1
|
Hu L, Zhu Y, Wang C, Khalifa I, Wang Z, Zhang H, Jia Y, Liang X. A critical review of persimmon-derived pectin: Innovations in extraction, structural characterization, biological potentials, and health-promoting effects. Food Chem 2025; 463:141453. [PMID: 39368198 DOI: 10.1016/j.foodchem.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Persimmon-derived pectin (PP) is a versatile dietary polysaccharide with considerable industrial and biological significance, demonstrating a range of functionalities and health-promoting benefits. This review explores the changes in PP during postharvest and processing, detailing structural alterations and extraction techniques for optimal characteristics. Key functional attributes of PP-such as emulsification, rheology, antioxidant capacity, immunomodulation, and gut microbiota regulation-highlight its potential applications in food, healthcare, pharmaceuticals, and cosmetics. The review also explores methods to enhance the functional properties of PP through synergistic interactions with polyphenols. A strategic roadmap for advancing PP research is proposed, connecting extraction methods, structural characteristics, and functional properties to tailor PP for specific applications in food science and technology. Overall, persimmon-derived pectin is positioned as a valuable food-derived bioactive ingredient with diverse capabilities, poised to drive innovation and advance nutritional science across multiple sectors.
Collapse
Affiliation(s)
- Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China; Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang 453000, China; Engineering and Technology Research Center of Aquatic Products Processing and Quality control, Xinxiang 453000, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| |
Collapse
|
2
|
Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, Zhu Y, Chen H, Hu L, Li C. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024; 459:140344. [PMID: 38991450 DOI: 10.1016/j.foodchem.2024.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haoyu Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shin HY, Kim YS, Shin KS, Han SH, Suh HJ, Yu KW. Effect of rhamnogalacturonan-I-rich polysaccharides isolated from crabapple hydrolysates on IL-1β-induced inflammation in intestinal epithelial cells. Int J Biol Macromol 2024; 277:134240. [PMID: 39094865 DOI: 10.1016/j.ijbiomac.2024.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to investigate the structural characteristics and intracellular mechanisms of polysaccharides (MP-PE-I) purified from a crabapple (Malus prunifolia) enzymatic hydrolysate (MP-PE). Activity-guided fractionation revealed that MP-PE-I was the active moiety and significantly reduced the production and gene expression of pro-inflammatory factors in interleukin (IL)-1β-treated intestinal epithelial cells (Caco-2). Moreover, MP-PE-I downregulated the phosphorylation and nuclear localization of proteins involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways, as evidenced by immunoblotting and immunofluorescence analysis. In antagonistic studies with specific inhibitors of the MAPK and NF-κB pathways, IL-6 inhibition was significantly regulated by p38; IL-8 by IκBα, JNK, and p38; and monocyte chemoattractant protein-1 (MCP-1) by JNK, p38, and ERK. Additionally, MP-PE-I significantly decreased the mRNA and protein expression of IL-1 receptor type 1. Chemical and structural characteristic analyses showed that MP-PE-I is a polysaccharide rich in rhamnogalacturonan (RG)-I and plays a crucial role in intestinal immunomodulation. To our knowledge, this is the first study to demonstrate the intestinal immunomodulatory activity, intracellular mechanisms, and structural characteristics of RG-I-rich polysaccharides isolated from crabapples.
Collapse
Affiliation(s)
- Hyun Young Shin
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Yeon Suk Kim
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, Seoul 02841, Republic of Korea.
| | - Hyung Joo Suh
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea.
| |
Collapse
|
4
|
Hong M, Moon SK, Kim H, Hwang D. Elucidating Korean meadowsweet (Filipendula glaberrima Nakai)-derived arabinogalactan protein-induced macrophage activation and its associated mechanism of action. Int J Biol Macromol 2024; 273:132999. [PMID: 38866280 DOI: 10.1016/j.ijbiomac.2024.132999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
This study aimed to confirm macrophage-stimulatory component from Korean meadowsweet (Filipendula glaberrima; FG) and characterize its compositional and structural properties. FG-CWH, prepared via cool-water extraction and ethanol precipitation, induced the highest secretion of NO (6.0-8.0 μM), TNF-α (8.7-9.5 ng/mL), and IL-6 (1.0-5.7 ng/mL) compared to other samples at 0.4-10 μg/mL in RAW 264.7 cells. Analytical results revealed that FG-CWH is a high-molecular-weight component with an average molecular weight of 220 kDa, constituting a polysaccharide-protein mixture. Chemical and enzymatic treatment of FG-CWH indicated its primary composition as arabinogalactan protein (AGP)-rich glycoprotein, with activity likely associated with the chemical and structural characteristics of AGP. FG-CWH treatment resulted in significant and concentration-dependent increases in iNOS (20.0-29.6 folds), TNFα (10.6-18.6 folds) and IL6 (10.9-155.6 folds) gene expression, as well as the secretion of NO (5.3-6.3 μM), TNF-α (35.4-44.3 ng/mL), and IL-6 (4.1-8.4 ng/mL) secretion, even at a reduced concentration range of 125-500 ng/mL, compared to the negative control group. Immunoblotting analysis indicated FG-CWH-induced macrophage stimulation significantly associated with the activation of MAPK (ERK, JNK, and p38) and NF-κB (p65 and IκBα). These findings can serve as valuable groundwork for developing FG-derived AGP as novel functional ingredients to enhance human immunity.
Collapse
Affiliation(s)
- Mijin Hong
- Department of Integrated Biomedical and Life Science, College of Health Sciences, Korea University, 02841, South Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, South Korea; The Research Institute for Basic Sciences, Hoseo University, Asan, Chungnam 31499, South Korea.
| |
Collapse
|
5
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
6
|
Chen W, Chen J, Xu Y, Gong H, Shi S, Wang S, Wang H. Applications of the Yariv reagent in polysaccharide analysis and plant physiology from theory to practice. Carbohydr Polym 2024; 329:121781. [PMID: 38286551 DOI: 10.1016/j.carbpol.2024.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Arabinogalactan (AG), a biologically active substance found abundantly in plants, is of significant interest in plant physiology due to its unique physicochemical properties. Yariv reagent, widely utilized in AG-II related applications, forms insoluble precipitates when bound to AG-II. This paper provides a comprehensive overview of the synthesis methods, physicochemical properties, and various dissociation methods of the Yariv reagent to enhance its utility in AG-II studies. Furthermore, the review explores the binding mechanisms and applications of the Yariv reagent, highlighting the advancements in studying the Yariv-AG complex in plant physiology. The aim of this review is to inspire new research ideas and foster novel applications of the Yariv reagent from synthesis to implementation.
Collapse
Affiliation(s)
- Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Shi P, Yan Z, Chen M, Li P, Wang D, Zhou J, Wang Z, Yang S, Zhang Z, Li C, Yin Y, Huang P. Effects of dietary supplementation with Radix Isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res Vet Sci 2024; 166:105080. [PMID: 37952298 DOI: 10.1016/j.rvsc.2023.105080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.
Collapse
Affiliation(s)
- Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Miaofen Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaojie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhikun Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Du H, Xing Y, Xu Y, Jin X, Yan S, Shi B. Dietary Artemisia Ordosica Polysaccharide Enhances Spleen and Intestinal Immune Response of Broiler Chickens. BIOLOGY 2023; 12:1390. [PMID: 37997990 PMCID: PMC10669473 DOI: 10.3390/biology12111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
The spleen and small intestines are the primary immune organs that provide important immunity against various diseases. Artemisia ordosica polysaccharide (AOP) could be used as an immunologic enhancer to boost immunity in response to infection. This study was performed to explore the effects of the dietary supplementation of AOP on the growth performance and spleen and small intestine immune function in broilers. A total of 288 AA broilers (1 day old) were randomly assigned into six dietary groups. Each group included six replicates of eight broilers per cage. The broilers were fed with a basal diet supplemented with 0 mg/kg (CON), 50 mg/kg chlortetracycline (CTC), 250, 500, 750, and 1000 mg/kg AOP for 42 d. The results showed that dietary AOP supplementation affected broiler growth performance, with 750 and 1000 mg/kg of AOP being able to significantly improve broiler BWG, and 750 mg/kg of AOP was able to significantly reduce the FCR. The dietary AOP supplementation increased the levels of IgA, IgG, IgM, IL-1β, IL-2, and IL-4 in the spleen and small intestine in a dose-dependent manner (p < 0.05). Meanwhile, we found that AOP can promote the mRNA expression of TLR4/MAPK/NF-κB signaling-pathway-related factors (TLR4, MyD88, P38 MAPK, JNK, NF-κB p50, and IL-1β). In addition, the dietary supplementation of 750 mg/kg AOP provides better immunity in the tissue than the CON group but showed no significant difference from the CTC group. Therefore, AOP has an immunoregulatory action and can modulate the immune function of broilers via the TLR4/ NF-ΚB/MAPK signal pathway. In conclusion, dietary supplementation with 750 mg/kg AOP may be alternatives to antibiotics for enhancing broilers' health, immunity, and growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (Y.X.); (Y.X.); (X.J.); (S.Y.)
| |
Collapse
|
9
|
Cui Y, Wang R, Cao S, Ismael M, Wang X, Lü X. A galacturonic acid-rich polysaccharide from Diospyros kaki peel: Isolation, characterization, rheological properties and antioxidant activities in vitro. Food Chem 2023; 416:135781. [PMID: 36871504 DOI: 10.1016/j.foodchem.2023.135781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This research elucidated the structural characteristics and antioxidant activity of a galacturonic acid-rich polysaccharide (PPP-2) isolated from Diospyros kaki peel. PPP-2 was extracted by subcritical water and subsequently purified by DEAE-Sepharose FF column. PPP-2 (12.28 kDa) mainly contained galacturonic acid, arabinose, and galactose with the molar ratios of 87.15: 5.86: 4.31. The structural characteristics of PPP-2 were revealed through FT-IR, UV, XRD, AFM, SEM, Congo red, methylation, GC/MS assay and NMR spectrum. PPP-2 owned the triple helical structure and degradation temperature of 251.09 ℃. The backbone of PPP-2 was formed by →4)-α-d-GalpA-6-OMe-(1→ and →4)-α-d-GalpA-(1→ with the side chains of →5)-α-l-Araf-(1→, →3)-α-l-Araf-(1→, →3,6)-β-d-Galp-(1→ and α-l-Araf-(1→. Moreover, the inhibitory concentration (IC50) of PPP-2 to ABTS•+, DPPH•, superoxide radical and hydroxyl radical were 1.96, 0.91, 3.63, and 4.08 mg/mL, respectively. Our results suggested that PPP-2 might be a novel candidate of natural antioxidant in pharmaceuticals or functional food.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Ruiling Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Siyue Cao
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Mohamedelfatieh Ismael
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
10
|
Wang J, Zhou Y, Yu Y, Wang Y, Xue D, Zhou Y, Li X. A ginseng-derived rhamnogalacturonan I (RG-I) pectin promotes longevity via TOR signalling in Caenorhabditis elegans. Carbohydr Polym 2023; 312:120818. [PMID: 37059546 DOI: 10.1016/j.carbpol.2023.120818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Panax ginseng C. A. Meyer (ginseng), a traditional Chinese herb, is usually used to improve health and increase anti-aging activity for human. Polysaccharides are bioactive components of ginseng. Herein, using Caenorhabditis elegans as a model, we discovered a ginseng-derived rhamnogalacturonan I (RG-I) pectin WGPA-1-RG promoted longevity via TOR signalling pathway with transcription factors FOXO/DAF-16 and Nrf2/SKN-1 accumulated in the nucleus, where they activated target genes. And the WGPA-1-RG-mediated lifespan extension was dependent on endocytosis, rather than a bacterial metabolic process. Glycosidic linkage analyses combined with arabinose- and galactose-releasing enzyme hydrolyses identified the RG-I backbone of WGPA-1-RG was primarily substituted with α-1,5-linked arabinan, β-1,4-linked galactan and arabinogalactan II (AG-II) side chains. Feeding worms with the WGPA-1-RG-derived fractions which lost distinct structural elements by enzymatic digestions, we found the arabinan side chains prominently contributed to the longevity-promoting activity of WGPA-1-RG. These findings provide a novel ginseng-derived nutrient that potentially increases human longevity.
Collapse
|
11
|
Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int J Biol Macromol 2023; 225:241-254. [PMID: 36332822 DOI: 10.1016/j.ijbiomac.2022.10.257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Two neutral polysaccharides (PPP1-1 and PPP1-2) were purified from persimmon peel. PPP1-1 (21.84 kDa) was mainly composed of arabinose (22.92 %), galactose (21.09 %), glucose (35.13 %), and xylose (19.09 %), while PPP1-2 (10.42 kDa) mainly contained arabinose (32.98 %), galactose (20.81 %), glucose (26.86 %), xylose (10.46 %), and mannose (7.63 %). Methylation and NMR spectra analysis demonstrated that the backbone of PPP1-1 appeared to be →6)-α-D-Glcp-(1→, →2,6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Manp-(1→, and α-L-Araf-(1 → residues. The main chain of PPP1-2 was composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →1,2)-α-D-Glcp-(6→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →4,6)-α-D-Glcp-(1→, and →4)-β-D-Manp-(1 → residues and terminal of α-L-Araf-(1 → residue. PPP1-2 exhibited stronger antioxidant activities and better thermal stability than PPP1-1. Our results provided the foundation for further investigating the structure and biological activities of persimmon peel polysaccharides and highlighted their potential to become potential antioxidants in functional food.
Collapse
|
12
|
Özdemir N, Budak NH, Ertekin‐ Filiz B, Özer E. Occurrences and changes in aroma‐associated volatile compound profiles and prominent bioactive compounds at different stages of persimmon vinegar production process. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nilgün Özdemir
- Ondokuz Mayis University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| | - Nilgün H. Budak
- Isparta University of Applied Sciences Egirdir Vocational School, Food Processing Department Isparta Türkiye
| | - Bilge Ertekin‐ Filiz
- Süleyman Demirel University Faculty of Engineering, Department of Food Engineering Isparta Türkiye
| | - Elif Özer
- Süleyman Demirel University Faculty of Engineering, Department of Food Engineering Isparta Türkiye
| |
Collapse
|
13
|
Son SU, Lee SJ, Shin KS. Immunostimulating and intracellular signaling pathways mechanism on macrophage of rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 2022; 217:506-514. [PMID: 35843395 DOI: 10.1016/j.ijbiomac.2022.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/16/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
In this study, the intracellular signaling pathways involved in macrophage activation through the RG-I-type polysaccharide (REP-I) purified from radish leaves were elucidated. The gene expression and secretion of immune-related factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and nitrogen oxide (NO) from macrophages were enhanced by the addition of REP-I. Moreover, immunoblotting and immunocytochemistry analyses indicated that REP-I dose-dependently phosphorylated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. An investigation using different inhibitors revealed that the effect of REP-I on NO secretion was mostly promoted by c-Jun N-terminal kinase (JNK) and NF-κB. Furthermore, the secretion of IL-6 was mostly induced via extracellular-signal-regulated kinase (ERK), JNK, and NF-κB. TNF-α secretion was mostly induced via NF-κB. In contrast, an investigation using anti-pattern recognition receptor (PRR) antibodies revealed that the effect of REP-I on the secretion of NO was mostly related with dectin-1, scavenger receptor (SR), toll-like receptor (TLR)2, TLR4, CD14, and CD11b. Furthermore, the secretion of IL-6 was mostly involved with SR, and the secretion of TNF-α was mostly relevance to TLR2. In conclusion, it is affirmed that immunostimulatory activation of macrophage of REP-I purified from radish leaves was deeply associated with several PRR and phosphorylating MAPK and NF-κB.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Sue Jung Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
14
|
Shin HY, Hwang KC, Mi XJ, Moon SK, Kim YJ, Kim H. Rhamnogalacturonan I-rich polysaccharide isolated from fermented persimmon fruit increases macrophage-stimulatory activity by activating MAPK and NF-κB signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2846-2854. [PMID: 34741313 DOI: 10.1002/jsfa.11625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Persimmon (Diospyros kaki) is a familiar and widespread fruit, cultivated worldwide. To date, physiological and chemical changes in fermented persimmon fruit and its active compounds have been rarely investigated. Moreover, comparative studies on the pharmacological activities of fermented persimmon fruit-derived compounds have not been reported. RESULTS To investigate the effect of traditional fermented foods on immunostimulatory activity, non-fermented persimmon fruit (D. kaki, DK) and fermented persimmon fruit (fermented D. kaki, FDK) were prepared and further fractionated into low- and high-molecular weight fractions. FDK exhibited significantly higher activity toward the production of macrophage-stimulatory mediators compared with that of DK, and the high-molecular weight fraction (FDK-H) isolated from FDK was shown to have more potent activity than FDK. FDK-H not only increased the expression of immunostimulatory genes (TNF-α, IL-6, IL-12, and iNOS), but also stimulated the phosphorylation of both MAPK (ERK, JNK, and p38) and NF-κB (p65 and IκB) signaling molecules underlying macrophage activation. The putative chemical characteristic of FDK-H was identified as a pectic rhamnogalacturonan (RG) I-rich polysaccharide with a high molecular weight of 304 kDa containing galacturonic acid, arabinose, rhamnose, and galactose as the major monosaccharide units. CONCLUSION The present study reveals that traditional fermentation is a useful method for increasing the macrophage-immunostimulatory activity of persimmon fruit, and the increased activity may be associated with structural modification of persimmon polysaccharides. This study may serve to identify a functional ingredient as an immunostimulatory agent, and our results may be applied to develop a new immunostimulatory product using FDK-H. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyun Young Shin
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ki Cheol Hwang
- Rafarophe Co, Venture Research Center, Cheongju, Republic of Korea
| | - Xiao-Jie Mi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
15
|
Son SU, Lee SJ, Choi EH, Shin KS. Clarification of the structural features of Rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 2022; 209:923-934. [PMID: 35447261 DOI: 10.1016/j.ijbiomac.2022.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Determining the structure of REPI, an immunostimulatory polysaccharide fraction from radish leaves, is an important health objective. Herein, we show that REP-I contains nine different monosaccharides, including GalA (22.2%), Gal (32.6%), Ara (27.5%), and Rha (10.2%) as main sugars. REP-I was also reacted with β-glucosyl Yariv reagent (29.8%), suggesting the presence of the arabino-β-3,6-galactan. Furthermore, methylated-product analysis revealed that REP-I contains 13 different glycosyl linkages, including 4-linked GalpA (21.0%), 2,4-linked Rhap (7.0%), 4-linked Galp (5.8%), 5-linked Araf (10.1%), and 3,6-linked Galp (7.9%), which are characteristic of RG-I. Microstructural information was obtained by sequential degradation using four linkage-specific glycosylases and β-elimination, with fragments analyzed on the basis of sugar composition, methylation, and MS/MS spectra. The results show that the immunostimulatory activity of REP-I is possibly due to the structure of RG-I, which is composed of a main chain with repeating [→2)-Rhap-(1 → 4)-GalpA-(1→] linkage units and three side-chains: a branched α(1 → 5)arabinan, a β(1 → 4)galactan, and arabino-β-3,6-galactan, which are branched at the C(O)4 position of each Rha residue in the REP-I main chain.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Sue Jung Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Eun Hye Choi
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
16
|
Son SU, Park HY, Suh HJ, Shin KS. Evaluation of antitumor metastasis via immunostimulating activities of pectic polysaccharides isolated from radish leaves. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Yang Z, Xu M, Li Q, Wang T, Zhang B, Zhao H, Fu J. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int J Biol Macromol 2021; 182:1874-1882. [PMID: 34058211 DOI: 10.1016/j.ijbiomac.2021.05.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to investigate the effect of polysaccharide extracts from persimmon (PPE) on the proliferation of Lactobacillus and the gut microbiota of mice. Lactobacillus strains were cultured in medium containing PPE, and differential gene expression was evaluated using transcriptomics. In addition, 16S rDNA was employed to analyze the abundance and diversity of fecal colonies in mice, and the influence of PPE on the intestinal flora in mice was further examined. The results showed that Lactobacillus acidophilus NCFM and Lactobacillus acidophilus CICC 6075 could proliferate in PPE medium. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis indicated that glucose metabolism-related genes, such as phosphoyruvate hydratase (eno) and PTS mannose transporter subunit IIAB (manX), were up-regulated. The metabolic pathways of fructose and mannose were also significantly up-regulated. After gavage of mice with PPE, 16S rDNA sequencing of mouse feces indicated that the beneficial bacteria in the intestines proliferated and the abundance of harmful bacteria was reduced. PPE can maintain the balance of intestinal microorganisms in mice. Therefore, PPE has a significant positive effect on both Lactobacillus proliferation and gut microbiota of mice.
Collapse
Affiliation(s)
- Ziyuan Yang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Qi Li
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Jianmin Fu
- Non-timber Forest R&D Center, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
18
|
Song J, Zhang J, Su Y, Zhang X, Li J, Tu L, Yu J, Zheng Y, Wang M. Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
19
|
Wang H, Chen Y, Lin H, Lin M, Chen Y, Lin Y. 1-Methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in Anxi persimmon fruit during storage. Int J Biol Macromol 2020; 151:723-729. [DOI: 10.1016/j.ijbiomac.2020.02.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
|
20
|
Zhao Y, Yan B, Wang Z, Li M, Zhao W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev Med Chem 2020; 20:96-106. [DOI: 10.2174/1389557519666190913151632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 05/25/2019] [Indexed: 11/22/2022]
Abstract
Natural polysaccharide is a kind of natural macromolecular which can be extracted from
plants, fungi, algae, animals, and bacteria. The monosaccharide compositions and glucosidic bonds of
polysaccharides from different origins vary substantially. Natural polysaccharides have been shown to
possess complex, important and multifaceted biological activities including antitumor, anticoagulant,
antioxidative, antiviral, immunomodulatory, antihyperlipidemic and antihepatotoxic activities. Their
properties are mainly due to their structural characteristics. It is necessary to develop polysaccharide
immunomodulators with potential for preventive or therapeutic action. The present paper summarizes
the structural features, immunostimulatory activity and the immunomodulatory mechanisms of natural
polysaccharides. In particular, it also provides an overview of representative natural polysaccharide
immunomodulators.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Bocheng Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300353, China
| |
Collapse
|
21
|
Zhang XL, Zheng Y, Xia ML, Wu YN, Liu XJ, Xie SK, Wu YF, Wang M. Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods 2020; 9:E166. [PMID: 32050682 PMCID: PMC7074530 DOI: 10.3390/foods9020166] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Vinegar is one of the most widely used acidic condiments. In recent decades, rapid advances have been made in the area of vinegar research, and the intellectual structure pertaining to this domain has significantly evolved. Thus, it is important that scientists keep abreast of associated developments to ensure an appropriate understanding of this field. To facilitate this current study, a bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data retrieved from the Web of Science Core Collection (WoSCC) database. In total, 883 original research and review articles from between 1998 and 2019 with 19,663 references were analyzed by CiteSpace. Both a macroscopical sketch and microscopical characterization of the whole knowledge domain were realized. According to the research contents, the main themes that underlie vinegar research can be divided into six categories, that is, microorganisms, substances, health functions, production technologies, adjuvant medicines, and vinegar residues. In addition to the latter analysis, emerging trends and future research foci were predicted. Finally, the evolutionary stage of vinegar research was discerned according to Shneider's four-stage theory. This review will help scientists to discern the dynamic evolution of vinegar research, as well as highlight areas for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (X.-L.Z.); (Y.Z.); (M.-L.X.); (Y.-N.W.); (X.-J.L.); (S.-K.X.); (Y.-F.W.)
| |
Collapse
|
22
|
Xia T, Zhang B, Duan W, Zhang J, Wang M. Nutrients and bioactive components from vinegar: A fermented and functional food. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103681] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Lee SJ, In G, Han ST, Lee MH, Lee JW, Shin KS. Structural characteristics of a red ginseng acidic polysaccharide rhamnogalacturonan I with immunostimulating activity from red ginseng. J Ginseng Res 2019; 44:570-579. [PMID: 32617037 PMCID: PMC7322754 DOI: 10.1016/j.jgr.2019.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 12/01/2022] Open
Abstract
Background Many researchers reported that the various immune activities of red ginseng are due to acid polysaccharides. But, the exact structural characteristics of the acidic polysaccharide in red ginseng have not been fully elucidated. Therefore, we isolated the acidic polysaccharide from red ginseng and characterized the structural property of the active moiety of this polysaccharide, which contributes to the immunostimulatory activity of red ginseng. Methods A polysaccharide (RGP-AP-I) was purified from red ginseng via size-exclusion chromatography using Sephadex G-100. Immunostimulatary activity of RGP-AP-I was investigated via anti-complementory and macrophage stimulatory activity. The structure of RGP-AP-I was characterized by HPLC, sugar composition, β-glucosyl Yariv reagent and methylation analysis. Results Peritoneal macrophages stimulated using RGP-AP-I significantly augmented the production of various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factor (TNF)-α. The primary structure of RGP-AP-I was elucidated by assessing its sugar composition and methylation analysis. RGP-AP-I is a 96 kDa acidic polysaccharide, and comprises nine different monosaccharides, which mainly include sugars such as rhamnose (Rha, 9.5%), galacturonic acid (GalA, 18.4%), galactose (Gal, 30.4%), and arabinose (Ara, 35.0%). RGP-AP-I exhibited an considerable reaction with the β-glucosyl Yariv reagent, revealing the presence of arabino-β-3,6-galactan. Methylation analysis indicated that RGP-AP-I comprises 21 different glycosyl linkages, such as 3-, 4-, 6- and 3,6-linked Galp; 5-linked Araf; 2,4-linked Rhap; and 4-linked GalAp, which are characteristics of rhamnogalacturonan I (RG-I). Conclusion we assumed that the immunostimulatory activity of RGP-AP-I may be due to the RG-I structure, which comprises a main chain with a repeating linkage unit, [→2)-Rhap-(1→4)-GalAp-(1→] and three groups of side chains such as (1→5)-linked arabinan, (1→4)-linked galactan, and arabino-β-3,6-galactan, which branch at the C(O)4 positions of Rha residues in the main chain of RGP-AP-I.
Collapse
Affiliation(s)
- Sue Jung Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Gyo In
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sung-Tai Han
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Mi-Hyang Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong-Won Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| |
Collapse
|
24
|
Song YR, Han AR, Lim TG, Lee EJ, Hong HD. Isolation, purification, and characterization of novel polysaccharides from lotus (Nelumbo nucifera) leaves and their immunostimulatory effects. Int J Biol Macromol 2019; 128:546-555. [PMID: 30685309 DOI: 10.1016/j.ijbiomac.2019.01.131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/23/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
In this study, a crude water-soluble polysaccharide (LLWP-C) was extracted from lotus leaves and further purified by size exclusion chromatography, to obtain the two main polysaccharides, LLWP-1 and LLWP-3. Physical and chemical analyses showed that they were homogeneous polysaccharides in β-type glycosidic linkage. LLWP-1 was devoid of helical conformation, had a molecular weight of 85.1 kDa and was mainly composed of Rha, Ara, Gal, Glu, and GalA in a molar ratio of 7.0:24.8:28.0:6.0:26.4. LLWP-3 showed a helical conformation, had a molecular weight of 12.5 kDa and consisted mainly of Rha, Ara, Gal, Glu, Man, and GalA in a molar ratio of 6.6:9.8:15.0:8.9:6.1:47.2. It was demonstrated that LLWP-C and both purified LLWP-1 and LLWP-3 could effectively enhance the proliferation, phagocytosis, nitric oxide (NO), and cytokine secretions by activating corresponding mRNA expression in macrophages, via MAPK and NF-κB pathways. LLWP-3 displayed the greatest immunostimulatory potential, followed by LLWP-1 and LLWP-C. These findings suggest that polysaccharides extracted from lotus leaf exert immunostimulatory activity that could be further investigated to develop functional foods and natural immunopotentiating therapeutic agents.
Collapse
Affiliation(s)
- Young-Ran Song
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Ah-Ram Han
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Jung Lee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee-Do Hong
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
25
|
Discrimination of Structural and Immunological Features of Polysaccharides from Persimmon Leaves at Different Maturity Stages. Molecules 2019; 24:molecules24020356. [PMID: 30669480 PMCID: PMC6359638 DOI: 10.3390/molecules24020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated changes in the structural and immunological features of polysaccharides (S1-PLE0, S2-PLE0, and S3-PLE0) extracted from persimmon leaves at three different growth stages. Physicochemical analyses revealed that their chemical compositions, molecular weight distributions, and linkage types differed. High-performance size-exclusion chromatograms showed that the molecular weights of the polysaccharides increased during successive growth stages. In addition, seasonal variation of persimmon leaves affected the sugar compositions and glycosidic linkages in the polysaccharides. S2-PLE0 was composed of comparatively more galactose, arabinose, rhamnose, xylose, and galacturonic acid, showing the presence of β-glucopyranoside linkages. Significant differences also occurred in their immunostimulatory effects on RAW264.7 macrophages, with respect to which their activities could be ordered as S2-PLE0 > S3-PLE0 > S1-PLE0. Evidently, S2-PLE0 showed the greatest immunostimulatory activity by enhancing the phagocytic capacity and promoting nitric oxide (NO) and cytokines secretion through the upregulation of their gene expression in macrophages. These results suggest that differences in the structural features of polysaccharides according to the different maturity of persimmon leaves might impact their immunostimulatory properties. The results also provide a basis for optimizing persimmon leaf cultivation strategies for food and medical uses of the polysaccharides.
Collapse
|
26
|
Martel J, Ko YF, Ojcius DM, Lu CC, Chang CJ, Lin CS, Lai HC, Young JD. Immunomodulatory Properties of Plants and Mushrooms. Trends Pharmacol Sci 2017; 38:967-981. [DOI: 10.1016/j.tips.2017.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023]
|
27
|
Kim H, Lee H, Shin KS. Intestinal immunostimulatory activity of neutral polysaccharide isolated from traditionally fermented Korean brown rice vinegar. Biosci Biotechnol Biochem 2016; 80:2383-2390. [PMID: 27684966 DOI: 10.1080/09168451.2016.1217149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, diverse intestinal immunostimulatory activities were demonstrated for polysaccharides (KBV-CP) isolated from Korean brown rice vinegar. Monosaccharide composition analysis indicated that KBV-CP was composed mainly of neutral sugar units, primarily glucose and mannose. In vitro, KBV-CP significantly augmented the productions of immunoglobulin A (IgA) and IgA-related cytokines such as interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) in a dose-dependent manner. Furthermore, results of an in vitro co-culture system of intestinal Caco-2 cells and RAW 264.7 macrophage cells suggested that KBV-CP is not only cytotoxic to Caco-2 cells but also capable of being transported across the small intestinal barrier. Oral administration of KBV-CP every other day for 20 days induced the IgA production by Peyer's patch cells as well as in intestinal fluid and fecal extract. In addition, the production of IgA-related cytokines such as TGF-β and IL-6, and granulocyte macrophage colony-stimulating factor was triggered.
Collapse
Affiliation(s)
- Hoon Kim
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea.,b Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Ho Lee
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| | - Kwang-Soon Shin
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| |
Collapse
|