1
|
Mojica-Muñoz DM, Macías-Sánchez KL, Juárez-Hernández EO, Rodríguez-Álvarez A, Grévy JM, Díaz-Valle A, Carrillo-Tripp M, Falcón-González JM. Optimizing biodegradable plastics: Molecular dynamics insights into starch plasticization with glycerol and oleic acid. J Mol Graph Model 2024; 126:108674. [PMID: 37984192 DOI: 10.1016/j.jmgm.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Petroleum-based plastics dominate everyday life, necessitating the exploration of natural polymers as alternatives. Starch, abundant and biodegradable, is a promising raw material. However, understanding the molecular mechanisms underlying starch plasticization has proven challenging. To address this, we employ molecular dynamics simulations, focusing on amylose as a model. Our comprehensive evaluation revealed that chain size affects solubility, temperature influenced diffusivity and elastic properties, and oleic acid expressed potential as an alternative plasticizer. Furthermore, blending glycerol or oleic acid with water suggested the enhancement amylose's elasticity. These findings contribute to the design of sustainable and improved biodegradable plastics.
Collapse
Affiliation(s)
- Diana Margarita Mojica-Muñoz
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Karla Lizbeth Macías-Sánchez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Estefanía Odemaris Juárez-Hernández
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Aurora Rodríguez-Álvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Jean-Michel Grévy
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Armando Díaz-Valle
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico.
| |
Collapse
|
2
|
Theeraseematham P, Aht-Ong D, Honda K, Napathorn SC. Valorization of agro-industrial waste from the cassava industry as esterified cellulose butyrate for polyhydroxybutyrate-based biocomposites. PLoS One 2023; 18:e0292051. [PMID: 37992009 PMCID: PMC10664873 DOI: 10.1371/journal.pone.0292051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
The aim of this study was to utilize cassava pulp to prepare biocomposites comprising microcrystalline cellulose from cassava pulp (CP-MCC) as a filler and polyhydroxybutyrate (PHB) synthesized in-house by Cupriavidus necator strain A-04. The CP-MCC was extracted from fresh cassava pulp. Next, the CP-MCC surface was modified with butyryl chloride (esterified to CP-MCC butyrate) to improve dissolution and compatibility with the PHB. FTIR results confirmed that the esterified CP-MCC butyrate had aliphatic chains replacing the hydroxyl groups; this substitution increased the solubilities in acetone, chloroform, and tetrahydrofuran. Biocomposite films were prepared by varying the composition of esterified CP-MCC butyrate as a filler in the PHB matrix at 0, 5, 10, 15, 20 and 100 wt%. The results for the 95:5 and 90:10 CP-MCC butyrate biocomposite films showed that esterification led to improvements in the thermal properties and increased tensile strengths and elongations at break. All prepared biocomposite films maintained full biodegradability.
Collapse
Affiliation(s)
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Kohsuke Honda
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
de Camargo BR, Steindorff AS, da Silva LA, de Oliveira AS, Hamann PRV, Noronha EF. Expression profiling of Clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw. World J Microbiol Biotechnol 2023; 39:105. [PMID: 36840776 DOI: 10.1007/s11274-023-03546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
The gram-positive bacterium Clostridium thermocellum contains a set of carbohydrate-active enzymes that can potentially be employed to generate high-value-added products from lignocellulose. In this study, the gene expression profiling of C. thermocellum B8 was provided during growth in the presence of sugarcane bagasse and straw as a carbon source in comparison to growth using microcrystalline cellulose. A total of 625 and 509 genes were up-regulated for growth in the presence of bagasse and straw, respectively. These genes were mainly grouped into carbohydrate-active enzymes (CAZymes), cell motility, chemotaxis, quorum sensing pathway and expression control of glycoside hydrolases. These results show that type of carbon source modulates the gene expression profiling of carbohydrate-active enzymes. In addition, highlight the importance of cell motility, attachment to the substrate and communication in deconstructing complex substrates. This present work may contribute to the development of enzymatic cocktails and industrial strains for biorefineries based on sugarcane residues as feedstock.
Collapse
Affiliation(s)
- Brenda Rabello de Camargo
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | | | - Leonardo Assis da Silva
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Athos Silva de Oliveira
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Pedro Ricardo Vieira Hamann
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense,400, Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Kontárová S, Přikryl R, Škarpa P, Kriška T, Antošovský J, Gregušková Z, Figalla S, Jašek V, Sedlmajer M, Menčík P, Mikolajová M. Slow-Release Nitrogen Fertilizers with Biodegradable Poly(3-hydroxybutyrate) Coating: Their Effect on the Growth of Maize and the Dynamics of N Release in Soil. Polymers (Basel) 2022; 14:polym14204323. [PMID: 36297901 PMCID: PMC9610826 DOI: 10.3390/polym14204323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Fertilizers play an essential role in agriculture due to the rising food demand. However, high input fertilizer concentration and the non-controlled leaching of nutrients cause an unwanted increase in reactive, unassimilated nitrogen and induce environmental pollution. This paper investigates the preparation and properties of slow-release fertilizer with fully biodegradable poly(3-hydroxybutyrate) coating that releases nitrogen gradually and is not a pollutant for soil. Nitrogen fertilizer (calcium ammonium nitrate) was pelletized with selected filler materials (poly(3-hydroxybutyrate), struvite, dried biomass). Pellets were coated with a solution of poly(3-hydroxybutyrate) in dioxolane that formed a high-quality and thin polymer coating. Coated pellets were tested in aqueous and soil environments. Some coated pellets showed excellent resistance even after 76 days in water, where only 20% of the ammonium nitrate was released. Pot experiments in Mitscherlich vegetation vessels monitored the effect of the application of coated fertilizers on the development and growth of maize and the dynamics of N release in the soil. We found that the use of our coated fertilizers in maize nutrition is a suitable way to supply nutrients to plants concerning their needs and that the poly(3-hydroxybutyrate) that was used for the coating does not adversely affect the growth of maize plants.
Collapse
Affiliation(s)
- Soňa Kontárová
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
- Correspondence:
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Škarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Tomáš Kriška
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Jiří Antošovský
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 61200 Brno, Czech Republic
| | - Zuzana Gregušková
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Marek Sedlmajer
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Přemysl Menčík
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Mária Mikolajová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
5
|
Oliveira-Filho ER, de Macedo MA, Lemos ACC, Adams F, Merkel OM, Taciro MK, Gomez JGC, Silva LF. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. Int J Biol Macromol 2022; 213:902-914. [PMID: 35690163 DOI: 10.1016/j.ijbiomac.2022.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 12/26/2022]
Abstract
Burkholderia sacchari LFM101 LMG19450T is a Brazilian bacterium isolated from sugarcane crops soil and a promising biotechnological platform for bioprocesses. It is an efficient producer of poly(3-hydroxybutyrate) from carbohydrates including xylose. In the present work, the expression of B. sacchari xylose consumption genes (xylA, xylB and tktA) was combined with the expression of Aeromonas sp. phaC (PHA synthase), aiming to increase both the growth rates in xylose and the 3-hydroxyhexanoate (3HHx) molar fractions in the produced PHA. Genes were cloned into pBBR1MCS-2 vectors and then expressed in the B. sacchari PHA- mutant LFM344. Maximum specific growth rates on xylose and PHA accumulation capacity of all recombinants were evaluated. In bioreactor experiments, up to 55.5 % CDW was accumulated as copolymer, hexanoate conversion to 3HHx raised from 2 % to 54 % of the maximum theoretical value, compared to wild type. 3HHx mol% ranged from 8 to 35, and molecular weights were between 111 and 220 kg/mol. Thermal analysis measurement showed a decrease in Tg and Tm values with higher 3HHx fraction, indicating improved thermomechanical characteristics. Recombinants construction and bioreactor strategies allowed the production of P(3HB-co-3HHx) with controlled monomeric composition from xylose and hexanoate, allowing its application in diverse fields, including the medical area.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Matheus A de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline C C Lemos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Friederike Adams
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University Munich, 81337 Munich, Germany
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Jaffur N, Jeetah P, Kumar G. A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials. 3 Biotech 2021; 11:483. [PMID: 34790507 DOI: 10.1007/s13205-021-03009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, major focus in the biopolymer field is being drawn on the exploitation of plant-based resources grounded on holistic sustainability trends to produce novel, affordable, biocompatible and environmentally safe polyhydroxyalkanoate biopolymers. The global PHA market, estimated at USD 62 Million in 2020, is predicted to grow by 11.2 and 14.2% between 2020-2024 and 2020-2025 correspondingly based on market research reports. The market is primarily driven by the growing demand for PHA products by the food packaging, biomedical, pharmaceutical, biofuel and agricultural sectors. One of the key limitations in the growth of the PHA market is the significantly higher production costs associated with pure carbon raw materials as compared to traditional polymers. Nonetheless, considerations such as consumer awareness on the toxicity of petroleum-based plastics and strict government regulations towards the prohibition of the use and trade of synthetic plastics are expected to boost the market growth rate. This study throws light on the production of polyhydroxybutyrate from lignocellulosic biomass using environmentally benign techniques via enzyme and microbial activities to assess its feasibility as a green substitute to conventional plastics. The novelty of the present study is to highlight the recent advances, pretreatment techniques to reduce the recalcitrance of lignocellulosic biomass such as dilute and concentrated acidic pretreatment, alkaline pretreatment, steam explosion, ammonia fibre explosion (AFEX), ball milling, biological pretreatment as well as novel emerging pretreatment techniques notably, high-pressure homogenizer, electron beam, high hydrostatic pressure, co-solvent enhanced lignocellulosic fractionation (CELF) pulsed-electric field, low temperature steep delignification (LTSD), microwave and ultrasound technologies. Additionally, inhibitory compounds and detoxification routes, fermentation downstream processes, life cycle and environmental impacts of recovered natural biopolymers, review green procurement policies in various countries, PHA strategies in line with the United Nations Sustainable Development Goals (SDGs) along with the fate of the spent polyhydroxybutyrate are outlined.
Collapse
Affiliation(s)
- Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
7
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
8
|
Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 2020; 44:185-193. [PMID: 32895870 DOI: 10.1007/s00449-020-02434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.
Collapse
|
9
|
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, Louis H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Bermejo PM, Raghavendran V, Gombert AK. Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform. FEMS Yeast Res 2020; 20:5836716. [PMID: 32401320 DOI: 10.1093/femsyr/foaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 11/12/2022] Open
Abstract
First-generation (1G) fuel ethanol production in sugarcane-based biorefineries is an established economic enterprise in Brazil. Second-generation (2G) fuel ethanol from lignocellulosic materials, though extensively investigated, is currently facing severe difficulties to become economically viable. Some of the challenges inherent to these processes could be resolved by efficiently separating and partially hydrolysing the cellulosic fraction of the lignocellulosic materials into the disaccharide cellobiose. Here, we propose an alternative biorefinery, where the sucrose-rich stream from the 1G process is mixed with a cellobiose-rich stream in the fermentation step. The advantages of mixing are 3-fold: (i) decreased concentrations of metabolic inhibitors that are typically produced during pretreatment and hydrolysis of lignocellulosic materials; (ii) decreased cooling times after enzymatic hydrolysis prior to fermentation; and (iii) decreased availability of free glucose for contaminating microorganisms and undesired glucose repression effects. The iSUCCELL platform will be built upon the robust Saccharomyces cerevisiae strains currently present in 1G biorefineries, which offer competitive advantage in non-aseptic environments, and into which intracellular hydrolyses of sucrose and cellobiose will be engineered. It is expected that high yields of ethanol can be achieved in a process with cell recycling, lower contamination levels and decreased antibiotic use, when compared to current 2G technologies.
Collapse
Affiliation(s)
| | - Vijayendran Raghavendran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
11
|
Oliveira-Filho ER, Silva JGP, de Macedo MA, Taciro MK, Gomez JGC, Silva LF. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by Burkholderia sacchari LMG 19450 From Xylose as the Sole Carbon Source. Front Bioeng Biotechnol 2020; 7:416. [PMID: 31970153 PMCID: PMC6960187 DOI: 10.3389/fbioe.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/29/2019] [Indexed: 01/15/2023] Open
Abstract
Burkholderia sacchari LMG19450, a non-model organism and a promising microbial platform, was studied to determine nutrient limitation impact on poly(3-hydroxybutyrate) [P(3HB)] production and bacterial growth from xylose, a major hemicellulosic residue. Nitrogen and phosphorus limitations have been studied in a number of cases to enhance PHA accumulation, but not combining xylose and B. sacchari. Within this strategy, it was sought to understand how to control PHA production and even modulate monomer composition. Nitrogen-limited and phosphorus-limited fed-batch experiments in bioreactors were performed to evaluate each one's influence on cell growth and poly(3-hydroxybutyrate) production. The mineral medium composition was defined based on yields calculated from typical results so that nitrogen was available during phosphorus limitation and residual phosphorus was available when limiting nitrogen. Sets of experiments were performed so as to promote cell growth in the first stage (supplied with initial xylose 15 g/L), followed by an accumulation phase, where N or P was the limiting nutrient when xylose was fed in pulses to avoid concentrations lower than 5 g/L. N-limited fed-batch specific cell growth (around 0.19 1/h) and substrate consumption (around 0.24 1/h) rates were higher when compared to phosphorus-limited ones. Xylose to PHA yield was similar in both conditions [0.37 gP(3HB)/gxyl]. We also described pst gene cluster in B. sacchari, responsible for high-affinity phosphate uptake. Obtained phosphorus to biomass yields might evidence polyphosphate accumulation. Results were compared with studies with B. sacchari and other PHA-producing microorganisms. Since it is the first report of the mentioned kinetic parameters for LMG 19450 growing on xylose solely, our results open exciting perspectives to develop an efficient bioprocess strategy with increased P(3HB) production from xylose or xylose-rich substrates.
Collapse
Affiliation(s)
- Edmar R Oliveira-Filho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson G P Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Arjona de Macedo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilda K Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Gregório C Gomez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiziana F Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Li M, Eskridge KM, Wilkins MR. Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio). Bioprocess Biosyst Eng 2019; 42:1495-1506. [DOI: 10.1007/s00449-019-02146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
|
13
|
Sustainable PHA production in integrated lignocellulose biorefineries. N Biotechnol 2019; 49:161-168. [DOI: 10.1016/j.nbt.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/05/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022]
|
14
|
Couri T, Harmath C, Baker T, Pillai A. Acute portal vein thrombosis after liver transplant presenting with subtle ultrasound abnormalities: A case report and literature review. World J Hepatol 2019; 11:234-241. [PMID: 30820273 PMCID: PMC6393712 DOI: 10.4254/wjh.v11.i2.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Portal vein thrombosis (PVT) after liver transplantation (LT) is an uncommon complication with potential for significant morbidity and mortality that transplant providers should be cognizant of. Recognizing subtle changes in post-operative ultrasounds that could herald but do not definitively diagnose PVT is paramount.
CASE SUMMARY A 30-year-old female with a history of alcohol-related cirrhosis presented with painless jaundice and received a deceased donor orthotopic liver transplant. On the first two days post-operatively, her liver Doppler ultrasounds showed a patent portal vein, increased hepatic arterial diastolic flows, and reduced hepatic arterial resistive indices. She was asymptomatic with improving labs. On post-operative day three, her resistive indices declined further, and computed tomography of the abdomen revealed a large extra-hepatic PVT. The patient then underwent emergent percutaneous venography with tissue plasminogen activator administration, angioplasty, and stent placement. Aspirin was started to prevent stent thrombosis. Follow-up ultrasounds showed a patent portal vein and improved hepatic arterial resistive indices. Her graft function improved to normal by discharge. Although decreased hepatic artery resistive indices and increased diastolic flows on ultrasound are often associated with hepatic arterial stenosis post-LT, PVT can also cause these findings.
CONCLUSION Reduced hepatic arterial resistive indices on ultrasound can signify PVT post-LT, and thrombolysis, angioplasty, and stent placement are efficacious treatments.
Collapse
Affiliation(s)
- Thomas Couri
- Department of Internal Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Carla Harmath
- Department of Radiology, University of Chicago, Chicago, IL 60637, United States
| | - Talia Baker
- Department of Surgery, Section of Transplant Surgery, University of Chicago, Chicago, IL 60637, United States
| | - Anjana Pillai
- Department of Internal Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
15
|
A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb Cell Fact 2018; 17:74. [PMID: 29764418 PMCID: PMC5952831 DOI: 10.1186/s12934-018-0924-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/05/2018] [Indexed: 12/22/2022] Open
Abstract
Background Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. Results First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). Conclusions These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari.![]()
Collapse
|
17
|
A non-naturally-occurring P(3HB-co-3HA MCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. Int J Biol Macromol 2018; 114:512-519. [PMID: 29548920 DOI: 10.1016/j.ijbiomac.2018.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
Pseudomonas sp. PHA- was used as host for PHA biosynthesis genes from Aeromonas sp. to produce 3HB-co-3HAMCL from glucose with no supply of co-substrates. A non-naturally-occurring PHA composed mainly of 3HB, 3HHx and 3HD (3HO, 3HDdΔ5 and 3HDd monomers were detected in smaller amounts) was obtained. The polymer was extracted using two different solvents (acetone and chloroform) and subject to the following characterization tests: FTIR, DSC, TGA and GPC. The latter suggests a block copolymer since a single and narrow elution peak was observed for each sample. The DSC results ruled out the possibility of a random copolymer and agrees with a single copolymer composed of two blocks: one with the typical composition of PHAMCL produced by Pseudomonas and another containing 3HB and 3HHx with a high 3HHx molar fraction. Thus, this study increases the perspectives of P(3HB-co-3HAMCL) production from carbohydrates as the sole carbon source.
Collapse
|
18
|
xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. ACTA ACUST UNITED AC 2018; 45:165-173. [DOI: 10.1007/s10295-018-2007-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (Y P3HB/Xil = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.
Collapse
|
19
|
Albuquerque PB, Malafaia CB. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Int J Biol Macromol 2018; 107:615-625. [DOI: 10.1016/j.ijbiomac.2017.09.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023]
|
20
|
de Camargo BR, Claassens NJ, Quirino BF, Noronha EF, Kengen SW. Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8. Enzyme Microb Technol 2018; 109:74-83. [DOI: 10.1016/j.enzmictec.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 11/30/2022]
|
21
|
Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017; 10:1338-1352. [PMID: 28736901 PMCID: PMC5658610 DOI: 10.1111/1751-7915.12776] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/17/2017] [Indexed: 12/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large-scale PHA production is the cost of carbon substrate for PHA-producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food-related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food-derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.
Collapse
Affiliation(s)
- Chad Nielsen
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
| | - Asif Rahman
- Bioengineering BranchSpace BioSciences DivisionNASA Ames Research CenterMoffett FieldCA94035‐1000USA
- COSMIAC Research CenterUniversity of New MexicoAlbuquerqueNM87106USA
| | - Asad Ur Rehman
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
- Institute of Industrial BiotechnologyGovernment College UniversityKatchery RoadLahorePakistan
| | - Marie K. Walsh
- Department of Nutrition, Dietetics, and Food SciencesUtah State University8700 Old Main HillLoganUT84322‐8700USA
| | - Charles D. Miller
- Department of Biological EngineeringUtah State University4105 Old Main HillLoganUT84322‐4105USA
| |
Collapse
|
22
|
Mendonça TT, Tavares RR, Cespedes LG, Sánchez-Rodriguez RJ, Schripsema J, Taciro MK, Gomez JG, Silva LF. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari. Int J Biol Macromol 2017; 98:654-663. [DOI: 10.1016/j.ijbiomac.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/02/2017] [Indexed: 11/28/2022]
|
23
|
Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 2017; 4:bioengineering4020036. [PMID: 28952515 PMCID: PMC5590455 DOI: 10.3390/bioengineering4020036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain’s wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L·h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L·h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Collapse
|
24
|
Ahn J, Jho EH, Nam K. Effect of acid-digested rice straw waste feeding methods on the 3HV fraction of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|