1
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Saha L, Kumari P, Sinha VR, Gautam V, Kaur L, Sharma S, Chakrabarti A. Role of berberine nanoformulation in epilepsy: A novel therapeutic strategy. Epilepsy Res 2024; 205:107419. [PMID: 39029440 DOI: 10.1016/j.eplepsyres.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-co-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.
Collapse
Affiliation(s)
- Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| | - Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - V R Sinha
- Department of Pharmaceutics, University institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| | - Lavjot Kaur
- Department of Pharmaceutics, University institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sunil Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| |
Collapse
|
3
|
Zuo F, Wang B, Wang L, He J, Qiu X. UV-Triggered Drug Release from Mesoporous Titanium Nanoparticles Loaded with Berberine Hydrochloride: Enhanced Antibacterial Activity. Molecules 2024; 29:1607. [PMID: 38611885 PMCID: PMC11013668 DOI: 10.3390/molecules29071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.
Collapse
Affiliation(s)
- Fanjiao Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Boyao Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Lizhi Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xilong Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| |
Collapse
|
4
|
Veider F, Haddadzadegan S, Sanchez Armengol E, Laffleur F, Kali G, Bernkop-Schnürch A. Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins. Carbohydr Polym 2024; 327:121648. [PMID: 38171673 DOI: 10.1016/j.carbpol.2023.121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated β-cyclodextrins (β-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of β-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by β-CD-SHs. Furthermore, it was observed that β-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of β-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Leimann FV, de Souza LB, de Oliveira BPM, Rossi BF, da Silva PS, Shiraishi CSH, Kaplum V, Abreu RM, Pereira C, Barros L, Peron AP, Ineu RP, Oechsler BF, Sayer C, de Araújo PHH, Gonçalves OH. Evaluation of berberine nanoparticles as a strategy to modulate acetylcholinesterase activity. Food Res Int 2023; 173:113295. [PMID: 37803607 DOI: 10.1016/j.foodres.2023.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| | - Luma Borges de Souza
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Bruna Franzon Rossi
- Food and Chemical Engineering Academic Department (DAAEQ), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Carlos Seiti Hurtado Shiraishi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Kaplum
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rui Miguel Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Paula Peron
- Biodiversity and Nature Conservation Department, Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rafael Porto Ineu
- Department of Technology and Food Science, Federal University of Santa Maria - UFSM, Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| |
Collapse
|
6
|
Navals P, Kwiatkowska A, Mekdad N, Couture F, Desjardins R, Day R, Dory YL. Enhancing the Drug-Like Profile of a Potent Peptide PACE4 Inhibitor by the Formation of a Host-Guest Inclusion Complex with β-Cyclodextrin. Mol Pharm 2023; 20:4559-4573. [PMID: 37555521 DOI: 10.1021/acs.molpharmaceut.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The enzyme PACE4 has been validated as a promising therapeutic target to expand the range of prostate cancer (PCa) treatments. In recent years, we have developed a potent peptidomimetic inhibitor, namely, compound C23 (Ac-(DLeu)LLLRVK-4-amidinobenzylamide). Like many peptides, C23 suffers from an unfavorable drug-like profile which, despite our efforts, has not yet benefited from the usual SAR studies. Hence, we turned our attention toward a novel formulation strategy, i.e., the use of cyclodextrins (CDs). CDs can benefit compounds through the formation of "host-guest" complexes, shielding the guest from degradation and enhancing biological survival. In this study, a series of βCD-C23 complexes have been generated and their properties evaluated, including potency toward the enzyme in vitro, a cell-based proliferation assay, and stability in plasma. As a result, a new βCD-formulated lead compound has been identified, which, in addition to being more soluble and more potent, also showed an improved stability profile.
Collapse
Affiliation(s)
- Pauline Navals
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Nawel Mekdad
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Robert Day
- Phenoswitch Bioscience Inc, 975 Rue Léon-Trépanier, Sherbrooke, Québec J1G 5J6, Canada
| | - Yves L Dory
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
7
|
Murakami T, Bodor E, Bodor N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 2. Development of oral dosage formulations. Expert Opin Drug Metab Toxicol 2023; 19:139-148. [PMID: 37060323 DOI: 10.1080/17425255.2023.2203858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched by using PubMed. EXPERT OPINION Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.
Collapse
Affiliation(s)
| | - Erik Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
| | - Nicholas Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
- College of Pharmacy, University of Florida, Gainesville, Florida32611, USA
| |
Collapse
|
8
|
Petrillo T, Semprini E, Tomatis V, Arnesano M, Ambrosetti F, Battipaglia C, Sponzilli A, Ricciardiello F, Genazzani AR, Genazzani AD. Putative Complementary Compounds to Counteract Insulin-Resistance in PCOS Patients. Biomedicines 2022; 10:biomedicines10081924. [PMID: 36009471 PMCID: PMC9406066 DOI: 10.3390/biomedicines10081924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrine-metabolic disorder among women at reproductive age. The diagnosis is based on the presence of at least two out of three criteria of the Rotterdam criteria (2003). In the last decades, the dysmetabolic aspect of insulin resistance and compensatory hyperinsulinemia have been taken into account as the additional key features in the etiopathology of PCOS, and they have been widely studied. Since PCOS is a complex and multifactorial syndrome with different clinical manifestations, it is difficult to find the gold standard treatment. Therefore, a great variety of integrative treatments have been reported to counteract insulin resistance. PCOS patients need a tailored therapeutic strategy, according to the patient’s BMI, the presence or absence of familiar predisposition to diabetes, and the patient’s desire to achieve pregnancy or not. The present review analyzes and discloses the main clinical insight of such complementary substances.
Collapse
Affiliation(s)
- Tabatha Petrillo
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elisa Semprini
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Veronica Tomatis
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Melania Arnesano
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Fedora Ambrosetti
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Sponzilli
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesco Ricciardiello
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea R. Genazzani
- Department of Obstetrics and Gynecology, University of Pisa, 56126 Pisa, Italy
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence:
| |
Collapse
|
9
|
Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14061131. [PMID: 35745704 PMCID: PMC9228857 DOI: 10.3390/pharmaceutics14061131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Efflux transporters distributed at the apical side of human intestinal epithelial cells actively transport drugs from the enterocytes to the intestinal lumen, which could lead to extremely poor absorption of drugs by oral administration. Typical intestinal efflux transporters involved in oral drug absorption process mainly include P-glycoprotein (P-gp), multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP). Drug efflux is one of the most important factors resulting in poor absorption of oral drugs. Caco-2 monolayer and everted gut sac are sued to accurately measure drug efflux in vitro. To reverse intestinal drug efflux and improve absorption of oral drugs, a great deal of functional amphiphilic excipients and inhibitors with the function of suppressing efflux transporters activity are generalized in this review. In addition, different strategies of reducing intestinal drugs efflux such as silencing transporters and the application of excipients and inhibitors are introduced. Ultimately, various nano-formulations of improving oral drug absorption by inhibiting intestinal drug efflux are discussed. In conclusion, this review has significant reference for overcoming intestinal drug efflux and improving oral drug absorption.
Collapse
Affiliation(s)
- Rong Lu
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yun Zhou
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Jinqian Ma
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Yuchen Wang
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- Correspondence:
| |
Collapse
|
10
|
Choudhury D, Jala A, Murty US, Borkar RM, Banerjee S. In Vitro and In Vivo Evaluations of Berberine-Loaded Microparticles Filled In-House 3D Printed Hollow Capsular Device for Improved Oral Bioavailability. AAPS PharmSciTech 2022; 23:89. [PMID: 35296955 PMCID: PMC8926385 DOI: 10.1208/s12249-022-02241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/19/2022] [Indexed: 11/30/2022] Open
Abstract
The low oral bioavailability, short biological half-life, high dose, and frequent dosing of berberine (BBR) contribute to its restricted clinical use despite its extensive pharmacological activity. Thus, the objective of this study was to formulate sustained-release microparticles (MPs) using a pH-independent release polymer and to evaluate their potential to improve the oral bioavailability of BBR. BBR loaded MPs were prepared using the emulsion crosslinking method and evaluated for particle size, circularity, morphology, entrapment efficiency, solid-state analysis, swelling index, and in vitro BBR release study fitted with different models of release kinetics. The MPs exhibited desired particle sizes ranges between 11.09-11.62 μm and were almost spherical in shape, as confirmed by the circularity value and micrographic images. A loss of BBR crystallinity was observed after encapsulation in MPs, as evident from various solid-state analyses. The final optimized batch (F3) showed highest % BBR entrapment efficiency value of 81.63% ± 4.9. The in vitro BBR release performance in both acidic and alkaline media showed the desired sustained release behavior from the crosslinked MPs, where the maximum BBR release was observed at alkaline pH, which is in accordance with the swelling study data. In the in vivo study, the oral absorption profiles of BBR from both pristine and MPs formats were investigated using in-house prototyped 3D printed hollow capsules as a unit dose carrier. In vivo data showed sustained and prolonged absorption behavior of BBR from MPs compared to their pristine counterparts, which resulted in a cumulative increment of relative oral bioavailability to mitigate the aforementioned issues related to BBR. Graphical Abstract.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
- National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Aishwarya Jala
- Department of Pharmaceutical analysis, NIPER-Guwahati, Changsari, Assam, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical analysis, NIPER-Guwahati, Changsari, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.
- National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
11
|
Wang Q, Zhang K, Weng W, Chen L, Wei C, Bao R, Adu-Frimpong M, Cao X, Yu Q, Shi F, Toreniyazov E, Ji H, Xu X, Yu J. Liquiritin-hydroxypropyl-beta-cyclodextrin inclusion complex: preparation, characterization, bioavailability and antitumor activity evaluation. J Pharm Sci 2022; 111:2083-2092. [DOI: 10.1016/j.xphs.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
12
|
Togami K, Ogasawara A, Irie S, Iwata K, Yamaguchi K, Tada H, Chono S. Improvement of the pharmacokinetics and antifibrotic effects of nintedanib by intrapulmonary administration of a nintedanib–hydroxypropyl-γ-cyclodextrin inclusion complex in mice with bleomycin-induced pulmonary fibrosis. Eur J Pharm Biopharm 2022; 172:203-212. [DOI: 10.1016/j.ejpb.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
|
13
|
Aree T. Inclusion Scenarios and Conformational Flexibility of the SSRI Paroxetine as Perceived from Polymorphism of β-Cyclodextrin–Paroxetine Complex. Pharmaceuticals (Basel) 2022; 15:ph15010098. [PMID: 35056155 PMCID: PMC8781563 DOI: 10.3390/ph15010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Depression, a global mental health problem, is prevalent during the coronavirus disease 2019 (COVID-19) pandemic and can be efficiently treated by selective serotonin reuptake inhibitors (SSRIs). Our study series aims at forwarding insights on the β-cyclodextrin (β-CD)–SSRI inclusion complexes by X-ray crystallography combined with density functional theory (DFT) calculation. Here, we report a new crystal form (II) of the 1:1 β-CD–paroxetine (PXT) complex, which is inspired by the reported 2:1 β-CD–PXT complex (crystal form I), reflecting an elusive phenomenon of the polymorphism in CD inclusion complexes. The β-CD–PXT polymorphism stems from the PXT conformational flexibility, which is defined by torsion angles κ, ε around the -CH2–O- group bridging the A- and C–D-rings, of which those of PXT in I and II are totally different. While PXT (II) in an open V-shaped conformation that has the B-ring shallowly inserted in the β-CD cavity, PXT (I) in a closed U-shaped structure is mostly entirely embedded in the β-CD dimeric cavity, of which the A-ring is deeply inserted in the main β-CD cavity. However, PXT molecules in both crystal forms are similarly maintained in the CD cavity via host–guest N–H···O5/O6 H-bonds and C/O–H···π(B/C) interactions and β-CDs have similar 3D arrangements, channel (II) vs. screw-channel (I). Further theoretical explorations on the β-CD–PXT thermodynamic stabilities and the PXT conformational stabilities based on their potential energy surfaces (PESs) have been completed by DFT calculations. The 2:1 β-CD–PXT complex with the greater presence of dispersion interactions is more energetically favorable than the unimolar complex. Conversely, whereas free PXT, PXT (II) and PXT in complex with serotonin transporter are more energetically stable, PXT (I) is least stable and stabilized in the β-CD cavity. As SSRIs could lessen the COVID-19 severity, the CD inclusion complexation not only helps to improve the drug bioavailability, but also promotes the use of antidepressants and COVID-19 medicines concurrently.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Cao RY, Zheng Y, Zhang Y, Jiang L, Li Q, Sun W, Gu W, Cao W, Zhou L, Zheng H, Yang J. Berberine on the Prevention and Management of Cardiometabolic Disease: Clinical Applications and Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1645-1666. [PMID: 34488551 DOI: 10.1142/s0192415x21500762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.
Collapse
Affiliation(s)
- Richard Y Cao
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Yuntao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China.,CVD Collaborative Program of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Ying Zhang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Lingling Jiang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Qing Li
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wanqun Sun
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wenqin Gu
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Weifeng Cao
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Linyan Zhou
- Department of Rehabilitation, Shanghai Xuhui Caohejing Community Healthcare Service Center, Shanghai 200235, P. R. China
| | - Hongchao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Jian Yang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| |
Collapse
|
15
|
Choudhury D, Sharma PK, Suryanarayana Murty U, Banerjee S. Stereolithography-assisted fabrication of 3D printed polymeric film for topical berberine delivery: in-vitro, ex-vivo and in-vivo investigations. J Pharm Pharmacol 2021; 74:1477-1488. [PMID: 34850065 DOI: 10.1093/jpp/rgab158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES 3D printed polymeric film intended for topical delivery of berberine (BBR) was developed using stereolithography (SLA) to enhance its local concentrations. PEGDMA was utilized as photopolymerizing resin, with PEG 400 as an inert component to facilitate BBR solubilization and permeation. METHODS Three batches of topical films were printed by varying resin and PEG 400 compositions. In-vitro physicochemical characterizations of the 3D printed films were performed using several analytical techniques including ex-vivo drug permeation studies. In-vivo skin irritation studies were also conducted to assess the skin irritation potential. KEY FINDINGS Films were 3D printed according to design specifications with minimal variations. Microscopic analysis confirmed 3D architecture, while thermal and X-ray diffraction studies revealed amorphous BBR entrapment. Drug permeation study showed effective ex-vivo diffusion up to 344.32 ± 61.20 µg/cm2 after 24.0 h possessing a higher ratio of PEG 400. In-vivo skin irritation studies have suggested the non-irritant nature of printed films. CONCLUSIONS Results indicated the suitability of SLA 3D printing for topical application in the treatment of skin diseases. The presence of PEG 400 in the printed 3D films facilitated BBR diffusion, resulting in an improved flux in ex-vivo model and non-irritant properties in vivo.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| |
Collapse
|
16
|
Development of Natural Polysaccharide-Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment. Polymers (Basel) 2021; 13:polym13213833. [PMID: 34771389 PMCID: PMC8588213 DOI: 10.3390/polym13213833] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/29/2023] Open
Abstract
The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the P-gp expressed in the intestinal lumen. Therefore, we aimed to design and fabricate a nanoparticulate system for delivery of BBR employing naturally derived biodegradable and biocompatible polymers, mainly chitosan and alginate, to enhance the oral bioavailability of BBR. A chitosan-alginate nanoparticle system loaded with BBR (BNPs) was formulated by ionic gelation method and was optimized by employing a three-factor, three-level Box-Behnken statistical design. BNPs were characterized for various physicochemical properties, ex vivo, and in vivo evaluations. The optimized BNPs were found to be 202.2 ± 4.9 nm in size, with 0.236 ± 0.02 of polydispersity index, zeta potential -14.8 ± 1.1 mV, and entrapment efficiency of 85.69 ± 2.6%. BNPs showed amorphous nature with no prominent peak in differential scanning calorimetry (DSC) investigation. Similarly, fourier-transform infrared spectroscopy (FTIR) studies did not reveal any interaction between BBR and excipients used. The drug release followed Higuchi kinetics, since these plots demonstrated the highest linearity (R2 = 0.9636), and the mechanism of release was determined to be anomalous or non-Fickian in nature. An ex-vivo gut permeation study showed that BNPs were better internalized into the cells and more highly permeated through the intestine. Furthermore, in vivo pharmacokinetic analysis in female Wistar rats showed a 4.10-fold increase in the oral bioavailability of BBR from BNPs as compared to BBR suspension. With these findings, we have gained new insight into the effective delivery of poorly soluble and permeable drugs via a chitosan-alginate nanoparticle system to improve the therapeutic performance of an oral nanomedicine.
Collapse
|
17
|
Bajaj R, Chong LB, Zou L, Tsakalozou E, Ni Z, Giacomini KM, Kroetz DL. Interaction of Commonly Used Oral Molecular Excipients with P-glycoprotein. AAPS JOURNAL 2021; 23:106. [PMID: 34528148 DOI: 10.1208/s12248-021-00631-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
P-glycoprotein (P-gp) plays a critical role in drug oral bioavailability, and modulation of this transporter can alter the safety and/or efficacy profile of substrate drugs. Individual oral molecular excipients that inhibit P-gp function have been considered a mechanism for improving drug absorption, but a systematic evaluation of the interaction of excipients with P-gp is critical for informed selection of optimal formulations of proprietary and generic drug products. A library of 123 oral molecular excipients was screened for their ability to inhibit P-gp in two orthogonal cell-based assays. β-Cyclodextrin and light green SF yellowish were identified as modest inhibitors of P-gp with IC50 values of 168 μM (95% CI, 118-251 μM) and 204 μM (95% CI, 5.9-1745 μM), respectively. The lack of effect of most of the tested excipients on P-gp transport provides a wide selection of excipients for inclusion in oral formulations with minimal risk of influencing the oral bioavailability of P-gp substrates.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Lisa B Chong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhanglin Ni
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA.
| |
Collapse
|
18
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Choudhury D, Murty US, Banerjee S. 3D printing and enteric coating of a hollow capsular device with controlled drug release characteristics prepared using extruded Eudragit® filaments. Pharm Dev Technol 2021; 26:1010-1020. [PMID: 34412566 DOI: 10.1080/10837450.2021.1970765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This work focuses on the extrusion of a brittle, tacky, cationic copolymer i.e. Eudragit® E-100 to prepare filament and subsequent 3D printing of hollow capsular device using the extruded filament. An optimum amount of talc and triethyl citrate was used for the possible extrusion of the polymer. There was no thermal and chemical degradation of the polymer observed after extrusion confirmed by DSC and FTIR analysis. Microscopic analysis of the printed capsule showed the layer-by-layer manner of 3D printing. Capsule parts were printed according to the set dimensions (00 size) with minimal deviation. Printed capsule showed the soluble behaviour in gastric fluid pH 1.2 where within 15 min the encapsulated drug encounters with the dissolution medium and almost 70% drug was dissolved within 4 hr. In case of phosphate buffer pH 6.8, the printed capsule showed a longed swelling behaviour up to 12 hr and then gradually bursting of capsule occurred wherein more than 90% encapsulated drug was dissolved within 36 hr. Enteric coating of the printed capsule showed similar behaviour in alkaline medium that observed with non-enteric capsule. This indicates the potential application of this printed capsules for both gastric and intestinal specific delayed drug delivery by a single step enteric coating process.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, India
| |
Collapse
|
20
|
Ming J, Yu X, Xu X, Wang L, Ding C, Wang Z, Xie X, Li S, Yang W, Luo S, He Q, Du Y, Tian Z, Gao X, Ma K, Fang Y, Li C, Zhao J, Wang X, Ji Q. Effectiveness and safety of Bifidobacterium and berberine in human hyperglycemia and their regulatory effect on the gut microbiota: a multi-center, double-blind, randomized, parallel-controlled study. Genome Med 2021; 13:125. [PMID: 34365978 PMCID: PMC8351344 DOI: 10.1186/s13073-021-00942-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Berberine and Bifidobacterium have been reported to improve glucose tolerance in people with hyperglycemia or other metabolic disorders. This study aimed to assess the hypoglycemic effect and the regulation of the gut microbiota caused by berberine and Bifidobacterium and the possible additive benefits of their combination. METHODS This was an 18-week, multi-center, randomized, double-blind, parallel-controlled study of patients newly diagnosed with hyperglycemia. After a 2-week run-in period, 300 participants were randomly assigned to the following four groups for 16 weeks of treatment: berberine (Be), Bifidobacterium (Bi), berberine and Bifidobacterium (BB), and placebo group. The primary efficacy endpoint was the absolute value of fasting plasma glucose (FPG) compared with baseline after 16 weeks of treatment. RESULTS Between October 2015 and April 2018, a total of 297 participants were included in the primary analysis. Significant reductions of FPG were observed in the Be and BB groups compared with the placebo group, with a least square (LS) mean difference of - 0.50, 95% CI [- 0.85, - 0.15] mmol/L, and - 0.55, 95% CI [- 0.91, - 0.20] mmol/L, respectively. The Be and BB groups also showed significant reductions in 2-h postprandial plasma glucose. A pronounced decrease in HbA1c occurred in the BB group compared to the placebo group. Moreover, compared with the Bi and placebo groups, the Be and BB groups had more changes in the gut microbiota from the baseline. CONCLUSIONS Berberine could regulate the structure and function of the human gut microbiota, and Bifidobacterium has the potential to enhance the hypoglycemic effect of berberine. These findings provide new insights into the hypoglycemic potential of berberine and Bifidobacterium. TRIAL REGISTRATION ClinicalTrials.gov , NCT03330184. Retrospectively registered on 18 October 2017.
Collapse
Affiliation(s)
- Jie Ming
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinwen Yu
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Li Wang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Xuan Xie
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Wenjuan Yang
- The Fifth Department of Internal Medicine, Shaanxi Aerospace Hospital, Xi'an, China
- Department of Endocrinology, Xi'an Daxing Hospital, Xi'an, China
| | - Shu Luo
- Genertec Universal Xi'an Aero-Engine Hospital, Xi'an, China
| | - Qingzhen He
- Department of Endocrinology, Xi'an High-Tech Hospital, Xi'an, China
| | - Yafang Du
- Department of Endocrinology, Chang'an Hospital, Xi'an, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, China
| | - Xiling Gao
- Department of Endocrinology, Yan'an People's Hospital, Yan'an, China
| | - Kaiyan Ma
- Department of Endocrinology, Shangluo Central Hospital, Shangluo, China
| | - Yujie Fang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Health Statistics, Fourth Military Medical University, Xi'an, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | | | - Qiuhe Ji
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
21
|
Zhang Y, Wang T, Li J, Cui X, Jiang M, Zhang M, Wang X, Zhang W, Liu Z. Bilayer Membrane Composed of Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nanofiber Promotes Bone Regeneration. Front Bioeng Biotechnol 2021; 9:684335. [PMID: 34350160 PMCID: PMC8327095 DOI: 10.3389/fbioe.2021.684335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bone defects are difficult to repair and reconstruct as bone regeneration remains technically challenging, with exogenous factors required to accelerate this process. Biodegradable synthetic scaffolds are promising materials for stimulating bone tissue repair. In this study, we investigated whether a bilayer membrane that includes mineralized collagen (MC) and chitosan (CS) delivering berberine (BER)-a typical Chinese herbal monomer-could promote bone healing in a rat model. An MC/CS cast film was coated with polycaprolactone (PCL)/polyvinylpyrrolidone (PVP) electrospun nanofibers loaded with BER, yielding the BER@PCL/PVP-MC/CS bilayer membrane. The 3-dimensional structure had nanofibers of uniform diameter and showed good hydrophilicity; the bilayer membrane showed favorable mechanical properties. BER@PCL/PVP-MC/CS enhanced the proliferation and attachment of MC3T3-E1 cells in vitro and induced bone regeneration when implanted into a rat femoral bone defect. These findings provide evidence that BER@PCL/PVP-MC/CS has clinical potential for effective bone repair.
Collapse
Affiliation(s)
- Yuhan Zhang
- Clinical College, Weifang Medical University, Weifang, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
| | - Ting Wang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Juan Li
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaoming Cui
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Mingxia Jiang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Mogen Zhang
- Clinical College, Weifang Medical University, Weifang, China
| | - Xiaoli Wang
- College of Medical Imaging, Weifang Medical University, Weifang, China
| | - Weifen Zhang
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, China
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Cottrell JJ, Le HH, Artaiz O, Iqbal Y, Suleria HA, Ali A, Celi P, Dunshea FR. Recent advances in the use of phytochemicals to manage gastrointestinal oxidative stress in poultry and pigs. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plants are integral components of pig and poultry feed, and aside from their raw nutritive value, some phytochemicals contain bioactive compounds. The aim of the present paper is to review recent advances in the use of some phytochemicals in pig and poultry feed, focusing on the examples of isoquinoline alkaloids, polyphenol rich sugarcane extracts and superoxide dismutase-rich melon pulp extracts. As gut health is critical for efficient production, the review will focus on recent results modulating oxidative stress within the gastrointestinal tract and the potential mechanisms of action.
Collapse
|
23
|
Xu D, Qiu C, Wang Y, Qiao T, Cui YL. Intranasal co-delivery of berberine and evodiamine by self-assembled thermosensitive in-situ hydrogels for improving depressive disorder. Int J Pharm 2021; 603:120667. [PMID: 33933642 DOI: 10.1016/j.ijpharm.2021.120667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022]
Abstract
The orally administrated antidepressants not only caused side effects such as dizziness, diarrhea, and drug resistance, but also worked slowly. Therefore, new antidepressants and preparations derived from natural medicines play an important role in the study of antidepressant drugs. It was reported that the two components of Zuojin pill, berberine (BBR) and evodiamine (EVO), were used in combination to improve depressive disorder. In our study, a self-assembled thermosensitive in-situ hydrogel was prepared to achieve sustained co-delivery of BBR and EVO. The preparation process of hydrogel consists of two steps, namely, the inclusion of the drugs and thermosensitive self-assembly of the hydrogel. In vitro experimental results indicated that the prepared hydrogel showed a good thermosensitive property under physiological temperature. The hydrogel had a slow and controlled release behavior for BBR and EVO, according with first-order equation. In vivo experimental results indicated that compared to intragastric administration of drug solution, the intranasal administration of hydrogel increased bioavailability of BBR and EVO, approximately 135 and 112 folds, respectively. The hydrogel at a low dose significantly reversed behavioral despair of the mice, improved depressive symptom of rats, and treated depressive disorder by regulating the abnormal levels of monoamine neurotransmitters (including 5-hydroxytryptamine, noradrenalin and dopamine) metabolism and related metabolic pathways such as purine, citrate cycle, scorbate and aldarate, butanoate, vitamin B6, and pyrimidine metabolism. Therefore, as a drug co-delivery system, the intranasally administrated hydrogels with a good release and high bioavailability provides a non-invasive therapeutic strategy for the clinical treatment of depression, which attains antidepressant effects by regulation of the monoamine neurotransmitters metabolism and related metabolic pathways.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chao Qiu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yue Wang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tao Qiao
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
24
|
Host-guest co-assembly triggered turn-on and ratiometric sensing of berberine and its detoxicating. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Mujtaba MA, Akhter MH, Alam MS, Ali MD, Hussain A. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect. Curr Pharm Biotechnol 2021; 23:60-71. [PMID: 33557735 DOI: 10.2174/1389201022666210208152113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonlyBerberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti-inflammatory, antitumour, antimicrobial, antidepressant,hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related with the drug and methods to improve the properties of BBR such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.
Collapse
Affiliation(s)
- Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University. Saudi Arabia
| | | | | | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam. Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451. Saudi Arabia
| |
Collapse
|
26
|
ZHANG J, LI P, MA J, JIA Q. [Recent developments of pesticide adsorbents based on cyclodextrins]. Se Pu 2021; 39:173-183. [PMID: 34227350 PMCID: PMC9274844 DOI: 10.3724/sp.j.1123.2020.08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The invention and application of pesticides have greatly increased the yield of crops, greatly contributing to ensuring people's basic livelihoods and gradually improving their livelihoods to a well-off level. However, foods, water sources, and soil, containing high levels of pesticide residues, result in increasingly serious pollution. Pesticide residues usually have the characteristics of micro toxicity, difficult biodegradation, and bioaccumulation, and thus pose serious threat to living organisms and ecosystems. In recent years, pesticide pollution has earned worldwide focus. Thus, methods for the efficient detection of trace pesticides and reduction of the harm caused by pesticide pollution are urgently required. Researchers have used catalysis, electrochemistry, membrane separation, adsorption, and other methods to enrich pesticides from complex matrices. Among these, adsorbents have attracted much attention owing to their advantages of simple operation steps, rapid treatment process, and low amounts of organic solvents required. Research on adsorption materials has always been a very active field, and is also the key to the success of separation and enrichment of pesticides from complex matrices. Development of adsorbents with the advantages of simple synthesis, environment-friendliness, high stability, and strong reusability is of great significance. There has been some progress in the field of pesticide adsorption using supramolecular compounds. Cyclodextrin is a macrocyclic compound with a cavity after crown ether, which can form inclusion complexes via host guest interactions as the main body. Cyclodextrin can also be modified by etherification, esterification, oxidation, and other chemical reactions to improve its adsorption performance. Pesticides can be classified into organic and inorganic substances. One of the most widely used inorganic fungicides is the Bordeaux solution, whose main component is Cu2+. Organic fungicides, insecticides, herbicides, and plant growth regulators are basically organic molecules, whose hydroxyl and carboxyl groups can form complexes with Cu2+. As a matrix, cyclodextrin not only increases the surface area of the materials, but also provides the binding sites of hydroxyl and carboxyl groups, which guarantees efficient enrichment of Cu2+. Organic pesticides with high polarity, high electron density, and strong hydrophobicity could be better adsorbed. In this paper, the application of cyclodextrin-based adsorbents in pesticide adsorption was reviewed, and on this basis, reference to future development directions and application prospects were provided. The adsorption capacity of individual pesticide adsorbents based on cyclodextrin, as reviewed in this paper, is not high enough. Therefore, improving the adsorption capacity is currently a major research target. Some of the above-mentioned adsorbents have unclear degradation mechanisms and can easily cause secondary pollution. Therefore, the development of environment-friendly pesticide adsorbents that are easy to regenerate is a promising research direction for the future. After adsorption, some detection methods are used to determine whether the pesticide residues are up to the standard; however, the detection instruments are expensive. Therefore, the development of a combined detection mechanism that can reduce workload and cost is a promising research direction. Finally, the development of smart cyclodextrin-based adsorbents is also an efficient and rapid method to reduce the cost of detecting residual pesticide concentrations and the risk of pesticide pollution. For example, intelligent materials, whose color changes can be observed by the naked eye, not only adsorb pesticides, but also respond according to the concentration of residual pesticides.
Collapse
Affiliation(s)
- Jinfeng ZHANG
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ping LI
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong MA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong JIA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2020; 26:551-560. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
An increase in the number of multidrug-resistant microbial strains is the biggest threat to global health and is projected to cause >10 million deaths by 2055. The carbapenem family of antibacterial drugs are an important class of last-resort treatment of infections caused by drug-resistant bacteria and are only available as an injectable formulation. Given their instability within the gut and poor permeability across the gut wall, oral carbapenem formulations show poor bioavailability. Meropenem (MER), a carbapenem antibiotic, has broad-spectrum antibacterial activity, but suffers from the above-mentioned issues. In this review, we discuss strategies for improving the oral bioavailability of MER, such as inhibiting tubular secretion, prodrug formulations, and use of nanomedicine. We also highlight challenges and emerging approaches for the development of oral MER.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shih Chen Ngieng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
28
|
Allahyari S, Valizadeh H, Roshangar L, Mahmoudian M, Trotta F, Caldera F, Jelvehgari M, Zakeri-Milani P. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin Drug Deliv 2020; 17:1807-1816. [PMID: 32729739 DOI: 10.1080/17425247.2020.1800637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bortezomib (BTZ) as an anticancer drug has been used through the injection pathway. RESEARCH DESIGN AND METHODS Two types of Cyclodextrin nanosponges (CDNSs) were synthesized and studied by DLS, TEM, FTIR, and DSC instruments for BTZ delivery. Both carriers were analyzed for loading efficiencies and in-vitro release. Cell studies and intestinal permeability of selected CDNS were determined using MTT and SPIP method, respectively. RESULTS Both types of CDNSs, encapsulated BTZ in their nano-porous structure, but better loading was shown in CDNS 1:4. FTIR and DSC results proved considerable encapsulation of BTZ into CDNSs. The slow and prolonged release profile was observed for CDNS 1:4 in comparison with CDNS 1:2. Based on in-vitro results, BTZ-CDNS 1:4 was chosen as a selected nanosystem for further analysis. This nontoxic carrier revealed considerable uptake (93.9% in 3 h) against the MCF-7 cell line but indicated higher IC50 in comparison with the plain drug. This carrier also could improve the rat intestinal permeability of BTZ almost 5.8 times. CONCLUSION CDNS 1:4 has the ability to be introduced as a nontoxic carrier for BTZ delivery with its high loading, controlled release manner, high cellular uptake, and permeability improvement characteristics.
Collapse
Affiliation(s)
- Saeideh Allahyari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Science , Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science , Tabriz, Iran
| | | | | | | | - Mitra Jelvehgari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
29
|
Wang X, Parvathaneni V, Shukla SK, Kulkarni NS, Muth A, Kunda NK, Gupta V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol 2020; 164:638-650. [PMID: 32693132 DOI: 10.1016/j.ijbiomac.2020.07.124] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
Abstract
Resveratrol (RES), a natural polyphenol in fruits, has shown promising anti-cancer properties. Due to its relative low toxicity which limits the adverse effects observed for conventional chemotherapeutics, RES has been proposed as an alternative. However, the therapeutic applications of RES have been limited due to low water solubility, as well as chemical and physical instability. This study investigated enhancing the anti-cancer activity of RES against non-small-cell-lung-cancer (NSCLC) by complexing with sulfobutylether-β-cyclodextrin (CD-RES) and loading onto polymeric nanoparticles (NPs). The physicochemical properties of the CD-RES NPs were then characterized. The CD-RES inclusion complex increased the water solubility of RES by ~66-fold. CD-RES NPs demonstrated very good aerosolization potential with a mass median aerodynamic diameter of 2.20 μm. Cell-based studies demonstrated improved therapeutic efficacy of CD-RES NPs compared to RES. This included enhanced cellular uptake, cytotoxicity, and apoptosis, while retaining antioxidant activity. The 3D spheroid study indicated an intensified anti-cancer effect of CD-RES NPs. Altogether, these findings marked CD-RES NPs as a potential inhalable delivery system of RES for the treatment NSCLC.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America.
| |
Collapse
|
30
|
Wang X, Parvathaneni V, Shukla SK, Kanabar DD, Muth A, Gupta V. Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol-Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech 2020; 21:183. [PMID: 32632576 DOI: 10.1208/s12249-020-01724-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary drug delivery is a noninvasive therapeutic approach that offers many advantages including localized drug delivery and higher patient compliance. As with all formulations, the low aqueous solubility of a drug often poses a challenge in the formulation development. Thus, strategies such as cyclodextrin (CD) complexation have been utilized to overcome this challenge. Resveratrol (RES), a natural stilbene, has shown abundant anti-cancer properties. Due to many drawbacks of conventional chemotherapeutics, RES has been proposed as an emerging alternative with promising pharmacological effects. However, RES has limited therapeutic applications due to low water solubility, chemical stability, and bioavailability. This study was aimed at developing an inhalable therapy that would increase the aqueous solubility and stability of RES by complexation with sulfobutylether-β-cyclodextrin (SBECD). Phase solubility profiles indicated an optimal stoichiometric inclusion complex at 1:1 (SBECD:RES) ratio for formulation considerations. Physiochemical characterizations were performed to analyze CD-RES. Stability studies at pH 7.4 and in plasma indicated significant improvement in RES stability after complexation, with a much longer half-life. The mass median aerodynamic diameter (MMAD) of CD-RES was 2.6 ± 0.7 μm and fine particle fraction (FPF) of 83.4 ± 3.0% are suitable for pulmonary delivery and efficient deposition. Lung cancer was selected as the respiratory model disease, owing to its high relevance as the major cause of cancer deaths worldwide. Cell viability studies in 5 non-small-cell-lung-cancer (NSCLC) cell lines suggest CD-RES retained significant cytotoxic potential of RES. Taken together, CD-RES proves to be a promising inhalation treatment for NSCLC.
Collapse
|
31
|
Deng J, Wu Z, Zhao Z, Wu C, Yuan M, Su Z, Wang Y, Wang Z. Berberine-Loaded Nanostructured Lipid Carriers Enhance the Treatment of Ulcerative Colitis. Int J Nanomedicine 2020; 15:3937-3951. [PMID: 32581538 PMCID: PMC7280064 DOI: 10.2147/ijn.s247406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Berberine (BBR), a major ingredient extracted from Coptis chinensis, is a natural drug with limited oral bioavailability. We developed nanostructured lipid carriers (NLCs) as a delivery system for enhanced anti-inflammatory activity of BBR against ulcerative colitis (UC). Methods BBR-loaded nanostructured lipid carriers (BBR-NLCs) prepared via high-pressure homogenization were evaluated for particle size, zeta potential, drug entrapment efficiency, drug loading, drug release, toxicity, and cellular uptake. The anti-UC activities of free and encapsulated BBR were evaluated in a DSS-induced acute model of UC in mice. Results Spherical BBR-NLCs were prepared with a particle size of 63.96± 0.31 nm, a zeta potential of +3.16 ± 0.05 mV, an entrapment efficiency of 101.97±6.34%, and a drug loading of 6.00±0.09%. BBR-NLCs showed excellent biocompatibility in vivo. Cellular uptake experiments showed that BBR-NLCs improved uptake of BBR by RAW 264.7 cells and Caco-2 cells. Oral administration of BBR-NLCs significantly alleviated colitis symptoms (DAI, colon length, spleen swelling, MPO activity) through inhibition of NF-κB nuclear translocation, decreased expression of pro-inflammatory cytokines (IL-1β, IL-6, MMP-9, CX3CR1, COX-2, TERT), and increased expression of the tight junction protein ZO-1. Conclusion BBR-loaded NLCs improved colitis symptoms, which suggested that this may be a novel formulation for treatment of UC.
Collapse
Affiliation(s)
- Jianping Deng
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| | - Zicong Wu
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| | - Zhenling Zhao
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Chaoxi Wu
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Min Yuan
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China
| | - Zhengquan Su
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China
| | - Yifei Wang
- Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China.,College of Life Science and Technology, Jinan University, Guangzhou 510000, People's Republic of China
| | - Zhiping Wang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510000, People's Republic of China.,Guangzhou (Jinan) Biomedical Research and Development Center, Guangzhou 510000, People's Republic of China
| |
Collapse
|
32
|
Xiao L, Poudel AJ, Huang L, Wang Y, Abdalla AM, Yang G. Nanocellulose hyperfine network achieves sustained release of berberine hydrochloride solubilized with β-cyclodextrin for potential anti-infection oral administration. Int J Biol Macromol 2020; 153:633-640. [DOI: 10.1016/j.ijbiomac.2020.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
33
|
Stoyanova N, Ignatova M, Manolova N, Rashkov I, Toshkova R, Georgieva A. Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. Int J Pharm 2020; 584:119426. [PMID: 32445907 DOI: 10.1016/j.ijpharm.2020.119426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/27/2022]
Abstract
Berberine chloride (Brb) is a natural isoquinoline quaternary alkaloid that displayed a set of beneficial biological properties such as antioxidant, antimicrobial, antitumor, anti-inflammatory, and antiviral. Brb is poorly soluble in water and body fluids and its intestinal absorption is very low, which predetermine its low bioavailability. Polymeric nanoparticles seem to be a good platform to overcome these drawbacks. In this study, for the first time, stable aqueous dispersions of nanoparticles (NPs) based on complexes of Brb and poly(methacrylic acid) (PMA) or poly(acrylic acid) (PAA), were successfully prepared by mixing their dilute aqueous solutions as evidenced by the performed dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. It was found that the mean diameter and zeta potential of NPs depended on the Brb molar fraction. In the case of Brb/PMA and Brb/PAA NPs the encapsulation efficiency was observed to approach a maximum value of 58.9 ± 0.5% and of 78.4 ± 0.9%, respectively, at values of Brb molar fraction at which maximum amount of complexes was obtained. The performed differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses revealed that Brb incorporated in the NPs was in the amorphous state. The Brb release profile was pH-dependent. The Brb-containing NPs displayed good antioxidant capacity close to that of free Brb. In vitro cell viability studies demonstrated that the Brb/PMA (PAA) NPs exerted a higher cytotoxicity against HeLa tumor cell than non-tumor BALB/c 3T3 mouse fibroblast cells. Thus, the obtained NPs are promising candidates in the drug delivery systems in the treatment of cervical tumors.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| |
Collapse
|
34
|
Carresi C, Gliozzi M, Musolino V, Scicchitano M, Scarano F, Bosco F, Nucera S, Maiuolo J, Macrì R, Ruga S, Oppedisano F, Zito MC, Guarnieri L, Mollace R, Tavernese A, Palma E, Bombardelli E, Fini M, Mollace V. The Effect of Natural Antioxidants in the Development of Metabolic Syndrome: Focus on Bergamot Polyphenolic Fraction. Nutrients 2020; 12:E1504. [PMID: 32455840 PMCID: PMC7284500 DOI: 10.3390/nu12051504] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) represents a set of clinical findings that include visceral adiposity, insulin-resistance, high triglycerides (TG), low high-density lipoprotein cholesterol (HDL-C) levels and hypertension, which is linked to an increased risk of developing type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). The pathogenesis of MetS involves both genetic and acquired factors triggering oxidative stress, cellular dysfunction and systemic inflammation process mainly responsible for the pathophysiological mechanism. In recent years, MetS has gained importance due to the exponential increase in obesity worldwide. However, at present, it remains underdiagnosed and undertreated. The present review will summarize the pathogenesis of MetS and the existing pharmacological therapies currently used and focus attention on the beneficial effects of natural compounds to reduce the risk and progression of MetS. In this regard, emerging evidence suggests a potential protective role of bergamot extracts, in particular bergamot flavonoids, in the management of different features of MetS, due to their pleiotropic anti-oxidative, anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Massimo Fini
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| |
Collapse
|
35
|
Li Y, Zhu C. Development and In Vitro and In Vivo Evaluation of Microspheres Containing Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate for the Oral Delivery of Berberine Hydrochloride. Molecules 2020; 25:molecules25081957. [PMID: 32340157 PMCID: PMC7221516 DOI: 10.3390/molecules25081957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
Microspheres containing absorption enhancer (sodium N-[8-(2-hydroxybenzoyl)amino]caprylate, SNAC) were developed to enhance the oral bioavailability of berberine hydrochloride (BER) with poor intestinal membrane permeability. Microspheres were prepared and characterized by particle size measurements, scanning electron microscopy, differential scanning calorimetry, BER payload and release, Caco-2 cell monolayer transport, and rat pharmacokinetics. The microspheres were spherical and had uniform size, high encapsulation efficiency and high loading capacity. In vitro release studies showed that BER-loaded microspheres had good sustained release characteristics. The Caco-2 cell monolayer transport study proved that SNAC could significantly enhance permeability of BER 2–3-fold. Pharmacokinetic studies demonstrated a 9.87-fold increase in area under the curve (AUC) of BER mixed with SNAC and a 14.14-fold increase in AUC of microspheres compared with BER alone. These findings indicate that SNAC is a promising absorption enhancer for oral delivery of BER in the form of both solution and microspheres.
Collapse
|
36
|
Sharifi-Rad A, Mehrzad J, Darroudi M, Saberi MR, Chamani J. Oil-in-water nanoemulsions comprising Berberine in olive oil: biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J Biomol Struct Dyn 2020; 39:1029-1043. [PMID: 32000592 DOI: 10.1080/07391102.2020.1724568] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Berberine is widely used in traditional Iranian medicine to treat diabetes and inflammatory conditions. This study was aimed at developing a method for the preparation of Berberine nanoparticles (Nano-Ber) in order to improve its aqueous-phase solubility and its complex formation with human serum albumin (HSA) and holo-transferrin (HTF) from the viewpoint of interaction behavior. Nano-Ber was prepared with olive oil as the oil phase, Tween 80 as the surfactant and Span 60 as the co-surfactant. Nano-Ber was obtained with a spherical shape and a mean particle size of 43.7 ± 3.6 nm, with an optimal oil:surfactant:co-surfactant ratio of 1:2:2, w/w/w. The antioxidant activity of Nano-Ber in comparison with Berberine was tested using DPPH and it was found that Nano-Ber had a large antioxidant activity. The cytotoxicity effects of Nano-Ber and Berberine on HepG2 were compared by MTT assay and detected in the treated HepG2 cells at concentrations up to 0.1 mM. The binding constants of HSA-Nano-Ber and HTF-Nano-Ber complexes formation were (2.93 ± 0.02) × 104 and (9.62 ± 0.03) × 103 M -1, respectively. Hydrogen bonds and van der Waals interactions were the predominant forces in the HSA-Nano-Ber and HTF-Nano-Ber complexes, and the process of Nano-Ber binding HSA and HTF was driven by ΔH 0 = -122.76 kJ mol-1, ΔS 0 = -325.49 J mol-1K-1 for HSA and ΔH 0 = -125.09 kJ mol-1, ΔS 0 = -43.37 J mol-1K-1 for HTF. The results of the simulation demonstrated that the Nano-Ber molecules were stabilized on the surface of final aggregates through both hydrophilic and hydrophobic interactions. Communicated by Ramaswamy Sarma.
Collapse
Affiliation(s)
- Atena Sharifi-Rad
- Department of Biochemistry, Faculty of Sciences, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Faculty of Sciences, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
37
|
Wang QS, Li K, Gao LN, Zhang Y, Lin KM, Cui YL. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater Sci 2020; 8:2853-2865. [DOI: 10.1039/c9bm02006c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intranasal delivery of thermoresponsive hydrogels can improve the bioavailability of berberine in the brain, so as to improve the antidepressant effect.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Science & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Kefeng Li
- School of Medicine
- University of California
- San Diego (UCSD)
- San Diego
- USA
| | - Li-Na Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Research Center of Traditional Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- PR China
| | - Ye Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Research Center of Traditional Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- PR China
| | - Ke-Ming Lin
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Research Center of Traditional Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- PR China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Research Center of Traditional Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- PR China
| |
Collapse
|
38
|
Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: A wonder molecule. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Lyu Y, Zhang Y, Yang M, Lin L, Yang X, Cheung SCK, Shaw PC, Chan PKS, Kong APS, Zuo Z. Pharmacokinetic interactions between metformin and berberine in rats: Role of oral administration sequences and microbiota. Life Sci 2019; 235:116818. [DOI: 10.1016/j.lfs.2019.116818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 11/15/2022]
|
40
|
Katrajkar K, Darji L, Kethavath D, Thakkar S, Kshirsagar B, Misra M. Shedding light on interaction of so called inactive ingredients (excipients) with permeability-glycoprotein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Li R, Bao R, Yang QX, Wang QL, Adu-Frimpong M, Wei QY, Elmurat T, Ji H, Yu JN, Xu XM. [6]-Shogaol/β-CDs inclusion complex: preparation, characterisation, in vivo pharmacokinetics, and in situ intestinal perfusion study. J Microencapsul 2019; 36:500-512. [PMID: 31347417 DOI: 10.1080/02652048.2019.1649480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
Aims: The aim was to improve the absorption and bioavailability of [6]-shogaol with β-cyclodextrin (β-CD) prior to in vitro and in vivo evaluation. Methods: [6]-Shogaol/β-CDs inclusion complexes (6-S-β-CDs) were developed using saturated aqueous solution method and characterised with appropriate techniques. The absorption and bioavailability potential of [6]-shogaol was evaluated via in vivo pharmacokinetics and in situ intestinal perfusion. Results: The results of characterisation showed that 6-S-β-CDs (drug loading, 7.15%) were successfully formulated. In vitro release study indicated significantly improved [6]-shogaol release. Pharmacokinetic parameters such as Cmax, AUC0-36 h, and oral relative bioavailability (about 685.36%) were substantially enhanced. The in situ intestinal perfusion study revealed that [6]-shogaol was markedly absorbed via passive diffusion in the intestinal segments, and duodenum followed by ileum and jejunum. Conclusions: Cyclodextrin inclusion technology could enhance the intestinal absorption and oral bioavailability of hydrophobic drugs like [6]-shogaol.
Collapse
Affiliation(s)
- Ran Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Qiu-Xuan Yang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Qi-Long Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Qiu-Yu Wei
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Toreniyazov Elmurat
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources , Zhenjiang , People's Republic of China
- Department of Plant Protection Breeding and Seed Science, Tashkent State Agricultural University (Nukus Branch) , Nukus , The Republic of Uzbekistan
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources , Zhenjiang , People's Republic of China
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd , Zhenjiang , People's Republic of China
| | - Jiang-Nan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| | - Xi-Ming Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang , People's Republic of China
| |
Collapse
|
42
|
Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri-Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv 2019; 16:467-479. [PMID: 30845847 DOI: 10.1080/17425247.2019.1591365] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In recent years, new drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems of various drugs. Among them, cyclodextrin nanosponges (CDNSs) attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and the limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects. This novel system can also be prepared as different dosage forms. AREAS COVERED This review will give an insight into the effects of CDNSs on the pharmacokinetic parameters and permeability of active agents. Different classes of drugs delivered by this system are mentioned and we designate which CD is used most widely in their production process. We also inform why this carrier can be introduced as a versatile carrying system in pharmaceutical fields. Registered patents about this novel system in various fields are also mentioned. EXPERT OPINION The readers will be informed on CDNSs as a novel carrier especially for the delivery of drugs. Versatile characteristics and applications of them can also be known by this review. Finally, CDNSs may be introduced as a remarkable vehicle in the pharmaceutical market in coming years.
Collapse
Affiliation(s)
- Saeideh Allahyari
- a Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Science , Tabriz , Iran
| | - Francesco Trotta
- c Department of Chemistry , University of Torino , Turin , IT , Italy
| | - Hadi Valizadeh
- d Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran
| | - Mitra Jelvehgari
- a Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran
| | - Parvin Zakeri-Milani
- e Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
43
|
Popiołek I, Niziołek A, Kamiński K, Kwolek U, Nowakowska M, Szczubiałka K. Cellular delivery and enhanced anticancer activity of berberine complexed with a cationic derivative of γ–cyclodextrin. Bioorg Med Chem 2019; 27:1414-1420. [DOI: 10.1016/j.bmc.2019.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
44
|
Liu P, Gu Y, Luo J, Ye P, Zheng Y, Yu W, Chen S. Inhibition of Src activation reverses pulmonary vascular remodeling in experimental pulmonary arterial hypertension via Akt/mTOR/HIF-1<alpha> signaling pathway. Exp Cell Res 2019; 380:36-46. [PMID: 30802452 DOI: 10.1016/j.yexcr.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a diffuse pulmonary microvascular remodeling disease accompanied by malignant proliferation of pulmonary artery smooth muscle cells (PASMCs), which causes persistent pulmonary artery pressure elevation, right ventricular hypertrophy (RVH) and death. However, current therapies targeting pulmonary vascular remodeling and RVH remain poorly effective in reversing PAH. Overactivation of the protein tyrosine kinase Src plays an important role in tumor cell growth, proliferation and invasion; we thus hypothesized that inhibitors targeting Src activation could reverse experimental PAH. We demonstrated that Src was markedly activated in hypoxia-stimulated PASMCs from donors and PASMCs isolated from PAH patients. We investigated the effects of the Src-selective inhibitor 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) and berberine (BBR) on PAH-PASMC proliferation and migration by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and wound-healing assays. Our in vitro results showed that inhibition of Src (Tyr416) phosphorylation repressed PAH-PASMC proliferation and migration by inhibiting hypoxia-inducible factor-1α (HIF-1α) expression through Akt/mTOR signal pathway. In vivo, PP1 and BBR significantly alleviated distal pulmonary vascular remodeling and decreased right ventricular systolic pressure (RVSP) and RVH in Sugen (SU) 5416/hypoxia (SU-PAH) mice. These findings demonstrate that pharmacological (PP1 or BBR) inhibition of Src activation could be a novel means of treating severe pulmonary vascular remodeling and RVH in PAH patients.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. Chin J Nat Med 2018; 16:774-781. [PMID: 30322611 DOI: 10.1016/s1875-5364(18)30117-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/07/2023]
Abstract
A series of berberine derivatives were synthesized by introducing substituted benzyl groups at C-9. All these synthesized compounds (4a-4m) were screened for their in vitro antibacterial activity against four Gram-positive bacteria and four Gram-negative bacteria and evaluated for their antifungal activity against three pathogenic fungal strains. All these compounds displayed good antibacterial and antifungal activities, compared to reference drugs including Ciprofloxacin and Fluconazole; Compounds 4f, 4g, and 4l showed the highest antibacterial and antifungal activities. Moreover, all the synthesized compounds were docked into topoisomerase II-DNA complex, which is a crucial drug target for the treatment of microbial infections. Docking results showed that H-bond, π-π stacked, π-cationic, and π-anionic interactions were responsible for the strong binding of the compounds with the target protein-DNA complex.
Collapse
|
46
|
Preparation and characterization of Berberine Hydrochloride and Trimethoprim Chitosan/ SBE7-β-CD microspheres. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Jia J, Zhang K, Zhou X, Zhou D, Ge F. Precise Dissolution Control and Bioavailability Evaluation for Insoluble Drug Berberine via a Polymeric Particle Prepared Using Supercritical CO₂. Polymers (Basel) 2018; 10:polym10111198. [PMID: 30961123 PMCID: PMC6290634 DOI: 10.3390/polym10111198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
It is still controversial whether poor aqueous solubility is the most primary reason for the low oral bioavailability of insoluble drugs. Therefore, in this study, berberine-loaded solid polymeric particles (BPs) of varied dissolution profiles with β-cyclodextrin (β-CD) as carrier were fabricated using solution-enhanced dispersion by supercritical fluids (SEDS), and the relationship between dissolution and berberine (BBR) bioavailability was evaluated. Dissolution property was controlled via particle morphology manipulation, which was achieved by adjusting several key operating parameters during the SEDS process. Characterization on BP using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction indicated that BBR was dispersed in amorphous form, while nuclear magnetic resonance spectroscopy showed that methoxy groups of BBR were included into the cavities of β-CD. In vivo pharmacokinetic studies showed that oral bioavailability increased by about 54% and 86% when the dissolution rate of BBR was increased by 51% and 83%, respectively. The entry speed of BBR into the bloodstream was also advanced with the degree of dissolution enhancement. It seemed that dissolution enhancement gave positive effect to the oral bioavailability of berberine, but this might not be the crucial point. Meanwhile, supercritical CO₂ technology is a promising method for pharmaceutical research due to its advantages in regulating drug-dosage properties.
Collapse
Affiliation(s)
- Jingfu Jia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Kerong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Dan Zhou
- Nansha Research Institute of Sun Yat-Sen University, Guangzhou 511458, China.
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Preparation and in vitro-in vivo evaluation of intestinal retention pellets of Berberine chloride to enhance hypoglycemic and lipid-lowing efficacy. Asian J Pharm Sci 2018; 14:559-568. [PMID: 32104483 PMCID: PMC7032169 DOI: 10.1016/j.ajps.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022] Open
Abstract
Berberine chloride (BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy, which is closely related to the discovery of BBR intestinal target. The major aim of this paper is to develop BBR intestinal retention type sustained-release pellets and evaluate their in vivo and in vitro behaviors base on the aspect of local action on intestinal tract. Here, wet milling technology is used to improve dissolution and dissolution rate of BBR by decreasing the particle size and increasing the wettability. The pellets are prepared by liquid layer deposition technology, and then the core pellets are coated with Eudragit® L30D-55 and Eudragit® NE30D aqueous dispersion. The prepared pellets show high drug loading capacity, and the drug loading up to 93%. Meanwhile, it possesses significant sustained drug release effect in purified water which is expected to improve the pharmacokinetic behavior of BBR. The pharmacokinetics results demonstrate that the half-life of BBR was increased significantly from 24 h to 36 h and the inter- and intra-subject variability are decreased compared to commercial BBR tablets. The retention test results indicate that the pellet size and Eudragit® NE30D plays an important role in retention time of the pellet, and it is found that the pellets with small particle size and high Eudragit® NE30D coating content can stay longer in the intestine than the pellets with large particle size. All in all, BBR intestinal retention type pellets are prepared successfully in this study, and the pellets show satisfactory in vivo and in vitro behaviors.
Collapse
|
49
|
Vaidya B, Shukla SK, Kolluru S, Huen M, Mulla N, Mehra N, Kanabar D, Palakurthi S, Ayehunie S, Muth A, Gupta V. Nintedanib-cyclodextrin complex to improve bio-activity and intestinal permeability. Carbohydr Polym 2018; 204:68-77. [PMID: 30366544 DOI: 10.1016/j.carbpol.2018.09.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
Cyclodextrin complex of nintedanib was prepared aiming for increased bio-activity and improved transport across intestinal membrane with reduced p-glycoprotein (p-gp) efflux. Based on preliminary phase solubility studies and molecular modeling, sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD, Captisol®) was selected to prepare inclusion complex. Complexation was confirmed using FTIR, 1H NMR, DSC, and XRD. Bioactivity of the formed complex was tested using lung fibroblast cells, WI-38 for anti-proliferative activity and effect on collagen deposition and cells migration. In-vitro permeability studies were performed using epiIntestinal tissue model to assess the effect of complexation on transport and p-gp efflux. Results of the study demonstrated that cyclodextrin complexation increased stability of nintedanib in PBS (pH 7.4) and simulated intestinal fluid (SIF). Further, bioactivity of nintedanib also improved. Interestingly, complexation has increased transport of nintedanib across intestinal membrane and reduced efflux ratio, suggesting the role of cyclodextrin complexation in modulating p-gp efflux.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Snehal K Shukla
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srikanth Kolluru
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Melanie Huen
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Nihal Mulla
- College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311, United States
| | - Neelesh Mehra
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | - Dipti Kanabar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srinath Palakurthi
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | | | - Aaron Muth
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States; College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
50
|
Luo J, Gu Y, Liu P, Jiang X, Yu W, Ye P, Chao Y, Yang H, Zhu L, Zhou L, Chen S. Berberine attenuates pulmonary arterial hypertension via protein phosphatase 2A signaling pathway both in vivo and in vitro. J Cell Physiol 2018; 233:9750-9762. [PMID: 30078229 DOI: 10.1002/jcp.26940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
Excessive proliferation, migration, and antiapoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) underlies the development of pulmonary vascular remodeling. The innervation of the PA is predominantly sympathetic, and increased levels of circulating catecholamines have been detected in pulmonary arterial hypertension (PAH), suggesting that neurotransmitters released by sympathetic overactivation may play an essential role in PAH. However, the responsible mechanism remains unclear. Here, to investigate the effects of norepinephrine (NE) on PASMCs and the related mechanism, we used 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, the proliferating cell nuclear antigen and the cell counting kit-8 assay to evaluate the proliferation of PASMCs, Boyden chamber migration, and wound-healing assays to assess migration and western blot analysis to investigate protein expression. We demonstrated that the phosphorylation level of the protein phosphatase 2A (PP2A) catalytic subunit (Y307) was higher in PAH patients and PAH models than in controls, both in vivo and in vitro. In addition, NE induced the proliferation and migration of PASMCs, which was attenuated by berberine (BBR), a Chinese herbal medicine, and/or PP2A overexpression. PP2A inhibition worsened NE-induced PAH and could not be reversed by BBR. Thus, PP2A is critical in driving PAH, and BBR may alleviate PAH via PP2A signaling pathways, thereby offering a potential therapeutic option for PAH.
Collapse
Affiliation(s)
- Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|