1
|
Liu J, Lei Z, Wang Z, Wang H, Sun J, Guo D, Luan F, Zou J, Shi Y. Ethnobotanical usages, phytochemistry, pharmacology, and quality control of chuanxiong rhizoma: A review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118902. [PMID: 39395765 DOI: 10.1016/j.jep.2024.118902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Chuanxiong Rhizoma (CX) is the dried root rhizomes of the plant Ligusticum chuanxiong Hort. of the family Umbelliferae. CX is listed as a superior herb in the book "Shennong Bencao Jing". It has a pungent and warm nature and belongs to the liver, gallbladder, and pericardium meridians. CX is documented in the Chinese Pharmacopoeia from 1963 to 2020 editions. CX as a well-known traditional Chinese medicine for promoting blood circulation, regulating qi, dispelling wind, and relieving pain, has been proven to contain a variety of bioactive compounds with diverse pharmacological activities and medicinal value. AIM OF THE STUDY The current review aims to provide a comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of CX. MATERIALS AND METHODS The relevant information of CX was obtained from several databases including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, CNKI, Ph.D, MSc dissertations, as well as The Catalogue of Life, Flora of China database, and The Global Biodiversity Information Facility. RESULTS CX is widely used in traditional medicine for treating various diseases related to the cardiovascular system, liver and kidney system, nervous system, respiratory system, and more. Over 400 compounds have been identified in CX, including phthalides, alkaloids, organic acids and its esters, polyphenols, terpenes and their derivatives, polysaccharides, hydrocarbons and their derivatives, coumarins, lignans and others. The plant extracts, compounds and Chinese patent medicines possess various pharmacological activities, including cardiovascular system protection, nervous system protection, cerebrovascular system protection, anti-inflammatory, liver and lung protection, anti-diabetes, anti-osteoporosis, anti-bacterial, anti-aging, anti-oxidant, immune regulation, prevention of DNA damage, prevention of postoperative peritoneal adhesion. CONCLUSION Considering its traditional and modern applications, phytochemical composition, and pharmacological properties, CX can be regarded as a traditional Chinese medicine resource for treating various diseases related to the cardiovascular, hepatorenal, nervous, and respiratory systems. Current research mainly focuses on cell and animal experiments, where some active ingredients exhibit diverse pharmacological activities. However, further studies are needed to fully understand its specific mechanisms of action. In addition, there are multiple active ingredients in CX, but current research mainly focuses on the pharmacological effects of individual components, with little research on the interactions and synergistic effects between different components. It is recommended to strengthen the research on the interactions of CX compounds and their components to reveal the overall pharmacological mechanisms. This will contribute to quality control, new drug development, commercialization, and promote its continuous development in the field of medicine.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Zhichao Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Song L, Niu Y, Chen R, Ju H, Liu Z, Zhang B, Xie W, Gao Y. A Comparative Analysis of the Anti-Tumor Activity of Sixteen Polysaccharide Fractions from Three Large Brown Seaweed, Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida. Mar Drugs 2024; 22:316. [PMID: 39057425 PMCID: PMC11278018 DOI: 10.3390/md22070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.
Collapse
Affiliation(s)
- Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
- Wuqiong Food Co., Ltd., Raoping 515726, China
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Bida Zhang
- Changdao Aihua Seaweed Food Co., Ltd., Yantai 265800, China
| | - Wancui Xie
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
| | - Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China
| |
Collapse
|
3
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
4
|
Jiang X, Yang T, Li Y, Liu S, Liu Y, Chen D, Qin W, Zhang Q, Lin D, Liu Y, Fang Z, Chen H. Ultrasound-assisted extraction of tamarind xyloglucan: an effective approach to reduce the viscosity and improve the α-amylase inhibition of xyloglucan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4047-4057. [PMID: 36453054 DOI: 10.1002/jsfa.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Water extraction (WE) is the classical extraction method for tamarind xyloglucan (XyG), but its low yield, high viscosity and poor dispersion in aqueous solution are not conducive to the industrial applications. To promote the industrial application of tamarind XyG, an ultrasonic-assisted extraction (UAE) method for extracting low-viscosity XyG from tamarind kernel powder was proposed. RESULTS The yield of UAE-XyG was higher (502.33 ± 0.036 g kg-1 ) than that of WE-XyG (163.43 ± 0.085 g kg-1 ). UAE reduced the molecular weight, monosaccharide content and apparent viscosity of XyG. The hypoglycemic experiment in vitro showed that UAE-XyG had a stronger inhibitory effect on α-amylase activity than WE-XyG, but its glucose dialysis retardation index was lower. CONCLUSION In sum, UAE is a type of extraction method that could effectively improve the yield of XyG and reduce its viscosity to expand its application without reducing its physiological activity. UAE exhibits an excellent potential in the extraction of XyG. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiujuan Jiang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Tian Yang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yingting Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Shuyang Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuanyuan Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
5
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
6
|
Zhang Y, Huang J, Sun M, Duan Y, Wang L, Yu N, Peng D, Chen W, Wang Y. Preparation, characterization, antioxidant and antianemia activities of Poria cocos polysaccharide iron (III) complex. Heliyon 2023; 9:e12819. [PMID: 36647359 PMCID: PMC9840143 DOI: 10.1016/j.heliyon.2023.e12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
As a new natural antioxidant with high safety and non-toxic side effects, polysaccharide can also be used as a critical macromolecular carrier to form a stable iron complex with Fe3+. Our previous study has extracted and purified the homogeneous polysaccharide (PCP1C) from Poria cocos. In this study, the PCP1C-iron (III) complex was synthesized by co-thermal synthesis with PCP1C and ferric trichloride. The chelating capacity, iron releasing capacity, and qualitative identification of complex were evaluated. The complex was characterized by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analysis, particle size distribution, and fourier transform infrared (FTIR) spectroscopy. The antioxidant and iron supplement effects of the complex were also studied in vitro and in the iron deficiency anemia (IDA) rat model. The results showed that the iron content in the PCP1C-iron (III) complex was 28.14% with no free iron, and the iron release rate was 95.3%. The structure analysis showed that the iron core of the PCP1C-iron (III) complex existed in the form of β-FeOOH and the surface of the complex become smooth and particle size increased, which indicated the high iron content of polysaccharide iron and slow release. Furthermore, we found that the PCP1C iron (III) complex had positive scavenging effect on DPPH, ABTS, MDA, and hydroxyl radical in vitro study and significantly increased the levels of red blood cell (RBC), Hemoglobin (Hb), and red blood cell specific volume (HCT) in IDA rat model. Therefore, our results suggested that the PCP1C-iron (III) complex is expected to develop into a new comprehensive iron supplement and antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
8
|
Zhou C, Huang Y, Chen J, Chen H, Wu Q, Zhang K, Li D, Li Y, Chen Y. Effects of high-pressure homogenization extraction on the physicochemical properties and antioxidant activity of large-leaf yellow tea polysaccharide conjugates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang C, Zhang Y, Xue H, Yang M, Leng F, Wang Y. Extraction kinetic model of polysaccharide from Codonopsis pilosula and the application of polysaccharide in wound healing. Biomed Mater 2022; 17. [PMID: 35090145 DOI: 10.1088/1748-605x/ac5008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
The crude polysaccharide (CPNP) of Codonopsis pilosula was obtained by hot-water extraction technology. The extraction kinetic model established according to Fick's first law of diffusion and related parameters of polysaccharide was studied. CPNP microcapsules were prepared by blending with sodium alginate, Ca2+ ions and crude CPNP. The quality control (Drug loading rate, embedding rate and release rate, etc) of CPNP microcapsules were analyzed by pharmacopeas standards. The structure feature of CPNP microcapsules also were determined with various methods. The wound healing ability of CPNP microcapsules loading with different concentration of CPNP was evaluated using the rat wound model. The activity of various enzymes and the expression levels of pro-inflammatory factors in the model skin tissue also were determined by enzyme linked immunosorbent assay (ELISA). Hematoxylin-eosin staining (HE), Masson, immunohistochemistry were used to investigate the external application effect of CPNP microcapsules on skin wound repair. The extraction kinetics of CPNP was established with the linear correlation coefficient (R2) of 0.83-0.93, implied that the extraction process was fitted well with the Fick's first law of diffusion. The CPNP has good compatibility with sodium alginate and Ca2+ ions by SEM and TEM observation, and the particle size of CPNP microcapsules was 21.25±2.84 μm with the good degradation rate, loading rate (61.59%) and encapsulation rate (55.99%), maximum swelling rate (397.380 ±25.321%). Compared with control group, the redness, and swelling, bleeding, infection, and exudate of the damaged skin decreased significantly after CPNP microcapsules treatment, and the CPNP microcapsules groups exhibited good wound healing function with less inflammatory cell infiltration. The pathological structure showed that in the CPNP microcapsules group, more newborn capillaries, complete skin structure, and relatively tight and orderly arrangement of collagen fibers were observed in the skin of rats. CPNP microcapsules could effectively inhibit the high expression of pro-inflammatory factors in damaged skin, and significantly increase the contents of related enzymes (GSH-Px, T-AOC, LPO) and collagen fibers. The relative expression levels of genes (VEGF and miRNA21) in the CPNP microcapsules group were higher than those in the model group and the negative group. The above results suggested that the CPNP microcapsules could controlled-release the CPNP to the wound surface, and then played a better role in antibacterial, anti-inflammatory and skin wound repair.
Collapse
Affiliation(s)
- Chenliang Wang
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yuchun Zhang
- Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Lanzhou, 730050, CHINA
| | - Hongyan Xue
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Gansu Province, P. R. China, Lanzhou, Gansu, 730050, CHINA
| | - Mingjun Yang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| | - Feifan Leng
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yonggang Wang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| |
Collapse
|
10
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
11
|
Wang J, Wang L, Zhou H, Liang XD, Zhang MT, Tang YX, Wang JH, Mao JL. The isolation, structural features and biological activities of polysaccharide from Ligusticum chuanxiong: A review. Carbohydr Polym 2021; 285:118971. [DOI: 10.1016/j.carbpol.2021.118971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
12
|
Li Y, Liang J, Gao JN, Shen Y, Kuang HX, Xia YG. A novel LC-MS/MS method for complete composition analysis of polysaccharides by aldononitrile acetate and multiple reaction monitoring. Carbohydr Polym 2021; 272:118478. [PMID: 34420737 DOI: 10.1016/j.carbpol.2021.118478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Carbohydrate analysis has always been a challenging task due to the occurrence of high polarity and multiple isomers. Aldoses are commonly analyzed by gas liquid chromatography (GLC) following aldononitrile acetate derivatization (AND). However, the GLC technique cannot be applied for the simultaneous determination of aldoses, ketoses, and uronic acids. In this study, a new method based on the combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and AND is developed for the complete characterization of monosaccharide composition (i.e., aldoses, ketoses, alditols, amino sugars, and uronic acids) in plant-derived polysaccharides. In addition to discussing the possible byproducts, the study optimizes the multiple reaction monitoring (MRM) parameters and LC conditions. The final separation of 17 carbohydrates is performed on a BEH Shield RP18 column (150 mm × 2.1 mm, 1.7 μm) within 25 min, without using any buffer salt. Notably, the complex polysaccharides extracted from Ligusticum chuanxiong, Platycodon grandiflorum, Cyathula officinalis Kuan, Juglans mandshurica Maxim, and Aralia elata (Miq.). Seem bud can be successfully characterized using the developed method. Overall, the results demonstrated that the newly established LC-MS/MS MRM method is more effective and powerful than the GLC-based methods reported previously, and it is more suitable for the analysis of highly complex natural polysaccharides, including complex pectins, fructosans, and glycoproteins.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jia-Ning Gao
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yu Shen
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
13
|
Chen X, Li H, Qiao X, Jiang T, Fu X, He Y, Zhao X. Agarose oligosaccharide- silver nanoparticle- antimicrobial peptide- composite for wound dressing. Carbohydr Polym 2021; 269:118258. [PMID: 34294293 DOI: 10.1016/j.carbpol.2021.118258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Marine polysaccharides or oligosaccharides have potential to promote wound healing due to their biocompatibility and physicochemical properties. However, microbial infection delays wound healing process, and novel antimicrobial wound dressings are urgently needed. Here, agarose oligosaccharides (AGO) obtained from marine red algae were used as a reducing and stabilizer for green synthesis of silver nanoparticles (AgNPs), and further successfully connected with odorranain A (OA), one of antimicrobial peptides (AMPs), to obtain a novel composite nanomaterial (AGO-AgNPs-OA). Transmission electron microscopy (TEM) and Malvern particle size analyzer showed that AGO-AgNPs-OA was spherical or elliptic with average size of about 100 nm. Circular dichroism (CD) spectroscopy showed that AGO-AgNPs stabilized the α-helical structure of OA. AGO-AgNPs-OA showed stronger anti-bacterial activities than AGO-AgNPs, and had good biocompatibility and significant promoting effect on wound healing. Our data suggest that AMPs conjugated marine oligosaccharides and AgNPs may be effective and safe antibacterial materials for wound therapy.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongjin Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoni Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xue Fu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Yue He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Jiang YP, Jin Y, Bao J, Wang S, Lai WD, Wen CP, Xu ZH, Yu J. Inconsistent Time-Dependent Effects of Tetramethylpyrazine on Primary Neurological Disorders and Psychiatric Comorbidities. Front Pharmacol 2021; 12:708517. [PMID: 34489702 PMCID: PMC8417558 DOI: 10.3389/fphar.2021.708517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the time dependent effects of tetramethylpyrazine (TMP, main activity compound of Ligusticum chuanxiong Hort) on two neurological disorders and their neuropsychiatric comorbidities. 6 Hz corneal rapid kindling was used to induce epileptogenesis and the inflammatory pain was induced by intra-articular Complete Freund's adjuvant (CFA) injection. The mechanical pain thresholds were measured using von Frey hair (D4, D11, D18, D25 after CFA first injection), and the vertical rearings of the mice was observed. To test the neuropsychiatric comorbidities, anxiety-like behaviors of mice were examined by open field and elevated plus maze tests. Two behavioral despair models, tail suspension test and forced swimming test were also used to evaluate the depressive like behaviors. The results showed that TMP administered from the initial day (D1-D35 in kindling model, D0-D14 and D0-D28 in CFA model) of modeling retarded both the developments of 6 Hz corneal rapid kindling epileptogenesis and the CFA induced inflammatory pain. In comparison, late periods administration of TMP (D21-D35 in kindling and D14-D28 in CFA model) showed no effect on the epileptogenesis and the generalized seizures (GS) of kindling, but alleviated maintenance of CFA induced inflammatory pain. Furthermore, we also found all TMP treatments from the initial day of modeling alleviated the co-morbid depressive and anxiety-like behaviors in both models; however, late periods treatments did not, either in kindling or the CFA induced inflammatory pain. BDNF/ERK signaling impairment was also tested by western blot, and the results showed that TMP administered from the initial day of modeling increased the hippocampal BDNF/ERK expression, whereas late period administration showed no effects. Overall, our findings reveal the inconsistent time dependent effects of Tetramethylpyrazine on neurological disorders and their relative neuropsychiatric comorbidities, and provide novel insight into the early application of TMP that might enhance hippocampal BDNF/ERK signaling to alleviate neuropsychiatric comorbidities in neurological diseases.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-Ping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Hao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Yang Q, Shen F, Zhang F, Bai X, Zhang Y, Zhang H. The combination of two natural medicines, Chuanxiong and Asarum: A review of the chemical constituents and pharmacological activities. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211039130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditional Chinese medicine has been clinically used in China for many years, with experimental studies and clinical trials having demonstrated that it is safe and valid. Among many traditional natural medicines, Chuanxiong and Asarum have been proven to be effective in the treatment of relieving pain. Actually, as well as analgesic, they have common attributes, such as anti-inflammatory, cardiovascular benefits, and anticancer activities, with volatile oils being their major components. Furthermore, Chuanxiong and Asarum have been combined as drug pairs in the same prescription for thousands of years, with examples being Chuanxiong Chatiao San and Chuanxiongxixintang. More interestingly, their combination has better therapeutic effects on diseases than a single drug. After the combination of Chuanxiong and Asarum forms a blend, a series of changes take place in their chemical components, such as the contents of the main active ingredients, ferulic acid and ligustilide, increased significantly after this progress. At the same time, the pharmacological effects of the combination appearing to be more powerful, such as synergistic analgesic. This review focuses on the chemical constituents and pharmacological activities of Chuanxiong, Asarum, and Chuanxiong Asarum compositions.
Collapse
Affiliation(s)
- Qingcheng Yang
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fangli Shen
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fengqin Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Xue Bai
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Yanru Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Haizhu Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, Dali, P.R. China
| |
Collapse
|
16
|
Niknam R, Mousavi M, Kiani H. A new source of galactomannan isolated from
Gleditsia caspica
(Persian honey locust) seeds: Extraction and comprehensive characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rasoul Niknam
- Bioprocessing and Biodetection Lab (BBL) Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Mohammad Mousavi
- Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL) Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
17
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
18
|
Zhong C, Liu Z, Zhang X, Pu Y, Yang Z, Bao Y. Physicochemical properties of polysaccharides from Ligusticum chuanxiong and analysis of their anti-tumor potential through immunoregulation. Food Funct 2021; 12:1719-1731. [PMID: 33502414 DOI: 10.1039/d0fo02978e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the extraction, purification, physicochemical properties and biological activity of Ligusticum chuanxiong polysaccharides (LCXPs). Two polysaccharide fractions (Ligusticum chuanxiong [LCX]P-1a and LCXP-3a) were obtained by DEAE Sepharose™ Fast Flow and Sephacryl™S-300 high resolution column chromatography. The results showed that the molecular weight of LCXP-1a and LCXP-3a was 11.159 kDa and 203.486 kDa, respectively. LCXP-1a is composed of rhamnose, glucuronic acid, galacturonic acid, and glucose at a molar percentage of 0.52 : 1.88 : 1.06 : 95.36, But LCXP-3a has another molar percentage of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose of 0.64 : 6.69 : 1.03 : 43.74 : 2.20 : 26.90 : 0.82 : 15.94 : 1.80. Both LCXP-1a and LCXP-3a could stimulate macrophages to produce NO, TNF-α, IL-6, and IL-12p70. Co-culturing macrophages and hepatocellular carcinoma cells showed that LCXP-1a and LCXP-3a inhibited the growth of HepG2 and Hep3B through immunoregulation. They arrested the cell cycle at the G0/G1 phase and promoted apoptosis. Moreover, there was no cytotoxicity to the hepatocyte cell line, LO2. We also noted that the immunomodulatory activity and anti-tumor activity of LCXP-3a were significantly better than those of LCXP-1a. Our data demonstrate that LCXP-3a is potentially a well-tolerated and effective immunomodulatory adjuvant cancer treatment.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuyu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zhongwei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
19
|
Yu L, Zhang Y, Zhao X, He Y, Wan H, Wan H, Yang J. Spectrum-Effect Relationship between HPLC Fingerprints and Antioxidant Activity of Yangyin Tongnao Prescription. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6650366. [PMID: 34239758 PMCID: PMC8238629 DOI: 10.1155/2021/6650366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Yangyin Tongnao (YYTN) prescription is used as a traditional Chinese herbal formula, and it has antioxidant activity that mainly contributes in the treatment of cardiovascular and cerebrovascular diseases. However, the compounds related to its antioxidant activity are still unknown. In the present study, the fingerprints of YYTN extracts under different extraction conditions were obtained by high performance liquid chromatography (HPLC) to identify the common peaks to all the samples processed. A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay and ferric reducing antioxidant power (FRAP) assay were carried out to evaluate the antioxidant activity of the extracts. Spectrum-effect relationship between HPLC fingerprints and antioxidant activity of YYTN was assessed by Pearson product-moment correlation coefficient (PPMCC) and multiple linear regression analysis (MLRA). The results showed that peaks 5, 6, 13, 15, and 24 of the fingerprints were closely connected to antioxidant activity. Five peaks were identified: vanillic acid (P5), puerarin (P7), ferulic acid (P13), daidzein (P21), and formononetin (P23). Our study successfully established the spectrum-effect relationship between HPLC fingerprints and antioxidant activity of YYTN, which provided a general method for establishing quality standards with a combination of chromatography and antioxidant activity.
Collapse
Affiliation(s)
- Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yangyang Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xixi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
20
|
Fang T, Zhang X, Hu S, Yu Y, Sun X, Xu N. Enzymatic Degradation of Gracilariopsis lemaneiformis Polysaccharide and the Antioxidant Activity of Its Degradation Products. Mar Drugs 2021; 19:270. [PMID: 34066101 PMCID: PMC8150296 DOI: 10.3390/md19050270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Gracilariopsis lemaneiformis polysaccharides (GLP) were degraded using pectinase, glucoamylase, cellulase, xylanase, and β-dextranase into low-molecular-weight polysaccharides, namely, GPP, GGP, GCP, GXP, and GDP, respectively, and their antioxidant capacities were investigated. The degraded GLP showed higher antioxidant activities than natural GLP, and GDP exhibited the highest antioxidant activity. After the optimization of degradation conditions through single-factor and orthogonal optimization experiments, four polysaccharide fractions (GDP1, GDP2, GDP3, and GDP4) with high antioxidant abilities (hydroxyl radical scavenging activity, DPPH radical scavenging activity, reduction capacity, and total antioxidant capacity) were obtained. Their cytoprotective activities against H2O2-induced oxidative damage in human fetal lung fibroblast 1 (HFL1) cells were examined. Results suggested that GDP pretreatment can significantly improve cell viability, reduce reactive oxygen species and malonaldehyde levels, improve antioxidant enzyme activity and mitochondria membrane potential, and alleviate oxidative damage in HFL1 cells. Thus, the enzyme degradation of GLP with β-dextranase can significantly improve its antioxidant activity, and GDP might be a suitable source of natural antioxidants.
Collapse
Affiliation(s)
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (T.F.); (S.H.); (Y.Y.); (X.S.)
| | | | | | | | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (T.F.); (S.H.); (Y.Y.); (X.S.)
| |
Collapse
|
21
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
22
|
Zhang H, Li H, Zhang Z, Hou T. Optimization of ultrasound-assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities. J Food Sci 2021; 86:306-318. [PMID: 33462808 DOI: 10.1111/1750-3841.15597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
In this study, response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) process of perilla seed meal polysaccharides (PSMP). The optimal conditions for UAE of PSMP were: liquid-solid ratio of 26.00 mL/g, ultrasonic temperature of 43.00 °C, ultrasonic time of 52.00 min, and ultrasonic power of 229.00 W, the optimal conditions lead to an yield of 6.137 ± 0.062%. The structural characteristics of molecular weight, compositional monosaccharides, and glycosidic linkages were determined by size exclusion chromatography with multiangle light scattering, gas chromatography-mass spectrometry, Fourier-transfer infrared spectroscopy, and nuclear magnetic resonance detections. Scanning electron microscopy analysis showed that many holes were formed on the surface of PSM after UAE. The antioxidant activities of PSMP were investigated using various assays in vitro. The results suggested that PSMP is potential natural resource of antioxidants for medicine and functional foods. PRACTICAL APPLICATION: The selection of raw material perilla seed meal is conducive to the comprehensive utilization of edible resources. With consumer demands for newly developed foods with natural, wholesome ingredients are increasing nowadays. This study provides effective reference for in-depth research on other medicine-food dual-use resources. Ultrasound-assisted extraction (UAE) is a promising alternative method for hot water reflux extraction (HWRE) of polysaccharides for advantages of high efficiency and energy saving. In this work, the UAE process optimized by response surface methodology is more suitable for industrial application that can effectively decrease total cost of production by reducing the extraction temperature, shortening extraction time, and increasing raw material utilization.
Collapse
Affiliation(s)
- Hongjiao Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
23
|
Abstract
Cancer is one of the leading causes of death and one of the most important public health problems in the world. And every year, millions of new cancers and hundreds of thousands of cancer-related deaths are reported worldwide. In recent decades, a number of biologically active polysaccharides and polysaccharide-protein complexes have been isolated from plants, lichen, algae, yeast, fungi and mushroom, and due to their antitumor and immunomodulatory properties, these compounds have received considerable attention. Overall, the two key mechanisms by which polysaccharides act on tumor cells are direct action (inhibition of cancer cell growth and induction of programmed cell death/apoptosis) and indirect action (stimulation of immunity). Immunosuppressive effects are recognizable in both cancer patients and tumor bearing animals, suggesting that the immune system plays an important role in the immune surveillance of cancer cells. Thus, enhancement of the host immune response has been evaluated as a possible way of inhibiting tumor growth without damaging the host. In addition to their therapeutic and prophylactic properties, the polysaccharides are effective and less toxic than chemotherapy. The anticancer activity and immunomodulatory effects of most polysaccharides have shown the promising and real potential for the benefits of human health.
Collapse
Affiliation(s)
- Anley Teferra Kiddane
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
24
|
The Protective Effects and Potential Mechanisms of Ligusticum chuanxiong: Focus on Anti-Inflammatory, Antioxidant, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8205983. [PMID: 33133217 PMCID: PMC7591981 DOI: 10.1155/2020/8205983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Ligusticum chuanxiong (LC) is a Chinese materia medica which is widely used in clinical settings to treat headaches, blood extravasation, and arthritis. Recent studies demonstrate that LC possesses versatile pharmacological functions, including antiatherosclerosis, antimigraine, antiaging, and anticancer properties. Moreover, LC also shows protective effects in the progression of different diseases that damage somatic cells. Oxidative stress and inflammation, which can induce somatic cell apoptosis, are the main factors associated with an abundance of diseases, whose progresses can be reversed by LC. In order to comprehensively review the molecular mechanisms associated with the protective effects of LC, we collected and integrated all its related studies on the anti-inflammatory, antioxidant, and antiapoptotic effects. The results show that LC could exhibit the mentioned biological activities by modulating several signaling pathways, specifically the NF-κB, Nrf2, protein kinase, and caspase-3 pathways. In future investigations, the pharmacokinetic properties of bioactive compounds in LC and the signaling pathway modulation of LC could be focused.
Collapse
|
25
|
Pu ZH, Dai M, Xiong L, Peng C. Total alkaloids from the rhizomes of Ligusticum striatum: a review of chemical analysis and pharmacological activities. Nat Prod Res 2020; 36:3489-3506. [PMID: 33034219 DOI: 10.1080/14786419.2020.1830398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rhizome Chuanxiong (RCX), the dried rhizomes of Ligusticum striatum DC., is a geoauthentic TCM herb distributed in Sichuan province of China that possesses efficacy in promoting blood circulation, removing blood stasis and alleviating pain. Rhizome Chuanxiong total alkaloids (RCXTAs) are one of the major characteristic constituents of RCX with the effects of antimigraine, neuroprotective, cardioprotective and other cardiovascular and cerebrovascular diseases. Over the past years, rapid development of technology has advanced some aspects of RCXTAs. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of RCXTAs, and to highlight new challenges.
Collapse
Affiliation(s)
- Zhong-Hui Pu
- Department of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Dai
- Department of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Liang Xiong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Niknam R, Ghanbarzadeh B, Ayaseh A, Rezagholi F. Barhang (
Plantago major
L.) seed gum: Ultrasound‐assisted extraction optimization, characterization, and biological activities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rasoul Niknam
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Babak Ghanbarzadeh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| | - Ali Ayaseh
- Faculty of Agriculture, Department of Food Science and Technology University of Tabriz Tabriz Iran
| | - Fatemeh Rezagholi
- Faculty of Engineering, Department of Food Engineering Near East University Nicosia Turkey
| |
Collapse
|
27
|
Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 2020; 11:291. [PMID: 32341354 PMCID: PMC7184730 DOI: 10.1038/s41419-020-2488-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow (BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia, the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy. An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping eliminate LSCs without disturbing normal hematopoietic cells.
Collapse
|
28
|
Niknam R, Mousavi M, Kiani H. New Studies on the Galactomannan Extracted from Trigonella foenum-graecum (Fenugreek) Seed: Effect of Subsequent Use of Ultrasound and Microwave on the Physicochemical and Rheological Properties. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02437-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
LI H, ZHANG H, ZHANG Z, CUI L. Optimization of ultrasound-assisted enzymatic extraction and in vitro antioxidant activities of polysaccharides extracted from the leaves of Perilla frutescens. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.29518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Mo Q, Zhou G, Xie B, Ma B, Zang X, Chen Y, Cheng L, Zhou JH, Wang Y. Evaluation of the hepatoprotective effect of Yigan mingmu oral liquid against acute alcohol-induced liver injury in rats. BMC Complement Med Ther 2020; 20:32. [PMID: 32024513 PMCID: PMC7076881 DOI: 10.1186/s12906-020-2817-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Yigan mingmu oral liquid (YGMM) is a herbal medicine based on a famous Chinese herbal formula that has been used for sore eyes for more than 400 years. Eye health is closely associated with the liver based on TCM. This study aimed to investigate the hepatoprotective effect of YGMM against acute liver injury induced by alcohol in rats. Methods Experimental rats were administered with silymarin and YGMM through the gastric gavage during the entire experiment. Starting from the 11th day, the rats were administered orally with 14 ml/kg Red Star Erguotou Liquor, a popular brand, at 4 h after the dose of silymarin (100 mg/kg) and YGMM (1, 2.5 and 5 ml/kg in low, middle and high dosage group, respectively) once a day for 4 weeks except for the rats in the normal group. Biochemical parameters, including ALT, AST, TB, TG, T-SOD, GSH, and MDA were detected to evaluate the protective effect of YGMM. Pathological changes were observed through histopathological examination. Results Treatment with YGMM exhibited a significant protective effect by reversing the biochemical parameters (ALT, AST, TB, TG, and GSH) and histopathological changes. Histopathological examination by Oil Red O Staining Solution showed that lipid droplets were significantly reduced in the silymarin and YGMM groups (p < 0.001) when compared to alcohol group. Conclusions YGMM exhibits a significant hepatoprotective activity against acute liver injury induced by alcohol in rats.
Collapse
Affiliation(s)
- Qigui Mo
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Gao Zhou
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Baibo Xie
- Beijing Hebabiz Biotechnology Co. Ltd, Beijing, 102206, People's Republic of China.,Guangxi Hebabiz Pharmaceutical Co. Ltd, National and Region joint Engineering Center for Anticancer Drug Development, Qinzhou, 535008, People's Republic of China
| | - Bingxin Ma
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xinyu Zang
- Beijing Hebabiz Biotechnology Co. Ltd, Beijing, 102206, People's Republic of China.,Guangxi Hebabiz Pharmaceutical Co. Ltd, National and Region joint Engineering Center for Anticancer Drug Development, Qinzhou, 535008, People's Republic of China
| | - Yuxin Chen
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Linyou Cheng
- Guangxi Hebabiz Pharmaceutical Co. Ltd, National and Region joint Engineering Center for Anticancer Drug Development, Qinzhou, 535008, People's Republic of China
| | - James Hua Zhou
- Beijing Hebabiz Biotechnology Co. Ltd, Beijing, 102206, People's Republic of China. .,Guangxi Hebabiz Pharmaceutical Co. Ltd, National and Region joint Engineering Center for Anticancer Drug Development, Qinzhou, 535008, People's Republic of China.
| | - Youwei Wang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China. .,MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
31
|
Hovenia dulcis polysaccharides: Influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities. Int J Biol Macromol 2020; 148:1010-1020. [PMID: 31923506 DOI: 10.1016/j.ijbiomac.2020.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The directional effect of single-frequency ultrasonic was the cause of the low extraction yield of polysaccharide macromolecule. Thus, a possible solution was to use multi-frequency ultrasonic technology to improve the yield of polysaccharide. Single-frequency (SF), dual-frequency (DF), and three-frequency (TF) ultrasonic extraction were applied to extract polysaccharides of Hovenia dulcis (HDPs). A maximal polysaccharide extraction yield (9.02 ± 0.29%) was gat using the dual-frequency ultrasonic with optimized DF conditions comprising 58.00 °C, 33.00 min, 28&40 kHz. The three HDPs were compared for their physicochemical, rheological, and functional properties, and their antioxidant activities. DF-HDPs contain higher uronic acid than SF-HDPs and TF-HDPs. Rheological tests indicated that the HDPs had excellent colloid properties and a promising potential to serve as a thickener, gelatinizer, and stabilizing agent in the food industry. Moreover, the DF-HDPs exhibited a notable oil holding capacity (3.92 ± 0.04 g oil/g), foaming capacity (35.26 ± 0.47%), and emulsion capacity (43.96 ± 0.67%). Compared to the SF- and TF-HDPs, the DF-HDPs had superior antioxidant activities. In conclusion, a better extraction method (dual-frequency ultrasonic extraction) was achieved.
Collapse
|
32
|
Galviz-Quezada A, Ochoa-Aristizábal AM, Arias Zabala ME, Ochoa S, Osorio-Tobón JF. Valorization of iraca (Carludovica palmata, Ruiz & Pav.) infructescence by ultrasound-assisted extraction: An economic evaluation. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
34
|
Cai L, Chen B, Yi F, Zou S. Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int J Biol Macromol 2019; 140:907-919. [DOI: 10.1016/j.ijbiomac.2019.08.161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022]
|
35
|
Wang W, Fang S, Xiong Z. Protective effect of polysaccharide from Ligusticum chuanxiong hort against H2O2-induced toxicity in zebrafish embryo. Carbohydr Polym 2019; 221:73-83. [DOI: 10.1016/j.carbpol.2019.05.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023]
|
36
|
Ming L, Huang H, Jiang Y, Cheng G, Zhang D, Li Z. Quickly Identifying High-Risk Variables of Ultrasonic Extraction Oil from Multi-Dimensional Risk Variable Patterns and a Comparative Evaluation of Different Extraction Methods on the Quality of Forsythia suspensa Seed Oil. Molecules 2019; 24:molecules24193445. [PMID: 31547523 PMCID: PMC6803820 DOI: 10.3390/molecules24193445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 12/04/2022] Open
Abstract
Generally, essential oils and components of interest are extracted from plants using organic solvent, distillation, ultrasound and supercritical extraction methods. Ultrasonic extraction (UE) has the advantage of high efficiency, but its process is complicated and it has numerous variables. In this study, an L18-Hunter experimental design was applied for the first time to investigate the practicability of applying UE to Forsythia suspensa seed oil. Six potential high-risk variables, including numerical and non-numeric types, were obtained from the risk analysis and their impacts on global yield and antioxidant activity were screened. Furthermore, oils obtained by different extraction processes (i.e., UE, supercritical fluid extraction (SFE), soxhlet extraction (SE) and hydrodistillation extraction (HD)) were analyzed. A comparative study of these oils was characterized and compared by FT-IR, GC-MS and antioxidant activity. The obtained results show that the type of solvent, solvent-to-solid ratio, extraction power and time were the significant variables affecting the extraction yield, whereas antioxidant activity was only affected by the type of solvent. The regression coefficients of the yield and antioxidant activity models were 0.79 and 0.91, and the ANOVA of the models were 0.013 and <0.0001, respectively. Beta-Pinene was the main abundant component in the oils for the UE, SFE, SE and HD methods and the content was about 46%~52.4%. In conclusion, the L18-Hunter design could be used as an effective experimental design method for rapid screening of high-risk variables. Regarding extraction efficiency, chemical composition and biological activity, UE not only offered a robust Forsythia suspensa seed oil extraction process, but also provided a time- and cost-effective advantage to the food and pharmaceutical industry when compared to the SFE, SE and HD extraction processes.
Collapse
Affiliation(s)
- Liangshan Ming
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Yumao Jiang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Gengjinsheng Cheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Daoying Zhang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Zhe Li
- National Engineering Research Center for Modernization of Traditional Chinese Medicine (TCM)-Hakka TCM Resource Branch Center, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| |
Collapse
|
37
|
Chen W, Jia Z, Zhu J, Zou Y, Huang G, Hong Y. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities. Int J Biol Macromol 2019; 140:1116-1125. [PMID: 31425762 DOI: 10.1016/j.ijbiomac.2019.08.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
This study aimed to obtain the purified fractions of Mytilus coruscus polysaccharides (MCPs) and investigate their antioxidant activities. MCPs were prepared through ultrasonic-assisted enzymatic extraction optimized by employing the response surface methodology. A single-factor experiment was conducted using the Box-Behnken design to determine the optimum extraction conditions of MCPs. The ultrasonic power was 60 W, liquid-to-material ratio was 30 mL/g, extraction time was 36 min, extraction temperature was 64 °C, enzyme concentration was 3.2%, and polysaccharide extraction yield was 12.86% ± 0.12%. A novel polysaccharide (MCP1-2) was obtained after the purification with AB-8 macroporous resin, DEAE Sepharose Fast Flow, and Sepharose CL-6B column. The molecular weight of MCP1-2 was estimated to be 134.9 kDa according to high-performance gel permeation chromatography. High-pressure liquid-phase chromatography results showed that MCP1-2 contained mannose, rhamnose, glucuronic acid, glucose, galactose, and L-Fuc at a molar ratio of 1.53:1:4.83:81.82:2.36:1.51. Infrared and NMR spectroscopies confirmed that MCP1-2 possessed α- and β- configurations. The antioxidant activities of MCP1-2 were investigated in vitro, and the results showed that MCP1-2 had good antioxidant activity and can be used as a natural antioxidant in food.
Collapse
Affiliation(s)
- Wenwei Chen
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China.
| | - Zhenbao Jia
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Jiajie Zhu
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Yiran Zou
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Guangrong Huang
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Yao Hong
- Zhejiang Marine Development Research Institute, Zhoushan, China
| |
Collapse
|
38
|
Chai Y, Kan L, Zhao M. Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int J Biol Macromol 2019; 134:588-594. [DOI: 10.1016/j.ijbiomac.2019.04.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
39
|
Wang Q, Yan T, Jiang W, Hu N, Zhang S, Yang P, Zhang W, Shi L, Liu L. Simultaneous quantification of ligustilide, dl-3-n-butylphthalide and senkyunolide A in rat plasma by GC-MS and its application to comparative pharmacokinetic studies of Rhizoma Chuanxiong extract alone and Baizhi Chuanxiong Decoction. Biomed Chromatogr 2019; 33:e4625. [PMID: 31222844 DOI: 10.1002/bmc.4625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/08/2022]
Abstract
The herb couple has special clinical significance in reducing the toxicity and increasing the efficacy of drugs. The combination of Radix Angelicae Dahuricae (Baizhi, BZ) and Rhizoma Chuanxiong (ChuanXiong, CX) is a traditional herb couple. The combination performs better than the CX extract alone in the treatment of migraine and has been used for thousands of years. However, the specific compatibility mechanisms are still unclear. Ligustilide, dl-3-n-butylphthalide and senkyunolide A are the major active ingredients in CX and BZ-CX decoction. However, a comprehensive study of the pharmacokinetics of CX has not been carried out. A gas chromatography-mass spectroscopy (GC-MS) method with high selectivity, sensitivity and accuracy was developed. An SH-Rxi-5Sil (30 m × 0.25 mm i.d., and 0.25 μm film thickness) column was employed in the GC separation. Selectivity, linearity, precision, accuracy, recovery, matrix effect and stability were used to validate the current GC-MS method. Using the validated method, this is the first time to study on the comparative pharmacokinetics of ligustilide, dl-3-n-butylphthalide and senkyunolide A from CX alone and BZ-CX decoction in rat plasma. The pharmacokinetic parameters (Cmax , Tmax , T1/2 , AUC0-t , AUC0-∞ and CLz/F) of all of the detected ingredients showed significant differences between the two groups (P < 0.05). The results are helpful for further investigation of the compatibility mechanism of BZ-CX decoction.
Collapse
Affiliation(s)
- Qinhui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Na Hu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Peng Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wenjuan Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
40
|
Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr Polym 2019; 210:412-428. [DOI: 10.1016/j.carbpol.2019.01.064] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
|
41
|
Zou Y, Du F, Hu Q, Wang H. The structural characterization of a polysaccharide exhibiting antitumor effect from Pholiota adiposa mycelia. Sci Rep 2019; 9:1724. [PMID: 30741980 PMCID: PMC6370848 DOI: 10.1038/s41598-018-38251-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
PAP80-2a, purified from Pholiota adiposa mycelia, is a polysaccharide exhibiting prominent antitumor effects. However, the yield of PAP80-2a was low and its structure has not been characterized, impeding the exploration of its structure-function relationship, thus influencing the development of oral drugs for antitumor therapy and immunomodulation. In order to improve the yield of PAP80-2a, response surface methodology along with Box-Behnken design was applied to optimize the ultrasonic-assisted extraction conditions for polysaccharides. Then, the structure of PAP80-2a exhibiting antitumor activity was determined from different angles. The results showed that the extraction yield of P. adiposa polysaccharides increased by 11.5% under optimized ultrasonic extraction conditions. Structural analysis showed that PAP80-2a was mainly composed of glucose, rhamnose, xylose, and galactose in a ratio of 10.00: 2.09: 4.09: 1.13. The total amino acid content in the sugar chain was 69.92 μg/mL. The sugar chain structure was [α-Rha (1 → 3)-]n, and rhamnose was located at the non-reducing end of the sugar chain, while glucose was located at the non-reducing end or in the sugar chain in 1,2,6- and 1,3,6-linked forms. Our study clearly illuminates the primary structure of PAP80-2a, but 3D structure of PAP80-2a and its structure–function relationship is a future challenge.
Collapse
Affiliation(s)
- Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fang Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Qingxiu Hu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, 2 Yuanmingyuan West road, Beijing, 100193, China
| |
Collapse
|
42
|
Luo W, Zhang JW, Zhang LJ, Zhang W. High-throughput untargeted metabolomics and chemometrics reveals pharmacological action and molecular mechanism of chuanxiong by ultra performance liquid chromatography combined with quadrupole-time-of-flight-mass spectrometry. RSC Adv 2019; 9:39025-39036. [PMID: 35540684 PMCID: PMC9075942 DOI: 10.1039/c9ra06267j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/17/2019] [Indexed: 01/05/2023] Open
Abstract
Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine. Lung cancer (LC) causes the highest morbidity and mortality among tumors disease, and has become a serious public health problem. Chuanxiong (CX) is a dried rhizome of Ligusticum Chuanxiong Hort., often used in traditional Chinese medicine and has been widely used in the treatment for tumors. However, the pharmacological effect of CX on the metabolism process of LC mice is still unclear. This study used high-throughput untargeted metabolomics aims to discover biomarkers and metabolic pathways of LC as a potential target to provide insight into the pharmacological action and effective mechanism of CX against LC. The precise structural identification of the LC biomarker has been established using ultra performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight-mass spectrometry (Q-TOF-MS) technology. UPLC-Q-TOF-MS and chemometrics methods were used to analyze the blood metabolism of LC model mice, and revealed the intervention effect of CX on LC model mice and potential therapeutic targets. The results showed that the metabolic profile clustering among the groups was obvious, and 31 potential biomarkers were finally locked, involving 7 related metabolic pathways. After treatment with CX, we found that 22 kinds of biomarkers were recalled to the main metabolic pathway which are associated with lipid metabolism. This study provides an effective biomarker reference for early clinical diagnosis of LC, and also provides a foundation for the expansion of new drugs for CX treatment of LC. Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine.![]()
Collapse
Affiliation(s)
- Wen Luo
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Jia-Wen Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Li-Juan Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Wei Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| |
Collapse
|
43
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
44
|
Li S, Ren L, Zhu X, Li J, Zhang L, Wang X, Gao F, Zhou G. Immunomodulatory effect of γ-irradiated Astragalus polysaccharides on immunosuppressed broilers. Anim Sci J 2018; 90:117-127. [PMID: 30456927 DOI: 10.1111/asj.13133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Abstract
In this study, we irradiated Astragalus polysaccharides (APS) using 25 kGy 60 Co γ ray to obtain γ-irradiated Astragalus polysaccharides (IAPS) and then investigated the effects of IAPS on growth performance and immune function of cyclophosphamide (CPM)-treated broilers. The physicochemical properties of APS and IAPS (molecular weight, water solubility, viscosity, morphological and structural properties) were evaluated. Then, 384 one-day-old Arbor Acres broiler chicks with similar initial weight were randomly assigned into 6 groups: the non-treated group (control), and CPM-treated groups were fed either a basal diet or the diets containing 900 mg/kg APS, or 900, 600, 300 mg/kg IAPS, respectively. On days 16, 18, and 20, all broilers except for the control group were intramuscularly injected with 0.5 ml CPM (40 mg/kg·BW). Broilers in the control group were intramuscularly injected with 0.5 ml sterilized saline (0.75%, wt/vol). This trial lasted for 21 days. The physicochemical treatment showed that γ irradiation could decrease the molecular weight and viscosity, and increase the water solubility of APS (p < 0.05), whereas the structural properties of APS was not affected. In the animal trial, 900 mg/kg APS or 900, 600 mg/kg IAPS relieved the decreased growth performance, thymus index, T lymphocytes proliferation, serum IgG concentration, NOS activity and the increased blood heterophil:lymphocyte ratio in CPM-treated broilers (p < 0.05). CPM-induced decreases in B lymphocytes proliferation and serum IgM concentration were only increased by IAPS at 900 mg/kg (p < 0.05). Overall, both APS and IAPS alleviated CPM-induced immunosuppression. Especially, IAPS possessed better immunomodulatory effect than APS, indicating that γ irradiation could be used as an effective method to enhance the immunomodulatory activity of APS.
Collapse
Affiliation(s)
- Shan Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lina Ren
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xudong Zhu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xiaofei Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Hu Z, Wang P, Zhou H, Li Y. Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods. Int J Biol Macromol 2018; 120:2155-2164. [PMID: 30248430 DOI: 10.1016/j.ijbiomac.2018.09.125] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the hot-water extraction (HWE) conditions which were determined to be: liquid-solid ratio 29.25:1 mL/g, extraction time 1.66 h, extraction temperature 95 °C, the optimized yield of polysaccharides 0.47 ± 0.01% (n = 3). Hot-water extraction polysaccharides (HWEP) and Microwave-assisted extraction polysaccharides (MAEP) both consist of Rha:Xyl:Ara:Fru:Glu with the molar ratio of 1.05:1.21:3.86:1:3.61:4.5 and 1:1.95:1.72:1.78:4.36:6.18, respectively. Ultrasound-assisted extraction polysaccharides (UAEP) consists of Rha:Xyl:Ara:Fru:Man:Glu with the molar ratio of 1:2.31:5.23:1.05:3.17:4.17:7.89. The molecular weight distribution of HWEP, MAEP and UAEP ranged from 16 kDa to 1698 kDa, 15 kDa to 913 kDa, and 17 kDa to 1118 kDa, respectively. The absorption peaks in FT-IR confirmed the skeletal modes of the pyranose ring in polysaccharides. The second derivative of FT-IR proved difference of polysaccharides obtained from different extraction methods. The antioxidant activity investigations shown all three polysaccharides extracts possess high scavenging activity of DPPH radicals, hydroxyl radical and ABTS+ radical. Polysaccharides from Carex meyeriana Kunth (CMKP) might be potentially used for various practical applications such as medical and food industries, and this paper provides a theoretical basis and reference for further study of CMK.
Collapse
Affiliation(s)
- Zhengyu Hu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Penghui Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yaping Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
46
|
Kia AG, Ganjloo A, Bimakr M. A Short Extraction Time of Polysaccharides from Fenugreek (Trigonella foencem graecum) Seed Using Continuous Ultrasound Acoustic Cavitation: Process Optimization, Characterization and Biological Activities. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2178-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Ge H, Chen Y, Chen J, Tian J, Liang X, Chen L. Evaluation of antioxidant activities of ethanol extract from Ligusticum subjected to in-vitro gastrointestinal digestion. Food Chem Toxicol 2018; 119:417-424. [DOI: 10.1016/j.fct.2017.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023]
|
48
|
Ren L, Wang X, Li S, Li J, Zhu X, Zhang L, Gao F, Zhou G. Effect of gamma irradiation on structure, physicochemical and immunomodulatory properties of Astragalus polysaccharides. Int J Biol Macromol 2018; 120:641-649. [PMID: 30171942 DOI: 10.1016/j.ijbiomac.2018.08.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Accepted: 08/26/2018] [Indexed: 01/03/2023]
Abstract
Astragalus polysaccharides (APS) were treated with different gamma irradiation doses (10, 25, 50, 100 and 150 kGy) to investigate the effects of gamma radiation processing on structure, physicochemical and immunomodulatory properties. The results revealed both the number-average and weight-average molecular weight of APS significantly decreased with increasing irradiation dose, whereas the solubility was increased after irradiation. A decrease in the apparent viscosity, as well as an increase in amount of small fragments of APS granules was also observed with increasing irradiation dose. FT-IR spectra indicated that gamma irradiation introduced no significant changes into the functional group status of APS. High irradiation dose (>50 kGy) caused a significant increase of yellowness and a slightly decrease of thermal stability of APS. Further, the immunomodulatory activity of irradiated APS was evaluated on Caco2 cells. APS irradiated at dose of 25 kGy exhibited the highest ability to induce nitric oxide production and up-regulate the mRNA expression of inflammatory cytokines, occludin, zonula occludens protein-1 (ZO-1) and toll-like receptor 4 (TLR4), as well as the protein expression of ZO-1 and TLR4. These findings indicate that gamma irradiation modification with a proper dose enhance immunomodulatory activity of APS by improving physicochemical properties without changing the functional groups.
Collapse
Affiliation(s)
- Lina Ren
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaofei Wang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shan Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xudong Zhu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Guanghong Zhou
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
49
|
Hu H, Zhao Q, Pang Z, Xie J, Lin L, Yao Q. Optimization extraction, characterization and anticancer activities of polysaccharides from mango pomace. Int J Biol Macromol 2018; 117:1314-1325. [PMID: 29859842 DOI: 10.1016/j.ijbiomac.2018.05.225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Response surface methodology was used to optimize the extraction conditions for ultrasonic-assisted extraction of polysaccharides from mango pomace. The Optimum extraction conditions consisted of extraction temperature of 74 °C, ultrasonic power of 170 W, extraction time of 100 min, and raw material-to-water ratio of 1:40 g/mL. Under these conditions, the extraction yield was 3.71 ± 0.07%. Three novel polysaccharide fractions, MG-1, MG-2 and MG-3 were purified from the crude polysaccharides by using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of polysaccharide fractions (MPFs) were analyzed by high performance liquid gel permeation chromatography (HPGPC) and HPLC analysis, respectively. The characterizations of MPFs were conducted with FT-IR, 1H NMR and SEM. Furthermore, the anticancer activities of the polysaccharide fractions were also investigated in vitro. Results showed that MG-1, MG-2 and MG-3 exhibited significant anticancer activities against HepG2, MCF-7, A549, HeLa, A2780, HCT-116 and BGC-823 cells in a dose-dependent manner. MPFs were also showed to promote apoptosis as seen in the nuclear morphological examination study using calcein acetyl methoxy methyl easter (calcein-AM) and propidium iodide (PI) staining. This research could serve as a theoretical reference for the efficient utilization of MPFs in biomedical and functional food.
Collapse
Affiliation(s)
- Huigang Hu
- Ministry of Agriculture Key Laboratory of Tropical Fruit Tree Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qiaoli Zhao
- Ministry of Agriculture Key Laboratory of Tropical Fruit Tree Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Zhencai Pang
- Ministry of Agriculture Key Laboratory of Tropical Fruit Tree Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jianghui Xie
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lijing Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Quansheng Yao
- Ministry of Agriculture Key Laboratory of Tropical Fruit Tree Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
50
|
Yin C, Fan X, Fan Z, Shi D, Gao H. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity. Int J Biol Macromol 2018; 111:446-454. [DOI: 10.1016/j.ijbiomac.2018.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/24/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
|