1
|
Shojazadeh T, Zolghadr L, Gharaghani S, JafarKhani S, Molaabasi F, Piri H, Gheibi N. New insights into the inhibitory effect of phenol carboxylic acid antioxidants on mushroom tyrosinase by molecular dynamic studies and experimental assessment. J Biomol Struct Dyn 2023; 41:13404-13414. [PMID: 36856125 DOI: 10.1080/07391102.2023.2175038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/21/2023] [Indexed: 03/02/2023]
Abstract
The inhibitory effects of ferulic and chlorogenic acids on tyrosinase activity were investigated through multi-spectroscopic and molecular docking techniques. Ferulic and chlorogenic acids, flavonoid compounds, demonstrated inhibitory monophenolase activities of tyrosinase. The inhibitor effects against monophenolase activity were in a reversible and competitive manner with ki value equal to 6.8 and 7.5 µM respectively. The affinity between tyrosinase and L-DOPA decreased when fatty acids were added to the solution. The multi-spectroscopic techniques like UV-vis, fluorescence, and isothermal calorimetry are employed to investigate changes. Intrinsic fluorescence quenching and conformational changes of tyrosinase by hydrophobic interaction were confirmed. Tyrosinase had two and three binding sites for ferulic and chlorogenic acids with a binding constant in the order of magnitude of -6.8 and -7.2 kcal/mol. In addition, the secondary structural changes with Circular dichroism (CD) analysis, secondary structure (DSSP), radius of gyration (Rg) and analysis of hydrogen bonds (H-bonds) confirmed. Ferulic acid effect can be observed obviously and also content of α-helix decreased. Thermodynamic parameters indicated that the interaction between enzyme and ferulic and chlorogenic acids followed a spontaneous reaction dynamic manner with ΔG = -14.78 kJ/mol and ΔG = -14.61 kJ/mol (298k). The findings highlighted the potential applications of ferulic acid and chlorogenic acids in food and drug industries as potent inhibitors of tyrosinase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
2
|
Aghamohammadi M, Zolghadr L, Nezhad NS, Ahmadpour Yazdi H, Esfahani AJ, Gheibi N. Investigating the effects of quercetin fatty acid esters on apoptosis, mechanical properties, and expression of ERK in melanoma cell line (A375). Life Sci 2022; 310:121007. [PMID: 36181863 DOI: 10.1016/j.lfs.2022.121007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Malignant melanoma (MM) is the most fatal skin cancer with a critical increase in the number of cases in the last decades. Recent studies have shown the antitumor potential of active biological phytochemical structures of flavonoids for the prevention and treatment of cancerous cells. In this study, two quercetin fatty acid esters (α-linolenic acid (ALA) and linoleic acid (LA)) compounds were evaluated in terms of inducing apoptotic human melanoma cells (A375) death in vitro. MAIN METHODS The MTT assay was utilized for comparing the effects of quercetin, ALA, and LA on A375 cell viability concentrations of 5, 25, 35, 50, and 100μg/mL for 24 and 48 h to obtain IC50. To detect the effects on apoptosis and to determine p-ERK/ERK apoptosis-related signaling pathway proteins level, flow-cytometry and western blot were used. Finally, the nano-mechanical properties of the melanoma A375 membrane structure containing elastic modulus value and cell-cell adhesion forces were investigated using Atomic Force Microscopy (AFM). Statistical data was analyzed in GraphPad v.8.0.0. KEY FINDINGS The most significant A375 cell viability amplified effect of Q-LA was observed with a half-maximal inhibitory concentration (IC50 = 35 μg/ml, 48 h), proportional to dose. Ester compounds, especially Q-LA, showed the highest cell proliferation inhibition with improved elastic modulus, cell-cell adhesion forces (253 ± 11.2), and elevated apoptosis-inducing effect (p < 0.01**). Moreover, Q-LA significantly decreased the mean levels of p-ERK phosphorylation (0.1439) and, subsequently, apoptosis in A375 cells. SIGNIFICANCE The data presented in this study confirmed the antitumor activity of ester compounds against A375 cells, high-lighting the ability of the tested compounds to induce apoptosis.
Collapse
Affiliation(s)
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | | | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
The effects of the esterified Quercetin with omega3 and omega6 fatty acids on viability, nanomechanical properties, and BAX/BCL-2 gene expression in MCF-7 cells. Mol Biol Rep 2021; 48:5161-5169. [PMID: 34254227 DOI: 10.1007/s11033-021-06516-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Quercetin is one of the major flavonoids and it appears to have cytotoxic effects on various cancer cells through regulating the apoptosis pathway genes such as BAX and BCL2. Combination of Quercetin (Q) with other compounds can increase its effectiveness. In the present study, the effects of the Quercetin and its esterified derivatives on viability, nanomechanical properties of cells, and BAX/BCL-2 gene expression were investigated. Using the MTT and flow cytometry assays, the cytotoxic potential, apoptosis, and necrosis were investigated. The AFM assay was performed to find the nanomechanical properties of cells as the elastic modulus value and cellular adhesion forces. The BAX/BCL2 gene expression was investigated through the Real-Time PCR. The results showed that the esterification of Quercetin with linoleic acid (Q-LA) and α-linolenic acid (Q-ALA) increased the cytotoxic potential of Q. The elastic modulus value and cellular adhesion forces were increased using the esterified derivatives and the highest ratio of BAX/BCL2 gene expression was observed in Q-LA. Esterified Quercetin derivatives have a higher cytotoxic effect than the un-esterified form in a dose-dependent manner. Esterified derivatives caused the nanomechanical changes and pores formation on the cytoplasmic membrane. One of the internal apoptosis pathway regulation mechanisms of these compounds is increasing the BAX/BCL2 gene expression ratio.
Collapse
|
4
|
Gheibi N, Ghorbani M, Shariatifar H, Farasat A. Effects of unsaturated fatty acids (Arachidonic/Oleic Acids) on stability and structural properties of Calprotectin using molecular docking and molecular dynamics simulation approach. PLoS One 2020; 15:e0230780. [PMID: 32214349 PMCID: PMC7098580 DOI: 10.1371/journal.pone.0230780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Calprotectin is a heterodimeric protein complex with two subunits called S100A8/A9. The protein has an essential role in inflammation process and various human diseases. It has the ability to bind to unsaturated fatty acids including Arachidonic acid, Oleic acid and etc., which could be considered as a major carrier for fatty acids. In this study we aimed to appraise the thermodynamics and structural changes of Calprotectin in presence of Arachidonic acid/Oleic acid) using docking and molecular dynami simulation method. To create the best conformation of Calprotectin-Oleic acid/Arachidonic acid complexes, the docking process was performed. The complexes with the best binding energy were selected as the models for molecular dynamics simulation process. Furthermore, the structural and thermodynamics properties of the complexes were evaluated too. The Root Mean Square Deviation and Root Mean Square Fluctuation results showed that the binding of Arachidonic acid/Oleic acid to Calprotectin can cause the protein structural changes which was confirmed by Define Secondary Structure of Proteins results. Accordingly, the binding free energy results verified that binding of Oleic acid to Calprotectin leads to instability of S100A8/A9 subunits in the protein. Moreover, the electrostatic energy contribution of the complexes (Calprotectin-Oleic acid/Arachidonic acid) was remarkably higher than van der Waals energy. Thus, the outcome of this study confirm that Oleic acid has a stronger interaction with Calprotectin in comparison with Arachidonic acid. Our findings indicated that binding of unsaturated fatty acids to Calprotectin leads to structural changes of the S100A8/A9 subunits which could be beneficial to play a biological role in inflammation process.
Collapse
Affiliation(s)
- Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohamad Ghorbani
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hanifeh Shariatifar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
5
|
Shabani F, Mahdavi M, Imani M, Hosseinpour-Feizi MA, Gheibi N. Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: Alteration in expression levels of Bax, Bcl-2, and ERK2. Hum Exp Toxicol 2020; 39:1031-1045. [PMID: 32167384 DOI: 10.1177/0960327120909530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calprotectin is a heterodimeric EF-hand Ca2+ binding protein that is typically released by infiltrating polymorphonuclear leukocytes and macrophages. This protein is a key player linking inflammation and cancer. Due to the increased levels of calprotectin in different inflammatory diseases and cancer, it is considered as a marker for diagnostic purposes. In this study, we evaluated the mechanism of cell viability and apoptotic-inducing effects of recombinant human calprotectin (rhS100A8/S100A9) on the gastric adenocarcinoma (AGS), the most common type of gastric cancer cell line. AGS cells were exposed to the different concentrations (5-100 μg/ml) of calprotectin for 24, 48, and 72 h, and cell viability was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic-inducing effects of calprotectin were evaluated by sub-G1 cell cycle assay and Annexin V/propidium iodide double staining. Furthermore, real-time polymerase chain reaction and Western blot analysis were performed to evaluate the mechanism of action of calprotectin. Our findings indicated that calprotectin inhibits growth and viability of AGS cells in a time- and dose-dependent manner. The half-maximal inhibitory concentration values were measured as 85.77, 79.14, and 65.39 μg/ml for 24, 48, and 72 h, respectively. Additionally, we found that calprotectin downregulated the expression of antiapoptotic protein Bcl-2 and upregulated proapoptotic protein Bax in a time- and concentration-dependent fashion. Calprotectin also slightly upregulated the expression of extracellular signal-regulated protein kinase 2 (ERK2), while it significantly decreased the levels of phospho-ERK in a time-dependent manner. Overall, these findings indicated that calprotectin has cytotoxicity and apoptosis-inducing effects on AGS cell lines in high concentration by modulating Bax/Bcl-2 expression ratio accompanied by inhibition of ERK activation.
Collapse
Affiliation(s)
- F Shabani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M A Hosseinpour-Feizi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - N Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Jamali Z, Rezaei Behbehani G, Zare K, Gheibi N. Effect of chrysin omega-3 and 6 fatty acid esters on mushroom tyrosinase activity, stability, and structure. J Food Biochem 2018; 43:e12728. [PMID: 31353554 DOI: 10.1111/jfbc.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
The estreification of chrysin with α-Linolenic acid (complex I) and linoleic acid (complex II) poly unsaturated fatty acids resulted to design of new mushroom tyrosinase (MT) inhibitors. Thermodynamic parameters of enzymes, including the melting point (Tm ) and ∆G values, were obtained from thermal and chemical denaturation curves. Complexes I and II showed a competitive inhibitory effect on MT with Ki values of 0.45 and 0.29 mM, respectively. The Tm values were calculated as 328.6, 322.4, and 318 K and the ∆G values as 62.8, 52.9, and 47.1 KJ mol-1 for the enzyme alone and its interaction with complexes I and II, respectively. Intrinsic and extrinsic fluorescence techniques showed structural instability of the enzyme in concomitance with a decrease in the regular secondary structure acquired using CD spectrometry. This data clearly prove that the new derivatives show a stronger inhibitory effect than the separate compounds. Molecular docking analysis showed that the best possible interaction condition was achieved for chrysin with n-6. PRACTICAL APPLICATIONS: MT is a suitable model in medicine for the investigation of melanogenesis, skin disorders, and hyperpigmentation because of its accessibility and close structural similarity to mammalian tyrosinase. In recent years, the designing of tyrosinase inhibitors from natural substances for prevention of hyperpigmentation in medicine, skin cosmetics, and undesired browning in agriculture and food industry has risen sharply. Many of the pharmaceutical products based on the use of flavonoids and poly unsaturated acids as natural compounds or on their semi-synthetic derivatives have been interested for investigations because of their usefulness in many pathological conditions such as inflammation, cancer, and skin disorders. The limitation of the flavonoids applications are low bioavailability, permeability, and solubility for the cells. In this study, conjugation of chrysin with n-3 and n-6 fatty acids resulted in a stronger inhibitors of MT with a synergic inhibitory effect on its activity.
Collapse
Affiliation(s)
- Zohreh Jamali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Karim Zare
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67:801-812. [PMID: 30083975 DOI: 10.1007/s00011-018-1173-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens. OBJECTIVE The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation. MATERIALS AND METHODS We conducted a review of studies published in the Medline (1966-2018), Scopus (2004-2018), ClinicalTrials.gov (2008-2018) and Google Scholar (2004-2018) databases, combined with studies found in the reference lists of the included studies. RESULTS Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis. CONCLUSION Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.
Collapse
|
8
|
Najafi M, Alizadeh SA, Azad M, Naserpour Farivar T, Rajaei F, Hotam Sorouri K, Rahmani B, Gheibi N. Effect of calprotectin subunit S100A9 on the expression and methylation of OCLN in human melanoma cell line A-375. Turk J Biol 2017; 41:849-856. [PMID: 30814850 DOI: 10.3906/biy-1704-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increased levels of calprotectin subunits S100A8 and S100A9 have been detected in human cancers. Melanoma is the most aggressive type of skin cancer, and its treatment is challenging because of its brain metastasis. OCLN encodes occluding, which plays a major role in the formation and regulation of tight junctions. The aim of this study was to evaluate the methylation status of the OCLN promoter and its expression in A-375 melanoma cells treated with or without various concentrations of S100A9 for 24, 48, and 72 h. Total RNA was extracted, and synthesized cDNA was assessed by performing real-time PCR. MSP-PCR was performed after treatment with bisultfie. Recombinant S100A9 inhibited the proliferation of the A-375 cell line and the expression of the OCLN gene was downregulated in a time- and concentration-dependent manner. Results of MSP-PCR showed that the OCLN gene promoter in a human melanoma cell line (A-375) was semimethylated.
Collapse
Affiliation(s)
- Mostafa Najafi
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Safar Ali Alizadeh
- Department of Medical Microbiology, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Mehdi Azad
- Department of Medical Biotechnology, Paramedical School, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Taghi Naserpour Farivar
- Department of Medical Microbiology, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Farzad Rajaei
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Kourosh Hotam Sorouri
- Department of Medical Biotechnology, Paramedical School, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Babak Rahmani
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
9
|
Shahsavari A, Azad M, Mobarra N, Chegini KG, Gheibi N. Calprotectin Pegylation Enhanced Its Physical and Structural Properties. Protein J 2017; 35:363-370. [PMID: 27757788 DOI: 10.1007/s10930-016-9680-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calprotectin is member of the S-100 protein family with a wide plethora of intra-and extracellular functions. Anticancer activities, antimicrobial effects and being a qualified disease marker are among the compelling features of this protein to be used as a pharmaceutical agent. However, there are several impediments to applications of protein pharmaceuticals including: proteolytic degradation, short circulating half-life, low solubility and immunogenicity. Pegylation is a common bioconjugation polymer capable of overcoming these drawbacks. Recombinant expression and purification of calprotectin along with its pegylation would result in enhanced pharmaco-dynamic and pharmacokinetic properties. Our florescence spectroscopy and far Ultraviolet-optical density results indicate that pegylation altered the physical and structural properties of the calprotectin to become in a more stable and functionally active state. Due to enhanced pharmacodynamic and pharmacokinetic properties of the calprotectin via pegylation, this study would pave the way for better in vitro and in vivo validations of calprotectin applications in medical practice.
Collapse
Affiliation(s)
- Abbas Shahsavari
- Department of Biotechnology, Paramedical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Naser Mobarra
- Metabolic Disorders Research Center, Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Koorosh Goodarzvand Chegini
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O.Box: 34199-15315, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O.Box: 34199-15315, Qazvin, Iran.
| |
Collapse
|
10
|
Emadi F, Amini A, Gholami A, Ghasemi Y. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity. Sci Rep 2017; 7:42258. [PMID: 28186169 PMCID: PMC5301474 DOI: 10.1038/srep42258] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/05/2017] [Indexed: 12/30/2022] Open
Abstract
Proteins have short half-life because of enzymatic cleavage. Here, a new protein nanocarrier made of graphene oxide (GO) + Chitosan (CS) is proposed to successfully prevent proteolysis in protein and simultaneously retain its activity. Bovine serum albumin (BSA) and collagenase were loaded on GO and GO-CS to explore the stability and activity of proteins. SEM, AFM, TEM, DSC, UV-Vis, FT-IR, RBS, Raman, SDS-PAGE and zymography were utilized as characterization techniques. The protecting role of GO and GO-CS against enzymatic cleavage was probed by protease digestion analysis on BSA, where the protease solution was introduced to GO-BSA and GO-CS-BSA at 37 °C for 0.5-1-3-6 hours. Characterizations showed the successful synthesis of few layers of GO and the coverage by CS. According to gelatin zymographic analysis, the loaded collagenase on GO and GO-CS lysed the gelatin and created non-staining bands which confirmed the activity of loaded collagenase. SDS-PAGE analysis revealed no significant change in the intact protein in the GO-BSA and GO-CS-BSA solution after 30-minute and 1-hour exposure to protease; however, free BSA was completely digested after 1 hour. After 6 hours, intact proteins were detected in GO-BSA and GO-CS-BSA solutions, while no intact protein was detected in the free BSA solution.
Collapse
Affiliation(s)
- Fatemeh Emadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz PO Box 71468-64685, Iran
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Locked Bag 1797, NSW 2751, Australia
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz PO Box 71468-64685, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz PO Box 71468-64685, Iran
| |
Collapse
|
11
|
Shah RD, Xue C, Zhang H, Tuteja S, Li M, Reilly MP, Ferguson JF. Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells. PLoS One 2017; 12:e0169614. [PMID: 28125622 PMCID: PMC5268473 DOI: 10.1371/journal.pone.0169614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022] Open
Abstract
Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6–8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.
Collapse
Affiliation(s)
- Rachana D. Shah
- Division of Pediatric Endocrinology, Children’s Hospital of Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hanrui Zhang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Sony Tuteja
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, and Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
Modifying effects of carboxyl group on the interaction of recombinant S100A8/A9 complex with tyrosinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:370-379. [PMID: 28017864 DOI: 10.1016/j.bbapap.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Tyrosinase is a determinant enzyme for modulating melanin production as its abnormal activity can result in an increased amount of melanin. Reduction of tyrosinase activity has been targeted for preventing and healing hyperpigmentation of skin, such as melanoma and age related spots. The aim of this systematic study is to investigate whether recombinant S100A8/A9 and its modified form reduce the activity of mushroom tyrosinase (MT) through changing its structure. Recombinant His-Tagged S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and modified using Woodward's reagent K which is a carboxyl group modifier. The structures of S100A8/A9 and its modified form are studied using fluorescence and circular dichroism spectroscopy, and the activity of MT is measured using UV-visible spectrophotometry in the presence of its substrate, L-3,4-dihydroxyphenylalanine (L-DOPA). The results show a lower stability of the modified protein when compared with its unmodified form. The interaction of S100A8/A9 with MT changes the structure and successfully reduces the activity of mushroom tyrosinase. Recombinant S100A8/A9 complex decreases MT activity which can control malignant melanoma, the most dangerous type of skin cancer.
Collapse
|
13
|
Moghadasi M, Ilghari D, Sirati-Sabet M, Amini A, Asghari H, Gheibi N. Structural characterization of recombinant human fibroblast growth factor receptor 2b kinase domain upon interaction with omega fatty acids. Chem Phys Lipids 2016; 202:21-27. [PMID: 27871884 DOI: 10.1016/j.chemphyslip.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
The mutated recombinant kinase domain of human fibroblast growth factor receptor 2b (hFGFR2b) is overexpressed and purified, and its structural changes upon the interaction with three unsaturated fatty acids (UFAs), oleic, linoleic and α-linolenic are studied. This interaction is investigated to find out about the folding and unfolding effect of unsaturated fatty acids on the kinase domain structure of hFGFR2b. Recombinant pLEICS-01 vectors, containing the mutated coding region of hFGFR2b, are expressed in the standard Escherichia coli BL21 (DE3) host cells and purified by Ni2+-NTA affinity chromatography. While polyacrylamide gel electrophoresis characterizes the functionality of recombinant protein, its structural changes are studied in the presence and absence of various concentrations of oleic, α-linolenic and linoleic acids using circular dichroism (CD) and fluorescence spectroscopy. Far ultraviolet CD results show that unsaturated fatty acids do not change the secondary structure of the recombinant kinase domain of hFGFR2b. However, chemical denaturation analysis confirms that all three UFAs destabilize the tertiary structure of recombinant protein. A decrease in the fluorescence intensity without any significant red or blue shift (336±1nm) reflects a variation in the tertiary structure of protein. The direct interaction of the studied UFAs with hFGFR2b reduces the conformational stability of their kinase domains. The structural changes in hFGFR2b in the presence of UFAs may be necessary for hFGFR2b to adjust the signal transduction and regulate the key cellular processes.
Collapse
Affiliation(s)
- Masoumeh Moghadasi
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Dariush Ilghari
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Bld Y, Locked Bag 1797, NSW 2751, Australia; Department of Mechanical Engineering, Australian College of Kuwait, Mishrif, Kuwait City, Kuwait.
| | - Hamideh Asghari
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O. Box 34199-15315, Qazvin, Iran.
| |
Collapse
|