1
|
Ramzan M, Javed T, Hassan A, Ahmed MZ, Ashraf H, Shah AA, Iftikhar M, El-Sheikh MA, Raja V. Protective effects of the exogenous application of salicylic acid and chitosan on chromium-induced photosynthetic capacity and osmotic adjustment in Aconitum napellus. BMC PLANT BIOLOGY 2024; 24:933. [PMID: 39379805 PMCID: PMC11460047 DOI: 10.1186/s12870-024-05634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating Cr-induced stress has remained relatively unexplored, especially in the case of Aconitum napellus, a medicinally and floricultural important plant. Therefore, the primary objective of this study was to investigate the potential of CTS and SA in alleviating chromium (Cr)-induced stress in A. napellus. To address these research questions, we conducted a controlled experiment using potted plants to evaluate the individual and combined impacts of CTS and SA on plants exposed to Cr stress. Foliar application of CTS (0.4 g/L) or SA (0.25 mmol/L) led to significant improvements in the growth, chlorophyll content, fluorescence, and photosynthetic traits of A. napellus plants under Cr stress. The most notable effects were observed with the combined application of CTS and SA, resulting in increases in various morphological parameters, such as shoot length (2.89% and 7.02%) and root length (27.75% and 3.36%) under the Cr 1 and Cr 2 treatments, respectively. Additionally, several physiological parameters, such as chlorophyll a (762.5% and 145.56%), chlorophyll b (762.5% and 145.56%), carotenoid (17.03% and 28.57%), and anthocyanin (112.01% and 47.96%) contents, were notably improved under the Cr 1 and Cr 2 treatments, respectively. Moreover, the combined treatment of CTS and SA improved the fluorescence parameters while decreasing the levels of enzymatic antioxidants such as catalase (27.59% and 43.79%, respectively). The application also notably increased osmoprotectant parameters, such as the total protein content (54.11% and 20.07%) and the total soluble sugar content (78.17% and 49.82%) in the leaves of A. napellus in the Cr 1 and 2 treatments, respectively. In summary, these results strongly suggest that the simultaneous use of exogenous CTS and SA is an effective strategy for alleviating the detrimental effects of Cr stress on A. napellus. This integrated approach opens promising avenues for further exploration and potential implementation within agricultural production systems.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Javed
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ariba Hassan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zaheer Ahmed
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Ashraf
- Department of Botany, The Government Sadiq College Women University Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, 54700, Pakistan.
| | - Muhammad Iftikhar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, 54700, Pakistan
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|
3
|
Otunola BO, Aghoghovwia MP, Thwala M, Gómez-Arias A, Jordaan R, Hernandez JC, Ololade OO. Improving capacity for phytoremediation of Vetiver grass and Indian mustard in heavy metal (Al and Mn) contaminated water through the application of clay minerals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53577-53588. [PMID: 36859642 PMCID: PMC10119195 DOI: 10.1007/s11356-023-26083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
One of the consequences of mining is the release of heavy metals into the environment, especially water bodies. Phytoremediation of areas contaminated by heavy metals using Vetiver grass and Indian mustard is cost-effective and environmentally friendly. This study aimed at enhancing remediation of heavy metal contaminated water through the simultaneous hybrid application of clay minerals (attapulgite and bentonite) and Vetiver grass or Indian mustard. A 21-day greenhouse experiment was carried out to investigate the effectiveness of the clay minerals to improve heavy metal phytoremediation. The highest accumulation of aluminium (Al) by Vetiver grass was 371.8 mg/kg in the BT2.5VT treatment, while for Mn, the highest accumulation of 34.71 mg/kg was observed in the AT1VT treatment. However, Indian mustard showed no significant uptake of heavy metals, but suffered heavy metal toxicity despite the addition of clay minerals. From this study, it was evident that bentonite added at 2.5% (w/v) could improve the phytoremediation capacity of Vetiver grass for Al and Mn polluted water. The current laboratory-scale findings provided a basis for field trials earmarked for remediation in a post-mining coal environment in South Africa. This remediation approach can also be adopted in other places.
Collapse
Affiliation(s)
- Beatrice Omonike Otunola
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - Makhosazana P Aghoghovwia
- Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa
| | - Melusi Thwala
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Science Advisory and Strategic Partnerships, Academy of Science of South Africa, Pretoria, South Africa
| | - Alba Gómez-Arias
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | - Rian Jordaan
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Julio Castillo Hernandez
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olusola Oluwayemisi Ololade
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
4
|
Aires ES, Ferraz AKL, Carvalho BL, Teixeira FP, Putti FF, de Souza EP, Rodrigues JD, Ono EO. Foliar Application of Salicylic Acid to Mitigate Water Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131775. [PMID: 35807727 DOI: 10.1590/1678-4499.20210320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Salicylic acid (SA) is an important plant regulator reported as a mitigator of water deficit in plants, however without a recommendation for use in field conditions. Thus, this research aims to validate the use of SA under field conditions in regions with low water availability. For that, we evaluated CO2 assimilation (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), and carboxylation efficiency (A/Ci) at 15, 30, and 45 days of continuous stress water deficit, as well as the application of salicylic acid (0.0; 0.5; 1.0; 1.5; 2.0 mM) in tomato plants subjected to continuous water deficit (45 days), in two years (2019 and 2020). The water deficit reduced the A, gs, E and A/Ci, while the foliar application of SA increased these parameters in all evaluated times, resulting in similar or even higher values than in plants without water deficit. Water deficit caused floral abortion in tomato plants, without the application of SA, reducing the number of fruit production. In contrast, plants that received about 1.3 mM of SA increased A and A/Ci and translocated the photo-assimilates, mainly to flowers and fruits, reducing floral abortion and increasing fruit production. Thus, foliar application of SA was efficient in mitigating the deleterious effects of water deficit in tomato plants regarding the gas exchange and fruit production.
Collapse
Affiliation(s)
- Eduardo Santana Aires
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Andrew Kim Lopes Ferraz
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Beatriz Lívero Carvalho
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fabricio Palla Teixeira
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Fernando Ferrari Putti
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã 17602-496, Brazil
| | - Emanuele Possas de Souza
- Department of Horticulture, School of Agronomy, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - João Domingos Rodrigues
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| | - Elizabeth Orika Ono
- Department of Botany, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-000, Brazil
| |
Collapse
|
5
|
Saleem M, Fariduddin Q, Castroverde CDM. Salicylic acid: A key regulator of redox signalling and plant immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:381-397. [PMID: 34715564 DOI: 10.1016/j.plaphy.2021.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 05/04/2023]
Abstract
In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and complex network of SA with Non-Expressor of Pathogenesis Related protein-1 (NPR1), ROS, calcium ions (Ca2+), nitric oxide (NO) and mitogen-activated protein kinase (MAPK) cascades. In this review, we summarize the recent advances in the regulation of ROS and antioxidant defense system signalling by SA at the physiological and molecular levels. Understanding the molecular mechanisms of how SA controls redox homeostasis would provide a fundamental framework to develop approaches that will improve plant growth and fitness, in order to meet the increasing global demand for food and bioenergy.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | | |
Collapse
|
6
|
Saini S, Kaur N, Pati PK. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112578. [PMID: 34352573 DOI: 10.1016/j.ecoenv.2021.112578] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) stress in plants has received considerable global attention as it threatens sustainable growth in agriculture worldwide. Hence, desperate efforts have been undertaken for combating the effects of this stress in plants. Interestingly, the use of phytohormones in reducing the impact of HM toxicity has gained much momentum in the recent past. Phytohormones act as chemical messengers that improve the HM stress resistance in plants, thus allowing them to retain their growth and developmental plasticity. Their exogenous application as well as manipulation of endogenous levels through precise targeting of their biosynthesis/signaling components is a promising approach for providing a protective shield against HM stress in plants. However, for the successful use of phytohormones for field plants exposed to HM toxicity, in-depth knowledge of the key pathways regulated by them is of prime importance. Hence, the present review mainly summarizes the key conceptual developments on the involvement of phytohormones in the mitigation of HM stress in plants. The role of various genes, proteins, and signaling components involved in phytohormones associated HM stress tolerance and their modulation has also been discussed. Thus, this update will pave the way for improving HM stress tolerance in plants with the advent of phytohormones for sustainable agriculture growth in the future.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Botany, GGDSD College, Sector-32C, Chandigarh, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
7
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
8
|
Rajpoot R, Srivastava RK, Rani A, Pandey P, Dubey RS. Manganese-induced oxidative stress, ultrastructural changes, and proteomics studies in rice plants. PROTOPLASMA 2021; 258:319-335. [PMID: 33070243 DOI: 10.1007/s00709-020-01575-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element for plant growth but it becomes phytotoxic at higher concentrations. The effect of Mn-excess in hydroponics medium was examined on growth, oxidative stress, and ultrastructural changes in chloroplasts and mitochondria as well proteomic alterations in rice (Oryza sativa L.) seedlings. Seedlings grown with 1 mM and 2 mM Mn in nutrient medium for 8 days showed decline in length and fresh biomass, and decline in net photosynthetic rate, transpiration rate, and stomatal conductance. Shoots of the seedlings had higher Mn content than roots. Mn-treated seedlings showed increased production of O2·-, H2O2, and .OH, increased lipid peroxidation, increased carbonylation of proteins, and increased proteolytic activity compared to untreated seedlings. Mn-treated seedlings showed disorganization and swelling of chloroplasts with appearance of plastoglobuli in TEM images and deformity in shape of mitochondria. Using confocal microscopy depolarization of mitochondrial membrane was observed marked by green fluorescence of JC-1 dye monomers in Mn-treated roots. Proteomics studies from leaves of Mn-treated seedlings involving 2DE and PDQuest analysis showed differential expression of 23 proteins, among which MALDI-TOF/TOF mass spectrometry analysis revealed Mn-led downregulation of photosynthesis-related proteins, namely oxygen-evolving complex protein associated with PSII, PAP-3, enzyme involved in protein folding peptidyl-prolyl cis-trans isomerase (PPIase) and carbohydrate metabolizing enzymes hydrolase, fructose-bisphosphate aldolase, transketolase, and isocitrate dehydrogenase, whereas ATP-dependent Clp protease, peroxidase, and nucleic acid-binding proteins were downregulated due to Mn treatment. Results indicate that Mn-excess inhibits growth of rice plants with induction of oxidative stress, causing structural alterations in chloroplasts, mitochondria, inhibiting photosynthesis, and downregulating many photosynthesis and carbohydrate metabolism-related proteins.
Collapse
Affiliation(s)
- Ritika Rajpoot
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Anjana Rani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Poonam Pandey
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R S Dubey
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Naz R, Sarfraz A, Anwar Z, Yasmin H, Nosheen A, Keyani R, Roberts TH. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:285-300. [PMID: 33418188 DOI: 10.1016/j.plaphy.2020.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/19/2020] [Indexed: 05/27/2023]
Abstract
Application of the growth regulator salicylic acid (SA) and the polyamine spermidine (Spd) can be used to manage various plant abiotic stresses. We aimed to evaluate the sole and combined effects of SA and Spd on maize (Zea mays) under individual and combined drought and chromium (Cr) stress. Drought, Cr, and drought + Cr treatments caused oxidative stress by inducing higher production of reactive oxygen species (H2O2, O2-), enhanced malondialdehyde content and increased relative membrane permeability. Increased oxidative stress and higher Cr uptake in the host plant reduced the content of carotenoids, other photosynthetic pigments and protein, and changed carbohydrate metabolism. Combined drought + Cr stress was more damaging for the growth of maize plants than the individual stresses. Exogenous treatments of SA and Spd alleviated the adverse effects of drought and Cr toxicity, reflected by accumulations of osmolytes, antioxidants and endogenous polyamines. Single applications of Spd (0.1 mM) increased plant height, shoot fresh weight, leaf area, above-ground dry matter accumulation and polyamine content under drought, Cr, and drought + Cr stress conditions. However, the combined treatment SA + Spd (0.25 mM + 0.05 mM) was more effective in increasing protein and water contents, photosynthetic pigments, and carotenoids. The same treatment increased Cr tolerance in the maize plants by decreasing uptake of this heavy metal from root to shoot. The SA + Spd treatment also decreased oxidative stress by promoting antioxidant enzyme activities, and enhanced levels of proline, soluble sugars, and carbohydrate contents under individual and combined stress conditions. Results indicate that the combined half-dose application of SA + Spd may be utilized to boost the tolerance in maize under individual as well as combined drought and Cr stress conditions.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Amina Sarfraz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Zahid Anwar
- Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
10
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Emamverdian A, Ding Y, Mokhberdoran F. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. PLANT SIGNALING & BEHAVIOR 2020; 15:1777372. [PMID: 32508222 PMCID: PMC8570706 DOI: 10.1080/15592324.2020.1777372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) and gibberellins (GAs), as two important plant growth hormones, play a key role in increasing plant tolerance to abiotic stress. They contribute to the increased plant antioxidant activities in ROS scavenging, which is related to the enzymes involved in H2O2-detoxifying. In photosynthetic cycles, the endogenous form of these phytohormones enhances photosynthetic properties such as stomatal conductance, net photosynthesis (PN), photosynthetic oxygen evolution, and efficiency of carboxylation. Furthermore, in cell cycle, they are able to influence division and expansion of cell growth in plants under stress, leading to increased growth of radicle cells in a meristem, and ultimately contributing to the increased germination rate and lengths of shoot and root in the stress-affected plants. In the case of crosstalk between SA and GA, exogenous GA3 can upregulate biosynthesis of SA and consequently result in rising levels of SA, enhancing plant defense response to environmental abiotic stresses. The aim of this paper was to investigate the mechanisms related to GA and SA phytohormones in amelioration of abiotic stress, in particular, heavy metal stress.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- CONTACT Yulong Ding NO.159, Londpan Road Nanjing, 210037, China
| | - Farzad Mokhberdoran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
12
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (A.S.); (F.A.); (M.L.)
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| |
Collapse
|
13
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:E540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
| |
Collapse
|
14
|
Spormann S, Soares C, Fidalgo F. Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:226-234. [PMID: 31005000 DOI: 10.1016/j.jenvman.2019.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 05/15/2023]
Abstract
Glyphosate (GLY) is considered the most used herbicide in the world and has been associated with several environmental contamination risks. Despite being partially degraded by soil microorganisms, its residues can negatively affect the growth of valuable non-target plants. Thus, there is a need to find new strategies that minimize its impacts and enhance crop tolerance to GLY, allowing a more advantageous and safer, use of this herbicide. Salicylic acid (SA) is a hormone-like substance, able to enhance the efficiency of the antioxidant (AOX) system in plants and their tolerance to oxidative stress. This study aimed to unveil the effects of SA (100 μM) on the oxidative status of Hordeum vulgare L. in response to GLY (30 mg kg-1). After 14 days of growth, the presence of GLY led to a significant inhibition of growth, an accumulation of hydrogen peroxide (H2O2) and superoxide anion (O2-), an increase in lipid peroxidation (LP), proline and non-protein thiols, a decrease of the content of reduced ascorbate (AsA) and an upregulation of AOX enzymes. The exogenous application of SA mitigated the effects of GLY on growth, amount of H2O2 and degree of PL. It has also contributed to the reduction of AsA content, production of non-protein thiols and increased AOX enzymatic activity, particularly superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and gluthatione S-transferase (GST). These results show a positive role of SA against GLY induced oxidative stress, by modulating the AOX capacity of barley plants. However, the observed phytotoxicity of GLY was so pronounced, that the ameliorating effect of SA on AOX defenses was not enough to significantly overcome the herbicide-induced oxidative damage.
Collapse
Affiliation(s)
- Sofia Spormann
- GreenUPorto - Centro de Investigação Em Produção Agroalimentar Sustentável, BiologyDepartment, FacultyofSciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal; Plant Stress Lab, Biology Department, Faculty of Sciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Centro de Investigação Em Produção Agroalimentar Sustentável, BiologyDepartment, FacultyofSciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal; Plant Stress Lab, Biology Department, Faculty of Sciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal.
| | - Fernanda Fidalgo
- GreenUPorto - Centro de Investigação Em Produção Agroalimentar Sustentável, BiologyDepartment, FacultyofSciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal; Plant Stress Lab, Biology Department, Faculty of Sciences, University of Porto, Rua Campo Alegre S/n, 4169-007, Porto, Portugal
| |
Collapse
|
15
|
Hussain A, Nazir F, Fariduddin Q. 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:905-919. [PMID: 31404216 PMCID: PMC6656853 DOI: 10.1007/s12298-019-00672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 05/01/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids and polyamines are generally used to surpass different abiotic stresses like heavy metal toxicity in plants. The current study was conducted with an aim that 24-epibrassinolide (EBL) and/or spermidine (Spd) could modify root morphology, movement of stomata, cell viability, photosynthetic effectiveness, carbonic anhydrase and antioxidant enzyme activities in Brassica juncea under manganese (Mn) stress (30 or 150 mg kg-1 soil). EBL (10-8 M) and/or Spd, (1.0 mM) were applied to the foliage of B. juncea plants at 35 days after sowing (DAS), grown in the presence of Mn (30 or 150 mg kg-1 soil). High Mn concentration (150 mg kg-1 soil) altered root morphology, affected stomatal movement, reduced the viability of cells and photosynthetic effectiveness and increased the production of reactive oxygen species (O2 ·- and H2O2) in the leaves and antioxidant defense system of B. juncea at 45 DAS. Furthermore, exogenous treatment of EBL and Spd under stress and stress- free conditions improved the aforesaid traits while decreased the O2 ·- and H2O2 production. Therefore, EBL and Spd could be applied to the foliage of B. juncea plants for the better growth under metal stress.
Collapse
Affiliation(s)
- Anjuman Hussain
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
16
|
Kohli SK, Bali S, Tejpal R, Bhalla V, Verma V, Bhardwaj R, Alqarawi AA, Abd Allah EF, Ahmad P. In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Sci Rep 2019; 9:3524. [PMID: 30837530 PMCID: PMC6401096 DOI: 10.1038/s41598-019-39712-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Lead (Pb) toxicity is a major environmental concern affirming the need of proper mitigation strategies. In the present work, potential of combined treatment of 24-Epibrassinolide (24-EBL) and Salicylic acid (SA) against Pb toxicity to Brassica juncea L. seedlings were evaluated. Seedlings pre-imbibed in EBL (0.1 mM) and SA (1 mM) individually and in combination, were sown in Pb supplemented petri-plates (0.25, 0.50 and 0.75 mM). Various microscopic observations and biochemical analysis were made on 10 days old seedlings of B. juncea. The toxic effects of Pb were evident with enhancement in in-situ accumulation of Pb, hydrogen peroxide (H2O2), malondialdehyde (MDA), nuclear damage, membrane damage, cell death and polyamine. Furthermore, free amino acid were lowered in response to Pb toxicity. The levels of osmoprotectants including total carbohydrate, reducing sugars, trehalose, proline and glycine betaine were elevated in response to Pb treatment. Soaking treatment with combination of 24-EBL and SA led to effective amelioration of toxic effects of Pb. Reduction in Pb accumulation, reactive oxygen content (ROS), cellular damage and GSH levels were noticed in response to treatment with 24-EBL and SA individual and combined levels. The contents of free amino acid, amino acid profiling as well as in-situ localization of polyamine (spermidine) was recorded to be enhanced by co-application of 24-EBLand SA. Binary treatment of 24-EBL and SA, further elevated the content of osmoprotectants. The study revealed that co-application of combined treatment of 24-EBL and SA led to dimination of toxic effects of Pb in B. juncea seedlings.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ruchi Tejpal
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vinod Verma
- Department of Botany, DAV University, Jalandhar, Punjab, 144012, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - A A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
17
|
Sihag S, Brar B, Joshi UN. Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:293-304. [PMID: 30873848 DOI: 10.1080/15226514.2018.1524827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AIM Chromium (Cr(VI)) would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. Cr(VI) toxicity is often associated with oxidative stress, caused by the excessive formation of reactive oxygen species (ROS). In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. Salicylic acid (SA) plays a key role in the signal transduction pathways of various stress responses, demonstrating the protective effect of SA against abiotic stress factors. So, the present investigation was carried out to study the amelioration of pernicious effects of different concentration of Cr(VI) (0.0, 2.0, and 4.0 mg Cr(VI) kg-1 soil in the form of potassium dichromate) by treatments of salicylic acid solution viz. pretreatment and foliar spray via antioxidative enzymes and their metabolites. RESULTS With different treatments of salicylic acid solution, the reinstatement from ill effects of Cr(VI) toxicity was contemplated but the most conspicuous effect was observed when salicylic acid solution was supplied through the foliar spray (0.50 mM). This was accompanied with an increase in ascorbate peroxidase activity and hydrogen peroxide content and decrease in peroxidase activity and ascorbic acid content. SIGNIFICANCE OF THE STUDY This study suggests that salicylic acid when applied through pre-treatment of seeds or through a foliar spray can be used to ameliorate the toxic effects of chromium (VI). Salicylic acid has the great potential for reducing the toxicity of heavy metals without negatively impacting the growth of the plants.
Collapse
Affiliation(s)
- Sweety Sihag
- a Department of Chemistry and Biochemistry , CCS Haryana Agricultural University , Hisar , Haryana , India
| | - Basanti Brar
- b Department of Molecular Biology and Biotechnology and Bioinformatics , CCS Haryana Agricultural University , Hisar , Haryana , India
| | - U N Joshi
- a Department of Chemistry and Biochemistry , CCS Haryana Agricultural University , Hisar , Haryana , India
| |
Collapse
|
18
|
Alleviation of nickel toxicity in finger millet ( Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Gorni PH, Brozulato MDO, Lourenção RDS, Konrad ECG. Increased biomass and salicylic acid elicitor activity in fennel (Foeniculum vulgare Miller). BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.17216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract Fennel is a medicinal and aromatic plant that is commonly used in Brazilian cuisine and in the manufacture of cosmetics. The exogenous application of salicylic acid (SA) can act on the hormonal action stimulating plant growth and development and the induction of plant defense responses under stressful conditions. The objective of this study was to determine the effect of the foliar application of SA on the production of biomass and synthesis of secondary compounds in fennel plants. For this purpose, an experiment was carried out in potted plants in a greenhouse with the application of SA at concentrations of 0, 0.25, 0.50 and 1.00 mM, 20 days and 90 days after transplanting the seedlings to the pots. The effect of SA on the metabolism of the fennel plants was evaluated using growth and biochemical parameters. The exogenous application of SA increased the plant shoots dry weight at the concentration of 0.50 mM, whereas an improved dry root mass and root/shoot ratio was achieved with the concentration of 0.25 mM. The elicitor effect was observed at 0.25 mM of SA, resulting in greater economic value of the biomass due to the higher production of secondary compounds, such as phenolic compounds and flavonoids. In addition, an increase in antioxidant activity of the plant extracts and of the essential oil content of the species was obtained at the concentration of 1.00 mM.
Collapse
|
20
|
Pedro HG, Ana CAUP. Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem 2015; 185:441-8. [DOI: 10.1016/j.foodchem.2015.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/14/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
|