDA-MB-231 cells at different time points. The biocompatibility of HCQ NPs was evaluated using the Cell Counting Kit-8 (CCK-8) assay. Calcein AM/PI double staining and the CCK-8 assay were used to evaluate the synergistic antitumor effect of HCQ NPs and H2O2. Results HCQ NPs showed uniformly sized analogous spherical shapes with a hydrodynamic diameter of 55.36 ± 0.27 nm. XPS revealed that Cu was mainly present as Cu2+ in the HCQ NPs. UV-vis absorption spectrum of the characteristic peak of HCQ NPs was located at 296 nm. Similarly, FTIR spectroscopy revealed a complex formation of Qu and Cu2+ that substantially changed the wavenumber of the 4-position C = O characteristic absorption peak. Based on the proportion of Qu and Cu2+ (1:2), the total drug loading of Qu and Cu2+ in the HCQ NPs for therapeutic purposes was calculated to be 9%. Methylene blue spectrophotometric analysis of •OH indicated that Cu can lead to the generation of •OH by triggering Fenton-like reactions. HCQ NPs rapidly accumulated in MDA-MB-231 cells with the extension of time, and the maximum accumulation concentration was reached at about 0.5 h. Calcein AM/PI double staining and CCK-8 revealed synergistic antitumor effects of HCQ NPs including the chemotherapeutic effect of Qu and chemodynamic therapy by Cu2+ in a simulated tumor microenvironment. HCQ NPs demonstrated very low toxicity in LO2 cells in the biocompatibility experiment. Conclusion This study show cases a new method of creating self-assembled flavonoid HCQ NPs that show great for fighting cancer.
Collapse
Affiliation(s)
- Hanxun Yue
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The First people’s Hospital of PingDingShan, Pingdingshan, China
| | - Xuan Zhao
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yong
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Shi
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Jiang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Zhang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian Yu
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhang G, Han Y, Liu Z, Fan L, Guo Y. Triple Amplification Ratiometric Electrochemical Aptasensor for CA125 Based on H-Gr/SH-β-CD@PdPtNFs. Anal Chem 2023; 95:1294-1300. [PMID: 36576891 DOI: 10.1021/acs.analchem.2c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A triple-amplified and ratiometric electrochemical aptasensor for CA125 was designed based on hemin-graphene/SH-β-cyclodextrin@PdPt nanoflower (H-Gr/SH-β-CD@PdPtNF) composites and an exonuclease I (Exo I)-assisted strategy. In the nanocomposite, hemin acts as an internal reference signal owing to the reversible heminox/heminred pair. PdPtNFs can significantly improve the electron transfer rate. SH-β-CD can efficiently enrich quercetin probes through host-guest recognition and increase the second indicator signal. In the presence of CA125, due to the specific binding between the aptamer and CA125, the conformational change of dsDNA (designed by the CA125 aptamer and its complementary DNA) results in the release of quercetin embedded in dsDNA. Subsequently, the free quercetin and DNA fragments are enriched on the H-Gr/SH-β-CD@PdPtNF-modified electrode. Thus, an enhanced oxidation peak from quercetin (IQ) and a reduced peak from hemin (Ihemin) can indicate the same biological identification event. In addition, the recycling amplification of CA125 by Exo I can effectively assist the increase of the quercetin signal. The value of IQ/Ihemin is linear with the concentration of CA125 in the range from 6.0 × 10-4 to 1.0 × 103 ng/mL, and the limit of detection is 1.4 × 10-4 ng/mL. The recovery of CA125 in human blood serum samples was from 99.2 to 104.4%. The proposed sensor is sensitive and reliable, which provides an avenue for the development of triple amplification and ratiometric signal strategies for detecting tumor markers in clinical diagnostics.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China.,Department of Basic Courses, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Bera M, Das M, Dolai M, Laha S, Islam MM, Samanta BC, Das A, Choudhuri I, Bhattacharyya N, Maity T. DNA/Protein Binding and Apoptotic-Induced Anticancer Property of a First Time Reported Quercetin-Iron(III) Complex Having a Secondary Anionic Residue: A Combined Experimental and Theoretical Approach. ACS OMEGA 2023; 8:636-647. [PMID: 36643564 PMCID: PMC9835804 DOI: 10.1021/acsomega.2c05790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A new quercetin-based iron(III) cationic complex [Fe(Qr)Cl(H2O)(MeO)] (complex 1) is created in the current study by condensation of quercetin with ferric chloride in the presence of Et3N. Comprehensive spectroscopic analysis and conductometric measurement are used to pinpoint complex 1. The generated complex's +3-oxidation state has been verified by electron paramagnetic resonance (EPR) research. Density functional theory analysis was used to structurally optimize the structure of complex 1. Before biomedical use, a variety of biophysical studies are implemented to evaluate the binding capacity of complex 1 with DNA and human serum albumin (HSA) protein. The findings of the electronic titration between complex 1 and DNA, as well as the stunning fall in the fluorescence intensities of the HSA and EtBr-DNA/DAPI-DNA domain after complex 1 is gradually added, give us confidence that complex 1 has a strong affinity for both macromolecules. It is interesting to note that the displacement experiment confirms partial intercalation as well as the groove binding mechanism of the title complex with DNA. The time-dependent fluorescence analysis indicates that after interaction with complex 1, HSA will exhibit static quenching. The thermodynamic parameter values in the HSA-complex 1 interaction provide evidence for the hydrophobicity-induced pathway leading to spontaneous protein-complex 1 interaction. The two macromolecules' configurations are verified to be preserved when they are associated with complex 1, and this is done via circular dichroism spectral titration. The molecular docking investigation, which is a theoretical experiment, provides complete support for the experimental findings. The potential of the investigated complex to be an anticancer drug has been examined by employing the MTT assay technique, which is carried out on HeLa cancer cell lines and HEK-293 normal cell lines. The MTT assay results validate the ability of complex 1 to display significant anticancer properties. Finally, by using the AO/PI staining approach, the apoptotic-induced cell-killing mechanism as well as the detection of cell morphological changes has been confirmed.
Collapse
Affiliation(s)
- Manjushree Bera
- Department
of Nutrition, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Manik Das
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Malay Dolai
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| | - Soumik Laha
- IICB,
Kolkata, Kolkata, 700032West Bengal, India
| | - Md Maidul Islam
- Department
of Chemistry, Aliah University, Kolkata700064, India
| | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur, Contai721425, India
| | - Arindam Das
- Department
of Chemistry, Jadavpur University, Kolkata700032, India
| | | | | | - Tithi Maity
- Department
of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, Contai721404, India
| |
Collapse
|
8
|
Cai Q, Li X, Ding X, Wang H, Hu X. Effects of quercetin and Ca(OH)2 addition on gelatinization and retrogradation properties of Tartary buckwheat starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Synthesis, Structural Investigations, and In Vitro/In Silico Bioactivities of Flavonoid Substituted Biguanide: A Novel Schiff Base and Its Diorganotin (IV) Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248874. [PMID: 36558007 PMCID: PMC9783859 DOI: 10.3390/molecules27248874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand-receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.
Collapse
|
10
|
Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238133. [PMID: 36500226 PMCID: PMC9741454 DOI: 10.3390/molecules27238133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Flavonoids show abundant favorable physicochemical and drug related properties, leading to substantial biological applications which are limited by undesirable properties such as poor solubility, high polarity, low bioavailability, and enzymatic degradations. Chemical modification with bioisosteres can be used to address some of these challenges. We report the synthesis and characterization of partial flavonoid acetamide derivatives from quercetin, apigenin and luteolin and the evaluation of their structure-activity relationships based on antioxidant, bioavailability, drug likeness, and toxicity properties. The sequential synthesis was achieved with 76.67-87.23% yield; the structures of the compounds were confirmed using 1H & 13C NMR characterizations. The purity of each compound was determined by HPLC while the molecular weights were determined by mass spectrometry. The % bioavailability was determined using the dialysis tubing procedure and the values were in the range 15.97-38.12%. The antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and expressed as the IC50 values which were in the range 31.52-198.41 µM. The drug likeness and the toxicity properties of compounds 4, 5, 7, 11 and 15 were predicted using computational tools and showed satisfactory results. A structure-activity relationship evaluation reveals that hydroxyl and methylene groups attached on the 2-phenylchromen-4-one structure of the flavonoid play a colossal role in the overall antioxidant and bioavailability properties. The improved bioavailability and excellent drug relevance and toxicity properties present flavonoid acetamide derivatives as prospective drug candidates for further evaluations.
Collapse
|
11
|
Synthesis of Cu(II)-Caffeine Complex as Potential Therapeutic Agent: Studies on Antioxidant, Anticancer and Pharmacological Activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Metal coordination complexes of polyphenolic compounds have been claimed to have better antioxidant and protection against protein oxidative damage effects than the isolated ligands. Whereas flavonoids have been extensively studied, xanthones such as mangiferin are lacking extensive research. Methods: Cu (II), Zn (II), and Se (IV) mangiferin complexes were synthesized with different stoichiometric ratios. Products were isolated by preparative chromatography and subjected to spectral analysis by FT-IR, HPLC-DAD, and HPLC-ESI-MS. The inhibition effects on peroxidation potential and protein oxidative damage were determined for all the metal–MF complexes. Results: Eight metal–MF complexes were isolated. Cu (II)–MF complexes did not improve MF antioxidant/protective effects; Zn (II) complexes (stoichiometric ratio 1:2) antioxidant/protective effects had no significant differences to MF; Zn (II)– and Se (IV)–MF complexes (stoichiometric ratio 1:3) showed the best inhibition effects on peroxidation potential (49.06% and 32.08%, respectively), and on the protection against protein oxidative damage (14.49% and 20.81%, respectively). Conclusions: The antioxidant/protective effects of Se (IV)– and Zn (II)–MF coordination complexes were significantly improved as compared to isolated MF, when the reaction between the metal salt and MF was performed with a stoichiometric ratio 1:3.
Collapse
|
13
|
ÖZTÜRK KİRAZ A, YALÇIN F. Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.954992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Curry AM, White DS, Donu D, Cen Y. Human Sirtuin Regulators: The "Success" Stories. Front Physiol 2021; 12:752117. [PMID: 34744791 PMCID: PMC8568457 DOI: 10.3389/fphys.2021.752117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The human sirtuins are a group of NAD+-dependent protein deacylases. They “erase” acyl modifications from lysine residues in various cellular targets including histones, transcription factors, and metabolic enzymes. Through these far-reaching activities, sirtuins regulate a diverse array of biological processes ranging from gene transcription to energy metabolism. Human sirtuins have been intensely pursued by both academia and industry as therapeutic targets for a broad spectrum of diseases such as cancer, neurodegenerative diseases, and metabolic disorders. The last two decades have witnessed a flood of small molecule sirtuin regulators. However, there remain relatively few compounds targeting human sirtuins in clinical development. This reflects the inherent issues concerning the development of isoform-selective and potent molecules with good drug-like properties. In this article, small molecule sirtuin regulators that have advanced into clinical trials will be discussed in details as “successful” examples for future drug development. Special attention is given to the discovery of these compounds, the mechanism of action, pharmacokinetics analysis, formulation, as well as the clinical outcomes observed in the trials.
Collapse
Affiliation(s)
- Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
15
|
Luo H, Liang Y, Zhang H, Liu Y, Xiao Q, Huang S. Comparison on binding interactions of quercetin and its metal complexes with calf thymus DNA by spectroscopic techniques and viscosity measurement. J Mol Recognit 2021; 34:e2933. [PMID: 34432328 DOI: 10.1002/jmr.2933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Quercetin (Qu) and its metal complexes have received great attention during the last years, due to their good antioxidant, antibacterial, and anticancer activities. In this contribution, binding interactions of Qu and Qu-metal complexes with calf thymus DNA (ctDNA) were investigated and compared systematically by using spectroscopic techniques and viscosity measurement. UV-vis absorption spectra of ctDNA-compound systems showed obvious hypochromic effect. Relative viscosity and melting temperature of ctDNA increased after the addition of Qu and Qu-metal complexes, and the change tendency is Qu-Cr(III) > Qu-Mn(II) > Qu-Zn(II) > Qu-Cu(II) > Qu. Fluorescence competition experiments show that hydrogen bonds and van der Waals interaction play an important role in the intercalative binding of Qu and Qu-metal complexes with ctDNA. Qu and Qu-metal complexes could unwind the right-handed B-form helicity of ctDNA and further affect its base pair stacking. Space steric hindrance might be responsible for the differences in the intercalative binding between ctDNA and different Qu-metal complexes. These results provide new information for the molecular understanding of binding interactions of Qu-metal complexes with DNA and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Yu Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Huiying Zhang
- College of Chemistry and Biological Engineering, Hechi University, Hechi, China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
16
|
Rubio AR, González R, Busto N, Vaquero M, Iglesias AL, Jalón FA, Espino G, Rodríguez AM, García B, Manzano BR. Anticancer Activity of Half-Sandwich Ru, Rh and Ir Complexes with Chrysin Derived Ligands: Strong Effect of the Side Chain in the Ligand and Influence of the Metal. Pharmaceutics 2021; 13:1540. [PMID: 34683834 PMCID: PMC8537477 DOI: 10.3390/pharmaceutics13101540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
An important challenge in the field of anticancer chemotherapy is the search for new species to overcome the resistance of standard drugs. An interesting approach is to link bioactive ligands to metal fragments. In this work, we have synthesized a set of p-cymene-Ru or cyclopentadienyl-M (M = Rh, Ir) complexes with four chrysin-derived pro-ligands with different -OR substituents at position 7 of ring A. The introduction of a piperidine ring on chrysin led to the highly cytotoxic pro-ligand HL4 and its metal complexes L4-M (SW480 and A549 cell lines, cytotoxic order: L4-Ir > L4-Ru ≈ L4-Rh). HL4 and its complexes induce apoptosis and can overcome cis-platinum resistance. However, HL4 turns out to be more cytotoxic in healthy than in tumor cells in contrast to its metal complexes which displayed higher selectivity than cisplatin towards cancer cells. All L4-M complexes interact with double stranded DNA. Nonetheless, the influence of the metal is clear because only complex L4-Ir causes DNA cleavage, through the generation of highly reactive oxygen species (1O2). This result supports the hypothesis of a potential dual mechanism consisting of two different chemical pathways: DNA binding and ROS generation. This behavior provides this complex with a great effectivity in terms of cytotoxicity.
Collapse
Affiliation(s)
- Ana R. Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Rocío González
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana L. Iglesias
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Blvd. Universitario # 1000, Unidad Valle de las Palmas, Baja California, Tijuana 21500, Mexico
| | - Félix A. Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela 2, 13071 Ciudad Real, Spain;
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Blanca R. Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| |
Collapse
|
17
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
18
|
Quercetin and Egg Metallome. Antioxidants (Basel) 2021; 10:antiox10010080. [PMID: 33435281 PMCID: PMC7826751 DOI: 10.3390/antiox10010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/25/2023] Open
Abstract
The objective of the present study was to investigate the effect of the natural flavonoid quercetin dietary supplementation on the alteration of egg metallome by applying the basic principles of elemental metabolomics. One hundred and ninety-two laying hens were allocated into 4 treatment groups: the control (C) group that was fed with a commercial basal diet and the other experimental groups that were offered the same diet further supplemented with quercetin at 200, 400 and 800 mg per kg of feed (Q2, Q4 and Q8 group, respectively) for 28 days. The diets contained the same vitamin and mineral premix, thus all birds received the same amount of elements since no differences on feed intake existed. The egg elemental profile consisted of As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, V, Zn and was determined using inductively coupled plasma mass spectrometry (ICP-MS). Quercetin supplementation altered the elemental profile. Most notably, quercetin altered the element concentrations predominantly in egg shell and albumen. It increased the concentration of Sb while reduced that of Cr and Se in both egg shell and albumen. Moreover, it increased As, Cd in albumen and V in yolk, while compared to the control, reduced As, Cd, Cr, Cu and V and also raised Ca, Fe, Mg and Ni in egg shell. The presence of quercetin led to differentiation of the deposition of certain trace minerals in egg compartments compared to that of hens fed a basal diet, possibly indicating that tailor made eggs for specific nutritional and health requirements could be created in the future.
Collapse
|
19
|
Chowdhury S, Bhuiya S, Haque L, Das S. A Spectroscopic Approach towards the Comparative Binding Studies of the Antioxidizing Flavonol Myricetin with Various Single‐Stranded RNA. ChemistrySelect 2020. [DOI: 10.1002/slct.202003601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susmita Chowdhury
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Sutanwi Bhuiya
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Lucy Haque
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| | - Suman Das
- Biophysical Chemistry Laboratory Physical Chemistry Section Department of Chemistry Jadavpur University 188, Raja S. C. Mallick Road Kolkata 700032 India
| |
Collapse
|
20
|
A spectroscopic deciphering of the differential interaction behavior of alkaloid drugs with native B-DNA and protonated DNA. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Synthesis, physicochemical characterization and biological properties of two novel Cu(II) complexes based on natural products curcumin and quercetin. J Inorg Biochem 2020; 208:111083. [PMID: 32487364 DOI: 10.1016/j.jinorgbio.2020.111083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.
Collapse
|
22
|
New heteroleptic Cu(II) complexes of chrysin with 2,2ꞌ–bipyridine and substituted 1,10–phenanthrolines: Synthesis, characterization, thermal stability and antioxidant activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Rivière G, Oueslati S, Gayral M, Créchet JB, Nhiri N, Jacquet E, Cintrat JC, Giraud F, van Heijenoort C, Lescop E, Pethe S, Iorga BI, Naas T, Guittet E, Morellet N. NMR Characterization of the Influence of Zinc(II) Ions on the Structural and Dynamic Behavior of the New Delhi Metallo-β-Lactamase-1 and on the Binding with Flavonols as Inhibitors. ACS OMEGA 2020; 5:10466-10480. [PMID: 32426604 PMCID: PMC7226869 DOI: 10.1021/acsomega.0c00590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has recently emerged as a global threat because of its ability to confer resistance to all common β-lactam antibiotics. Understanding the molecular basis of β-lactam hydrolysis by NDM is crucial for designing NDM inhibitors or β-lactams resistant to their hydrolysis. In this study, for the first time, NMR was used to study the influence of Zn(II) ions on the dynamic behavior of NDM-1. Our results highlighted that the binding of Zn(II) in the NDM-1 active site induced several structural and dynamic changes on active site loop 2 (ASL2) and L9 loops and on helix α2. We subsequently studied the interaction of several flavonols: morin, quercetin, and myricetin were identified as natural and specific inhibitors of NDM-1. Quercetin conjugates were also synthesized in an attempt to increase the solubility and bioavailability. Our NMR investigations on NDM-1/flavonol interactions highlighted that both Zn(II) ions and the residues of the NDM-1 ASL1, ASL2, and ASL4 loops are involved in the binding of flavonols. This is the first NMR interaction study of NDM-1/inhibitors, and the models generated using HADDOCK will be useful for the rational design of more active inhibitors, directed against NDM-1.
Collapse
Affiliation(s)
- Gwladys Rivière
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Saoussen Oueslati
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Maud Gayral
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay
(ICMMO), CNRS, Université Paris Sud, Université Paris-Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | | | - Naïma Nhiri
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service
de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif/Yvette, France
| | - François Giraud
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Stéphanie Pethe
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- . Phone:(33)145212019 or (33)145213030. Fax: (33)145216340
| | - Eric Guittet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Nelly Morellet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- . Phone:(33)169823762. Fax: (33)169823784
| |
Collapse
|
24
|
Shaghaghi M, Rashtbari S, Vejdani S, Dehghan G, Jouyban A, Yekta R. Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies. LUMINESCENCE 2019; 35:512-524. [DOI: 10.1002/bio.3757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Masoomeh Shaghaghi
- Department of ChemistryPayame Noor University P. O. Box 19395‐3697 Tehran Iran
| | - Samaneh Rashtbari
- Department of Biology, Faculty of Natural SciencesUniversity of Tabriz Tabriz Iran
| | - Samira Vejdani
- Department of ChemistryPayame Noor University P. O. Box 19395‐3697 Tehran Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural SciencesUniversity of Tabriz Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural SciencesUniversity of Tabriz Tabriz Iran
| |
Collapse
|
25
|
Mutlu Gençkal H, Erkisa M, Alper P, Sahin S, Ulukaya E, Ari F. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis, characterization, anti-cancer and anti-oxidant activity. J Biol Inorg Chem 2019; 25:161-177. [DOI: 10.1007/s00775-019-01749-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
|
26
|
Fathi F, Sharifi M, Jafari A, Kakavandi N, Kashanian S, Ezzati Nazhad Dolatabadi J, Rashidi MR. Kinetic and thermodynamic insights into interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111770] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Khalifa ME, Mortada WI, El-defrawy MM, Awad AA. Selective separation of gadolinium from a series of f-block elements by cloud point extraction and its application for analysis of real samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Alper P, Erkisa M, Genckal HM, Sahin S, Ulukaya E, Ari F. Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Mondal P, Bose A. Spectroscopic overview of quercetin and its Cu(II) complex interaction with serum albumins. ACTA ACUST UNITED AC 2019; 9:115-121. [PMID: 31334043 PMCID: PMC6637219 DOI: 10.15171/bi.2019.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/24/2022]
Abstract
![]()
Introduction:
Flavonoids are widely used as dietary supplements, and thus, play a significant role in the research field. In recent time, the interaction of flavonoid-metal complexes with serum albumin (SA) has widely been studied since the complexation poses a significant impact on biological activities. Additionally, the binding nature of flavonoids with SA gets modified in the presence of metal ions.
Methods: In the present review, we studied the interaction of quercetin (Qu), a well-known flavonoid, and its Cu2+ complexes with SA to provide sufficient information about the beneficial role of metal-flavonoid complexes over free flavonoids.
Results: Complexation with Cu(II) ion may alter the mode of binding of Qu with SAs. The strength of binding might be increased in the presence of Cu(II) as evidenced by the binding constant calculation. However, the drug binding site in bovine serum albumin (BSA) and human serum albumin (HSA) are not altered during the complexation process.
Conclusion: To enhance the pharmaceutical outcomes of Qu molecules, one may use Qu-Cu(II) complex for the development and delivery of the small molecules.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Adity Bose
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India
| |
Collapse
|
30
|
|
31
|
Wang Z, Wang N, Han X, Wang R, Chang J. Interaction of two flavonols with fat mass and obesity-associated protein investigated by fluorescence quenching and molecular docking. J Biomol Struct Dyn 2017; 36:3388-3397. [DOI: 10.1080/07391102.2017.1388287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zechun Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ning Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xinxin Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
32
|
Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017; 22:molecules22081270. [PMID: 28758919 PMCID: PMC6152094 DOI: 10.3390/molecules22081270] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.
Collapse
|
33
|
Zhang H, Liu T, Yin C, Wen Y, Chao J, Zhang Y, Huo F. A novel ratiometric fluorescent probe based on 1, 8-naphthalimide for the detection of Ho 3+ and its bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:230-235. [PMID: 27918934 DOI: 10.1016/j.saa.2016.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
A ratiometric fluorescent probe for the detection of Ho3+ in DMSO-aqueous medium was designed and synthesized based on 1, 8-naphthalimide. The probe displayed response to Ho3+ with a fluorescence decrease at 512nm and enhancement at 480nm, accompanying with a distinct fluorescence change from bright yellow-green to cyan. Besides, the probe exhibited a lower detection limit (6×10-8M) and could be used in intracellular fluorescence imaging. To the best of the knowledge, it was the first ratiometric fluorescent probe for Ho3+ detection. This probe was expected to be a useful tool for further elucidating the roles of Ho3+ in materials, biology and environment.
Collapse
Affiliation(s)
- Huifang Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tao Liu
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Yin Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
34
|
Oliveira VA, Iglesias BA, Auras BL, Neves A, Terenzi H. Photoactive meso-tetra(4-pyridyl)porphyrin-tetrakis-[chloro(2,2′bipyridine)platinum(ii) derivatives recognize and cleave DNA upon irradiation. Dalton Trans 2017; 46:1660-1669. [DOI: 10.1039/c6dt04634g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photoactive platinum porphyrins may be interesting as photosensitizers in photodynamic therapy and photochemotherapy, and we demonstrate their activity towards DNA cleavage under exposure to light.
Collapse
Affiliation(s)
- Vanessa A. Oliveira
- Centro de Biologia Molecular Estrutural
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | | | - Bruna L. Auras
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
35
|
Munteanu AC, Badea M, Olar R, Silvestro L, Dulea C, Negut CD, Uivarosi V. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies. Molecules 2016; 21:molecules21121737. [PMID: 27999283 PMCID: PMC6273368 DOI: 10.3390/molecules21121737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022] Open
Abstract
In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III), Eu(III), Gd(III), Tb(III). The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H₉O₃)₃(OH)₂(H₂O)x]·nH₂O, where Ln is the lanthanide cation and x = 0 for Sm(III), x = 1 for Eu(III), Gd(III), Tb(III) and n = 0 for Sm(III), Gd(III), Tb(III), n = 1 for Eu(III), respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb) ~ 10⁴. Human serum albumin (HSA) and transferrin (Tf) binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra). The apparent association constants (Ka) and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania.
| | - Luigi Silvestro
- PharmaServ. International SRL, 52 Sabinelor Str., 050853 Bucharest, Romania.
| | - Constanţa Dulea
- PharmaServ. International SRL, 52 Sabinelor Str., 050853 Bucharest, Romania.
| | - Constantin-Daniel Negut
- Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), IRASM Radiation Processing Department, Reactorului Str. 30, 077125 Magurele-Ilfov, Romania.
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| |
Collapse
|
36
|
Bhuiya S, Haque L, Pradhan AB, Das S. Inhibitory effects of the dietary flavonoid quercetin on the enzyme activity of zinc(II)-dependent yeast alcohol dehydrogenase: Spectroscopic and molecular docking studies. Int J Biol Macromol 2016; 95:177-184. [PMID: 27864057 DOI: 10.1016/j.ijbiomac.2016.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/01/2022]
Abstract
A multispectroscopic exploration was employed to investigate the interaction between the metallo-enzyme alcohol dehydrogenase (ADH) from yeast with bioflavonoid quercetin (QTN). Here, we have characterized the complex formation between QTN and Zn2+ in aqueous solution and then examined the effect of such complex formation on the enzymatic activity of a zinc(II)-dependent enzyme alcohol dehydrogenase from yeast. We have observed an inhibition of enzymatic activity of ADH in presence of QTN. Enzyme inhibition kinetic experiments revealed QTN as a non-competitive inhibitor of yeast ADH. Perturbation of Circular dichroic (CD) spectrum of ADH in presence of QTN is observed due to the structural changes of ADH on complexation with the above flavonoid. Our results indicate a conformational change of ADH due to removal of Zn2+ present in the enzyme by QTN. This was further established by molecular modeling study which shows that the flavonoid binds to the Zn2+ ion which maintains the tertiary structure of the metallo-enzyme. So, QTN abstracts only half of the Zn2+ ions present in the enzyme i.e. one Zn2+ ion per monomer. From the present study, the structural alteration and loss of enzymatic activity of ADH are attributed to the complex formation between QTN and Zn2+.
Collapse
Affiliation(s)
- Sutanwi Bhuiya
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Ankur Bikash Pradhan
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Suman Das
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
37
|
Human Topoisomerase I mediated cytotoxicity profile of l-valine-quercetin diorganotin(IV) antitumor drug entities. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Auras BL, Oliveira VA, Terenzi H, Neves A, Iglesias BA. meso-Mono-[4-(1,4,7-triazacyclononanyl)]-tri(phenyl)]porphyrin and the respective zinc(ii)-complex: complete characterization and biomolecules binding abilities. Photochem Photobiol Sci 2016; 15:564-79. [DOI: 10.1039/c6pp00016a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We aimed to synthesize a new series of triazacyclononanyl-porphyrins (4and5) with the potential ability to bind DNA.
Collapse
Affiliation(s)
- Bruna L. Auras
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Vanessa A. Oliveira
- Centro de Biologia Molecular Estrutural
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Bernardo A. Iglesias
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
- Departamento de Química
| |
Collapse
|
39
|
Droguett D, Castillo C, Leiva E, Theoduloz C, Schmeda-Hirschmann G, Kemmerling U. Efficacy of quercetin against chemically induced murine oral squamous cell carcinoma. Oncol Lett 2015; 10:2432-2438. [PMID: 26622865 DOI: 10.3892/ol.2015.3598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer, and oxidative damage is associated with the development of OSCCs. Antioxidants have therefore been proposed for use as chemoprotective agents against different types of cancer. In the present study, the effect of the antioxidant quercetin, administered at doses of 10 and 100 mg/kg/day, was investigated in an experimental murine model of 4-nitroquinoline 1-oxide (4-NQO)-induced carcinogenesis. The survival of the treated animals, the plasmatic levels of reduced glutathione and the type and severity of lesions (according the International Histological Classification of Tumors and Bryne's Multifactorial Grading System for the Invasive Tumor Front) were assessed. Additionally, the organization of the extracellular matrix was analyzed by carbohydrate and collagen histochemistry, and immunohistochemistry was used to assess the expression of the tumor markers proliferating cell nuclear antigen and mutated p53. The results indicate that, despite the promising effect of quercetin in other studies, this drug is ineffective as a chemoprotective agent against 4-NQO-induced OSCC in mice at the assayed doses.
Collapse
Affiliation(s)
- Daniel Droguett
- Department of Stomatology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile ; Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Christian Castillo
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Elba Leiva
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Cristina Theoduloz
- Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | | | - Ulrike Kemmerling
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
40
|
Platinum- polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Liu Y, Guo M. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Molecules 2015; 20:8583-94. [PMID: 25985359 PMCID: PMC6272614 DOI: 10.3390/molecules20058583] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
To systematically study the effects of the number of d electrons of the first transition metal ions (Fe, Co, Ni, Cu and Zn) on the formation and stability of metal flavonoid complexes, we took the quercetin/M2+ complex as a model system to investigate the structures and properties of these complexes. Based on considerable structural information obtained through ESI-MSn, all of the first transition metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) were found to form different complexes with quercetin, while with the number of chelating flavonoids decreasing along with the reduction of the metal ionic radius. Quercetin forms different complexes with the above metal divalent ions through its 5-OH and 4-carbonyl groups; the complex stability is highly dependent on both the metallic ion and the flavonoid chelator itself. As for the central ion (M2+), when chelated with quercetin to form the complex, the stability of the complex decreased in the following order: Cu2+ > Ni2+ > Co2+ > Fe2+ > Zn2+. With flavonoid: metal stoichiometries at 2:1, the complexes formed between quercetin and metal ions (Fe2+, Ni2+, Co2+ and Zn2+) have the similar fragmentation mechanism, while Cu2+ displayed different fragmentation mechanism due to the concurrent oxidation.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.
- The Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
42
|
Lourenço LMO, Iglesias BA, Pereira PMR, Girão H, Fernandes R, Neves MGPMS, Cavaleiro JAS, Tomé JPC. Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(ii)-thiopyridylporphyrins. Dalton Trans 2015; 44:530-8. [DOI: 10.1039/c4dt02697g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New tetra-platinum(ii)-thiopyridylporphyrin complexes and their DNA binding studies.
Collapse
Affiliation(s)
| | | | - Patrícia M. R. Pereira
- QOPNA and Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Laboratory of Pharmacology and Experimental Therapeutics
| | - Henrique Girão
- Centre of Ophthalmology and Vision Sciences
- IBILI
- Faculty of Medicine of University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics
- IBILI
- Faculty of Medicine
- University of Coimbra
- 3000-548 Coimbra
| | | | | | - João P. C. Tomé
- QOPNA and Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Department of Organic Chemistry
| |
Collapse
|
43
|
Graphene oxide functionalized with silver@silica–polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens Bioelectron 2014; 58:200-4. [DOI: 10.1016/j.bios.2014.02.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
|
44
|
Furia E, Marino T, Russo N. Insights into the coordination mode of quercetin with the Al(III) ion from a combined experimental and theoretical study. Dalton Trans 2014; 43:7269-74. [PMID: 24686751 DOI: 10.1039/c4dt00212a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining potentiometric, spectroscopic and theoretical DFT computations we have studied the formation of the Al(iii)-quercetin complex in ethanol solution. The possible complexation sites have been considered on the basis of all the experimental and theoretical tools used. Results supported proposing a 1 : 1 neutral complex and the possibility to have different isomers in solution.
Collapse
Affiliation(s)
- Emilia Furia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, P Bucci, I-87036 Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
45
|
Liu P, Zhao L, Wu X, Huang F, Wang M, Liu X. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:238-245. [PMID: 24316536 DOI: 10.1016/j.saa.2013.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed. The detection limits for the nucleic acids (S/N=3) were reduced to the ng mL(-1) level. The interaction mechanism of the AgNPs-fish sperm DNA (fsDNA)-Qu system was also investigated in this paper. This complex system of Qu and AgNPs was also successfully used for the detection of nucleic acids in agarose gel electrophoresis analysis. Preliminary results indicated that AgNPs also helped to improve sensitivity in the fluorescence image analysis of Qu combined with cellular contents in Arabidopsis thaliana protoplasts.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Liangliang Zhao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Xia Wu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Fei Huang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Minqin Wang
- School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Xiaodan Liu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
46
|
Ezzati Nazhad Dolatabadi J, Panahi-Azar V, Barzegar A, Jamali AA, Kheirdoosh F, Kashanian S, Omidi Y. Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Adv 2014. [DOI: 10.1039/c4ra11103f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the first time, PG interaction with HSA using fluorescence quenching method, circular dichroism spectroscopy and molecular modeling was investigated.
Collapse
Affiliation(s)
- Jafar Ezzati Nazhad Dolatabadi
- Research Center for Pharmaceutical Nanotechnology
- Faculty of Pharmacy
- Tabriz University of Medical Sciences
- Tabriz, Iran
- Student Research Committee
| | - Vahid Panahi-Azar
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS)
- University of Tabriz
- Tabriz, Iran
| | - Ali Akbar Jamali
- Department of Bioinformatics
- Research Institute of Modern Biological Techniques (RIMBT)
- University of Zanjan
- Zanjan, Iran
| | - Fahimeh Kheirdoosh
- Faculty of Chemistry & Nanoscience and Nanotechnology Research Center (NNRC)
- Razi University
- Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry & Nanoscience and Nanotechnology Research Center (NNRC)
- Razi University
- Kermanshah, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology
- Faculty of Pharmacy
- Tabriz University of Medical Sciences
- Tabriz, Iran
| |
Collapse
|
47
|
Xu ZQ, Zhou B, Jiang FL, Dai J, Liu Y. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV–vis spectroscopy. Colloids Surf B Biointerfaces 2013; 110:321-6. [DOI: 10.1016/j.colsurfb.2013.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/24/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
|
48
|
Indapurkar A, Henriksen B, Tolman J, Fletcher J. Evaluation of triazole-chelated lanthanides as chemically stabile bioimaging agents. J Pharm Sci 2013; 102:2589-98. [PMID: 23761019 DOI: 10.1002/jps.23616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/12/2013] [Accepted: 04/30/2013] [Indexed: 11/09/2022]
Abstract
Europium (Eu), dysprosium (Dy), samarium (Sm), and terbium (Tb) complexes were prepared using the neutral tridentate chelator 2,6-bis(1-benzyl-1,2,3-triazol-4-yl)pyridine and one equivalent of each lanthanide salt. The physicochemical, aerodynamic, and in vitro cellular properties of each lanthanide metal complex were studied to determine their viability as cell surface fluorescent probes. Each compound was characterized by electrospray ionization mass spectroscopy (ESI-MS), ultraperformance liquid chromatography (UPLC), differential scanning calorimetry (DSC), and thermogravimetic analysis (TGA). Upon excitation at 320 nm each complex displayed characteristic lanthanide-based fluorescence emission in the visible wavelength range with stokes shifts greater than 200 nm. Each complex was found to be chemically stable when exposed to pH range of 1-11 for 72 h and resistant to photobleaching. To simulate pulmonary administration of these fluorophores, the aerodynamic properties of the Eu and Tb complexes were determined using a next generation impactor (NGI). This measurement confirmed that the complexes retain their fluorescence emission properties after nebulization. Cellular cytotoxicity was determined on A-549 lung cancer cell line using methylthiazol tetrazolium (MTT) cytotoxicity assay at 24, 48, and 72 h postexposure to the complexes. The complexes showed a dose and time-dependent effect on the percent viability of the cells.
Collapse
Affiliation(s)
- Amruta Indapurkar
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
49
|
Lin J, Liu Y, Liu L, Song L. Studies on the toxic interaction mechanism between 2-naphthylamine and herring sperm DNA. J Biochem Mol Toxicol 2013; 27:279-85. [PMID: 23625636 DOI: 10.1002/jbt.21488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
Abstract
The toxic interaction between 2-naphthylamine (2-NA) and herring sperm deoxyribonucleic acid (hs-DNA) has been thoroughly investigated by UV absorption, fluorescence, and circular dichroism (CD) spectroscopic methods. UV absorption result indicates that 2-NA may intercalate into the stack base pairs of DNA during the toxic interaction of 2-NA with DNA. A fluorescence quenching study shows that DNA quenches the intrinsic fluorescence of 2-NA via a static pathway. The studies on effects of ionic strength and anionic quenching rule out electrostatic and groove bindings as the dominant binding modes. Further studies on denatured DNA fluorescence quenching and thermal melting studies confirm that the dominant binding mode of 2-NA-DNA is intercalative binding. A CD spectral study shows that the binding interaction of 2-NA with DNA leads to the disorganization of the neat double-helical structure of hs-DNA.
Collapse
Affiliation(s)
- Jingjing Lin
- The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Patel MN, Joshi HN, Patel CR. Interactions with herring sperm DNA and biological studies of sparfloxacin drug-based copper(II) compounds. Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohan N. Patel
- Department of Chemistry; Sardar Patel University; Vallabh Vidyanagar 388120 Gujarat India
| | - Hardik N. Joshi
- Department of Chemistry; Sardar Patel University; Vallabh Vidyanagar 388120 Gujarat India
| | - Chintan R. Patel
- Department of Chemistry; Sardar Patel University; Vallabh Vidyanagar 388120 Gujarat India
| |
Collapse
|