1
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Vozgirdaite D, Allard-Vannier E, Velge-Roussel F, Douez E, Jolivet L, Boursin F, Chourpa I, Aubrey N, Hervé-Aubert K. Metformin-encapsulating immunoliposomes conjugated with anti-TROP 2 antibody fragments for the active targeting of triple-negative breast cancer. NANOSCALE 2025. [PMID: 39775761 DOI: 10.1039/d4nr03224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Trophoblast cell-surface antigen 2 (TROP 2) has re-emerged as a promising biomarker in triple-negative breast cancer (TNBC), with high overexpression in many TNBC cases. However, despite its potential and approval as an antibody-drug-conjugate for TNBC treatment, TROP 2-targeted delivery systems are currently underexplored. Therefore, this study was aimed at exploiting the potential of TROP 2 targeting by encapsulating metformin (Met), an antidiabetic drug associated with tumor growth inhibitory properties, inside liposomes decorated with TROP 2-targeting single-chain variable fragments (scFvs). The optimization of scFv grafting resulted in Met-immunoliposomes with an average diameter of less than 200 nm, low polydispersity index (∼0.1), negative surface charge (<-10 mV), high Met drug loading (>150 mg g-1), and high affinity towards TROP 2 binding. Furthermore, Met-immunoliposomes were reproducible, and the scFv conjugation was stable in the presence of serum for five days. Their cellular uptake increased 4 folds in two-dimensional and 9 folds in three-dimensional TNBC models owing to the high affinity towards TROP 2 binding. Finally, it was observed that the therapeutic effect of Met in suppressing cancer cell growth and proliferation was superior when using anti-TROP 2 scFv-grafted Met-immunoliposomes, which completely stopped the spheroid growth and inhibited the expression of adenosine triphosphate. This study is one of the first reports to explore the combination of nanoparticle-based drug delivery systems to target the TROP 2 protein in TNBC, and to the best of our knowledge, this is the first report to specifically combine the use of scFvs with TROP 2 targeting to deliver therapeutics for TNBC treatment.
Collapse
Affiliation(s)
- Daiva Vozgirdaite
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | | | | | - Emmanuel Douez
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
- Pharmacy Department, University Hospital Center of Tours, 37200 Tours, France
| | - Louis Jolivet
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Fanny Boursin
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Igor Chourpa
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | - Nicolas Aubrey
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Katel Hervé-Aubert
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| |
Collapse
|
3
|
Liu Y, Huang W, Saladin RJ, Hsu JC, Cai W, Kang L. Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook. Mol Pharm 2024; 21:5909-5928. [PMID: 39537365 DOI: 10.1021/acs.molpharmaceut.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein, plays a dual role in physiological and pathological processes. In healthy tissues, Trop2 facilitates development and orchestrates intracellular calcium signaling. However, its overexpression in numerous solid tumors shifts its function toward driving cell proliferation and metastasis, thus leading to a poor prognosis. The clinical relevance of Trop2 is underscored by its utility as both a biomarker for diagnostic imaging and a target for therapy. Notably, the U.S. Food and Drug Administration (FDA) has approved sacituzumab govitecan (SG), a novel Trop2-targeted agent, for treating triple-negative breast cancer (TNBC) and refractory urothelial cancer, highlighting the significance of Trop2 in clinical oncology. Molecular imaging, a powerful tool for visualizing and quantifying biological phenomena at the molecular and cellular levels, has emerged as a critical technique for studying Trop2. This approach encompasses various modalities, including optical imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted antibodies labeled with radioactive isotopes. Incorporating Trop2-targeted molecular imaging into clinical practice is vital for the early detection, prognostic assessment, and treatment planning of a broad spectrum of solid tumors. Our review captures the latest progress in Trop2-targeted molecular imaging, focusing on both diagnostic and therapeutic applications across diverse tumor types, including lung, breast, gastric, pancreatic, prostate, and cervical cancers, as well as salivary gland carcinomas. We critically evaluate the current state by examining the relevant applications, diagnostic accuracy, therapeutic efficacy, and inherent limitations. Finally, we analyze the challenges impeding widespread clinical application and offer insights into strategies for advancing the field, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rachel J Saladin
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Ndongwe T, Zhou AA, Ganga NP, Matawo N, Sibanda U, Chidziwa TV, Witika BA, Krause RWM, Matlou GG, Siwe-Noundou X. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: an updated review (year 2005 to date). DISCOVER NANO 2024; 19:138. [PMID: 39225730 PMCID: PMC11372008 DOI: 10.1186/s11671-024-04089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterised by the lack or low expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. TNBC has a high recurrence rate, swiftly metastasizes, and has a high mortality rate. Subsequently, the increase in cases of TNBC has signaled the need for treatment strategies with improved drug delivery systems. New diagnostic approaches, chemical entities, formulations particular those in the nanometric range have emerged after extensive scientific research as alternative strategies for TNBC treatment. As compared to contemporary cancer therapy, nanoparticles offer peculiar tunable features namely small size, shape, electrical charge, magnetic and fluorescent properties. Specifically in targeted drug delivery, nanoparticles have been demonstrated to be highly efficient in encapsulating, functionalization, and conjugation. Presently, nanoparticles have ignited and transformed the approach in photodynamic therapy, bioimaging, use of theranostics and precision medicine delivery in breast cancer. Correspondingly, recent years have witnessed a drastic rise in literature pertaining to treatment of TNBC using nanomaterials. Subsequently, this manuscript aims to present a state-of-the-art of nanomaterials advance on TNBC treatment; the ubiquitous utility use of nanomaterials such as liposomes, dendrimers, solid lipid nanomaterials, gold nanomaterials and quantum dots as anticancer agents and drug delivery systems in TNBC.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Angel-Alberta Zhou
- Department of Pharmacy, School of Health Science, University of KwaZulu Natal, Durban, South Africa
| | - Nelisa Paidamwoyo Ganga
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyaradzo Matawo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Unami Sibanda
- Pharmaceutics Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Tinotenda Vanessa Chidziwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Rui W M Krause
- Chemistry Department, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| |
Collapse
|
5
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Hu Y, Zhu Y, Qi D, Tang C, Zhang W. Trop2-targeted therapy in breast cancer. Biomark Res 2024; 12:82. [PMID: 39135109 PMCID: PMC11321197 DOI: 10.1186/s40364-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Human trophoblastic cell surface antigen 2 (Trop2) is a glycoprotein, a cellular marker of trophoblastic and stem cells, and a calcium signaling transducer involved in several signaling pathways, leading to the proliferation, invasion, and metastasis of tumors. It is expressed at a low level in normal epithelial cells, but at a high level in many tumors, making it an ideal target for cancer therapy. According to previous literature, Trop2 is broadly expressed in all breast cancer subtypes, especially in triple negative breast cancer (TNBC). Several clinical trials have demonstrated the effectiveness of Trop2-targeted therapy in breast cancer. Sacituzumab govitecan (SG) is a Trop2-targeted antibody-drug conjugate (ADC) that has been approved for the treatment of metastatic TNBC and hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer. This article reviews the structure and function of Trop2, several major Trop2-targeted ADCs, other appealing novel Trop2-targeted agents and relevant clinical trials to provide a landscape of how Trop2-targeted treatments will develop in the future.
Collapse
Affiliation(s)
- Yixuan Hu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dan Qi
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
7
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
8
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
9
|
Wu Y, Li T, Zhang X, Jing H, Li F, Huo L. Preclinical evaluation of the theranostic potential of 89Zr/ 177Lu-labeled anti-TROP-2 antibody in triple-negative breast cancer model. EJNMMI Radiopharm Chem 2024; 9:5. [PMID: 38194043 PMCID: PMC10776551 DOI: 10.1186/s41181-023-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most lethal malignant tumors among women, characterized by high invasiveness, high heterogeneity, and lack of specific therapeutic targets such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Trophoblast cell-surface antigen-2 (TROP-2) is a transmembrane glycoprotein over-expressed in 80% of TNBC patients and is associated with the occurrence, progress, and poor prognosis of TNBC. The TROP-2 targeted immunoPET imaging allows non-invasive quantification of the TROP-2 expression levels of tumors, which could help to screen beneficiaries most likely to respond to SG and predict the response. This study aimed to develop a 89Zr/177Lu-radiolabeled anti-TROP-2 antibody (NY003) for immunoPET and SPECT imaging, as well as radioimmunotherapy (RIT) in TROP-2 (+)TNBC tumor-bearing model. Based on the camelid antibody, we developed a TROP-2 targeted recombinant antibody NY003. NY003 was conjugated with DFO and DTPA for 89Zr and 177Lu radiolabelling, respectively. The theranostic potential of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 was evaluated through immunoPET, SPECT imaging, and RIT studies in the subcutaneous TROP-2 positive TNBC xenograft mice model. RESULTS The high binding affinity of NY003 to TROP-2 was verified through ELISA. The radiochemical purity of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 exceeded 95% and remained stable within 144h p.i. in vitro. ImmunoPET and SPECT imaging showed the specific accumulation of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003 in MDA-MB-231 tumors and gradually increased with the time tested, significantly higher than that in control groups (P < 0.05). The strongest anti-tumor efficacy was observed in the high-dose of [177Lu]Lu-DTPA-NY003 group, followed by the low-dose group, the tumor growth was significantly suppressed by [177Lu]Lu-DTPA-NY003, the tumor volumes of both high- and low-dose groups were smaller than the control groups (P < 0.05). Ex vivo biodistribution and histological staining verified the results of in vivo imaging and RIT studies. CONCLUSION As a drug platform for radiotheranostics, 89Zr/177Lu-radiolabeled anti-TROP-2 antibody NY003 could not only non-invasively screen the potential beneficiaries for optimizing SG ADC treatment but also suppressed the growth of TROP-2 positive TNBC tumors, strongly supporting the theranostic potential of [89Zr]Zr-DFO-NY003/[177Lu]Lu-DTPA-NY003.
Collapse
Affiliation(s)
- Yitian Wu
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Tuo Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xianzhong Zhang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongli Jing
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Pan Y, Zhao Q, He H, Qi Y, Bai Y, Zhao J, Yang Y. TRPML1 as a potential therapeutic target for triple-negative breast cancer: a review. Front Oncol 2023; 13:1326023. [PMID: 38156109 PMCID: PMC10753766 DOI: 10.3389/fonc.2023.1326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer, and effective treatments are urgently needed owing to its poor prognosis. Surgery, radiotherapy, and chemotherapy, alone or in combination, are the leading choices for TNBC therapy. Although promising approaches and procedures have emerged, several challenges, such as off-target effects, drug resistance, and severe side effects, remain to be addressed. Recently, transient receptor potential channel mucolipin 1 (TRPML1) has attracted the attention of researchers because its expression has been implicated in numerous diseases, including cancer. TRPML1 regulates biological events and signaling pathways, including autophagic flux, exocytosis, ionic homeostasis, and lysosomal biogenesis, all contributing to tumorigenesis and cancer progression. TRPML1 also functions as a building block for cancer cell growth, mitogenic signaling, priming tissues for metastasis, and activation of transcriptional programs, processes involved in several malignant tumors. This review provides an overview of breast cancer epidemiology and diagnostic techniques and then discusses the existing therapeutics. Additionally, we elaborate on the development of, and associated challenges to, TNBC diagnostics and treatment and the feasibility of TRPML1 as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ying Pan
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qiancheng Zhao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Haitao He
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yubo Qi
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujie Bai
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yiming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
13
|
Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:912-926. [PMID: 37701520 PMCID: PMC10494237 DOI: 10.3762/bjnano.14.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin-avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
14
|
Belluomini L, Avancini A, Sposito M, Milella M, Rossi A, Pilotto S. Antibody-drug conjugates (ADCs) targeting TROP-2 in lung cancer. Expert Opin Biol Ther 2023; 23:1077-1087. [PMID: 36995069 DOI: 10.1080/14712598.2023.2198087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION The advent of antibody-drug conjugates (ADCs) represents a renewed strategy in the era of precision oncology. Several epithelial tumors harbor overexpression of the trophoblast cell-surface antigen 2 (TROP-2), which represents a predictor of poor prognosis and a promising target for anticancer therapy. AREAS COVERED In this review, we aim to collect the available preclinical and clinical data regarding anti-TROP-2 ADCs in lung cancer obtained through extensive literature research and screening of the available abstract/posters presented at recent meetings. EXPERT OPINION Anti-TROP-2 ADCs represent an innovative upcoming weapon against both non-small cell lung cancer and small cell lung cancer subtypes, pending the results of several ongoing trials. The proper combination and placement of this agent throughout the lung cancer treatment pathway, the identification of potentially predictive biomarkers of benefit, as well as the optimal management and impact of peculiar toxicity (i.e. interstitial lung disease) are the next questions to be answered.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, Milan, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
15
|
Jia L, Fu Y, Zhang N, Liu Y, Su L, Wang H, Zhao W. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102687. [PMID: 37121458 DOI: 10.1016/j.nano.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Tumor-associated calcium signal transducer 2 (Trop2) highly specific expression in gastric carcinoma (GC). The combination of Trop2 antibody and phototherapy agents could exhibit synergetic antitumor activity. Black phosphorus nanosheets (BP) are covalently modified with Trop2 IgG antibodies via heterobifunctional linker of polyethylene glycol (PEG). Then the Trop2 antibody was directionally conjugated to BP via Schiff base reaction between aldehyde group from oxidized Trop2 antibody and amino group of PEG. The Trop2-funcationalzied BP can significantly increase the endocytosis of BP in Trop2-positive GC cells exhibiting a reinforced antitumor activity under near infrared (NIR) irradiation. More importantly, a murine orthotopic GC model demonstrates that Trop2 antibody modification can significantly promote the accumulation of BP at tumor tissues and strengthen antitumoral activity of phototherapy. Directional conjugation of Trop2 antibody to BP facilitates the BP with superior stability, tumor targeting ability and excellent anti-tumor activity under NIR irradiation without systemic toxicity.
Collapse
Affiliation(s)
- Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yuhao Fu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China; Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Lin Su
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Haisheng Wang
- Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China.
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China.
| |
Collapse
|
16
|
Chen Y, Xu Y, Shao Z, Yu K. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun (Lond) 2023; 43:297-337. [PMID: 36357174 PMCID: PMC10009672 DOI: 10.1002/cac2.12387] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly developing therapeutic approach in cancer treatment that has shown remarkable activity in breast cancer. Currently, there are two ADCs approved for the treatment of human epidermal growth factor receptor 2-positive breast cancer, one for triple-negative breast cancer, and multiple investigational ADCs in clinical trials. However, drug resistance has been noticed in clinical use, especially in trastuzumab emtansine. Here, the mechanisms of ADC resistance are summarized into four categories: antibody-mediated resistance, impaired drug trafficking, disrupted lysosomal function, and payload-related resistance. To overcome or prevent resistance to ADCs, innovative development strategies and combination therapy options are being investigated. Analyzing predictive biomarkers for optimal therapy selection may also help to prevent drug resistance.
Collapse
Affiliation(s)
- Yu‐Fei Chen
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ying‐ying Xu
- Department of Breast SurgeryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ke‐Da Yu
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
17
|
Bayram NN, Ulu GT, Abdulhadi NA, Gürdap S, İşoğlu İA, Baran Y, İşoğlu SD. HER2-Specific Peptide (LTVSPWY) and Antibody (Herceptin) Targeted Core Cross-Linked Micelles for Breast Cancer: A Comparative Study. Pharmaceutics 2023; 15:733. [PMID: 36986594 PMCID: PMC10053834 DOI: 10.3390/pharmaceutics15030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
This study aims to prepare a novel breast cancer-targeted micelle-based nanocarrier, which is stable in circulation, allowing intracellular drug release, and to investigate its cytotoxicity, apoptosis, and cytostatic effects, in vitro. The shell part of the micelle is composed of zwitterionic sulfobetaine ((N-3-sulfopropyl-N,N-dimethylamonium)ethyl methacrylate), while the core part is formed by another block, consisting of AEMA (2-aminoethyl methacrylamide), DEGMA (di(ethylene glycol) methyl ether methacrylate), and a vinyl-functionalized, acid-sensitive cross-linker. Following this, a targeting agent (peptide (LTVSPWY) and antibody (Herceptin®)), in varying amounts, were coupled to the micelles, and they were characterized by 1H NMR, FTIR (Fourier-transform infrared spectroscopy), Zetasizer, BCA protein assay, and fluorescence spectrophotometer. The cytotoxic, cytostatic, apoptotic, and genotoxic effects of doxorubicin-loaded micelles were investigated on SKBR-3 (human epidermal growth factor receptor 2 (HER2)-positive) and MCF10-A (HER2-negative). According to the results, peptide-carrying micelles showed a higher targeting efficiency and better cytostatic, apoptotic, and genotoxic activities than antibody-carrying and non-targeted micelles. Also, micelles masked the toxicity of naked DOX on healthy cells. In conclusion, this nanocarrier system has great potential to be used in different drug-targeting strategies, by changing targeting agents and drugs.
Collapse
Affiliation(s)
- Nazende Nur Bayram
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| | - Gizem Tuğçe Ulu
- Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, 35433 İzmir, Turkey
| | | | - Seda Gürdap
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| | - İsmail Alper İşoğlu
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, 35433 İzmir, Turkey
| | - Sevil Dinçer İşoğlu
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
18
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Shastry M, Jacob S, Rugo HS, Hamilton E. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer. Breast 2022; 66:169-177. [PMID: 36302269 PMCID: PMC9614644 DOI: 10.1016/j.breast.2022.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Antibody drug conjugates (ADCs) combine the potent cytotoxicity of chemotherapy with the antigen -specific targeted approach of antibodies into one single molecule. Trophoblast cell surface antigen 2 (TROP-2) is a transmembrane glycoprotein involved in calcium signal transduction and is expressed in multiple tumor types. TROP-2 expression is higher in HER2-negative breast tumors (HR+/HR-) and is associated with worse survival. Sacituzumab govitecan (SG) is a first-in-class TROP-2-directed ADC with an anti-TROP-2 antibody conjugated to SN-38, a topoisomerase inhibitor via a hydrolysable linker. This hydrolysable linker permits intracellular and extracellular release of the membrane permeable payload enabling the "bystander effect" contributing to the efficacy of this agent. There was significant improvement in progression free survival (PFS) and overall survival (OS) with SG versus chemotherapy in pretreated metastatic triple negative breast cancer (TNBC), resulting in regulatory approval. Common adverse events (AE) reported were neutropenia and diarrhea. SG also demonstrated clinical activity versus chemotherapy in a phase III trial of HR+/HER2-metastatic breast cancer (MBC) and is under evaluation in first-line metastatic and early stage TNBC as well. Datopotamab deruxtecan (Dato-DXd) is a TROP-2 ADC that differs from SG in that it has a cleavable tetrapeptide linker and a more potent topoisomerase inhibitor payload. This construct is highly stable in circulation with a longer half-life than SG, and undergoes cleavage in presence of intracellular lysosomal proteases. Dato-DXd demonstrated preliminary efficacy in unselected metastatic TNBC, with common AEs of low-grade nausea and stomatitis. Dato-DXd is being investigated in phase III studies in metastatic TNBC and HR+/HER2- MBC. These novel TROP-2 ADCs have the potential to deliver enhanced efficacy with reduced toxicity in MBC and possibly in early stage breast cancer (EBC).
Collapse
Affiliation(s)
| | - Saya Jacob
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, Nashville, TN, USA.
| |
Collapse
|
20
|
Sakach E, Sacks R, Kalinsky K. Trop-2 as a Therapeutic Target in Breast Cancer. Cancers (Basel) 2022; 14:5936. [PMID: 36497418 PMCID: PMC9735829 DOI: 10.3390/cancers14235936] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The emergence of Trop-2 as a therapeutic target has given rise to new treatment paradigms for the treatment of patients with advanced and metastatic breast cancer. Trop-2 is most highly expressed in triple negative breast cancer (TNBC), but the receptor is found across all breast cancer subtypes. With sacituzumab govitecan, the first FDA-approved, Trop-2 inhibitor, providing a survival benefit in patients with both metastatic TNBC and hormone receptor positive breast cancer, additional Trop-2 directed therapies are under investigation. Ongoing studies of combination regimens with immunotherapy, PARP inhibitors, and other targeted agents aim to further harness the effect of Trop-2 inhibition. Current investigations are also underway in the neoadjuvant and adjuvant setting to evaluate the therapeutic benefit of Trop-2 inhibition in patients with early stage disease. This review highlights the significant impact the discovery Trop-2 has had on our patients with heavily pretreated breast cancer, for whom few treatment options exist, and the future direction of novel Trop-2 targeted therapies.
Collapse
Affiliation(s)
- Elizabeth Sakach
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Gadag S, Narayan R, Sabhahit JN, Hari G, Nayak Y, Pai KSR, Garg S, Nayak UY. Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. BIOMATERIALS ADVANCES 2022; 140:213085. [PMID: 36037762 DOI: 10.1016/j.bioadv.2022.213085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Localized drug delivery to the breast tissues is an area of interest as a potential route to ensure site-specific drug delivery. Transpapillary delivery via the mammary papilla has advantages as most breast tumors arise from the milk ducts. The present study explored the plausibility of transpapillary delivery of a phytochemical, resveratrol (RVT), for breast cancer treatment. RVT was encapsulated within the transfersomes (RVT-TRF) to enable a sustained release of the drug using the biomaterial soya phosphatidylcholine (SPC). Iontophoresis was applied to further accelerate the penetration of the RVT-TRF across the mammary papilla to the breast tissue. The RVT-TRF development was optimized by the Design of Experiments (DoE) approach. The in vitro transpapillary iontophoresis study on porcine mammary papilla showed an enhanced penetration of RVT-TRF when compared to passive diffusion. The transpapillary delivery was further confirmed from the in vitro fluorescent microscopy study using FITC conjugated RVT-TRF. The optimized RVT-TRF delivered via transpapillary route showed a higher Cmax and AUC when compared to pure RVT given orally. A significant reduction in the tumor volume and the serum biomarker CA 15-3, when evaluated in a chemically induced breast cancer rat model, provided evidence of the effectiveness of the developed formulation when delivered locally via transpapillary route compared to the oral route. Thus the developed RVT-TRF administered via transpapillary iontophoresis technique is a promising strategy enabling a localized delivery for effective breast cancer therapy.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
22
|
Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04189-6. [PMID: 35976445 DOI: 10.1007/s00432-022-04189-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer, the most prevalent cancer worldwide, consists of 4 main subtypes, namely, Luminal A, Luminal B, HER2-positive, and Triple-negative breast cancer (TNBC). Triple-negative breast tumors, which do not express estrogen, progesterone, and HER2 receptors, account for approximately 15-20% of breast cancer cases. The lack of traditional receptor targets contributes to the heterogenous, aggressive, and refractory nature of these tumors, resulting in limited therapeutic strategies. METHODS Chemotherapeutics such as taxanes and anthracyclines have been the traditional go to treatment regimens for TNBC patients. Paclitaxel, docetaxel, doxorubicin, and epirubicin have been longstanding, Food and Drug Administration (FDA)-approved therapies against TNBC. Additionally, the FDA approved PARP inhibitors such as olaparib and atezolizumab to be used in combination with chemotherapies, primarily to improve their efficiency and reduce adverse patient outcomes. The immunotherapeutic Keytruda was the latest addition to the FDA-approved list of drugs used to treat TNBC. RESULTS The following review aims to elucidate current FDA-approved therapeutics and their mechanisms of action, shedding a light on the various strategies currently used to circumvent the treatment-resistant nature of TNBC cases. CONCLUSION The recent approval and use of therapies such as Trodelvy, olaparib and Keytruda has its roots in the development of an understanding of signaling pathways that drive tumour growth. In the future, the emergence of novel drug delivery methods may help increase the efficiency of these therapies whiel also reducing adverse side effects.
Collapse
|
23
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
24
|
Zhang X, Ge X, Jiang T, Yang R, Li S. Research progress on immunotherapy in triple‑negative breast cancer (Review). Int J Oncol 2022; 61:95. [PMID: 35762339 PMCID: PMC9256074 DOI: 10.3892/ijo.2022.5385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) is a highly heterogeneous and aggressive malignancy. Due to the absence of estrogen receptors and progesterone receptors and the lack of overexpression of human epidermal growth factor receptor 2, TNBC responds poorly to endocrine and targeted therapies. As a neoadjuvant therapy, chemotherapy is usually the only option for TNBC; however, chemotherapy may induce tumor resistance. The emergence of immunotherapy as an adjuvant therapy is expected to make up for the deficiency of chemotherapy. Most of the research on immunotherapies has been performed on advanced metastatic TNBC, which has provided significant clinical benefits. In the present review, possible immunotherapy targets and ongoing immunotherapy strategies were discussed. In addition, progress in research on immune checkpoint inhibitors in early TNBC was outlined.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xueying Ge
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Tinghan Jiang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ruming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
25
|
Beykou M, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Moser N, Georgiou P, Bakal C. Proteomic characterisation of triple negative breast cancer cells following CDK4/6 inhibition. Sci Data 2022; 9:395. [PMID: 35817775 PMCID: PMC9273754 DOI: 10.1038/s41597-022-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.
Collapse
Affiliation(s)
- Melina Beykou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Mar Arias-Garcia
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- Institute of Cancer Research, Division of Cancer Biology, Functional Proteomics, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- Institute of Cancer Research, Division of Cancer Biology, Functional Proteomics, London, SW3 6JB, UK
| | - Nicolas Moser
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Pantelis Georgiou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
26
|
Abstract
Trophoblast cell-surface antigen-2 (Trop-2) is a transmembrane calcium signal transducer and its overexpression is common in many types of malignant epithelial tumors, including breast cancer (BC). Sacituzumab govitecan-hziy (SG), the anti-Trop-2 antibody-drug conjugate, resulted in a significant survival benefit over chemotherapy in patients with metastatic triple-negative breast cancer (mTNBC). The greatest efficacy was observed in those who had a medium or high Trop-2 score. However, the importance of Trop-2 as a potential predictive factor requires further research. Elderly patients also appear to benefit from treating with SG. While the early results are encouraging, the ultimate benefit of SG in patients with brain metastases has yet to be determined. Early phase studies have shown that SG is also active in hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) metastatic BC. The most common side effects of SG are nausea, neutropenia and diarrhea. Currently, several clinical trials are in progress with SG in monotherapy and in combination treatment for various types of BC. Taken together, SG should be considered as a new standard of care in patients with pretreated mTNBC. This review summarizes the development and highlights recent advances of the SG in BC.
Collapse
|
27
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
28
|
Gao W, Zhang J, Wang W, Liu Z, Chen M, Hu X, Zeng L, Zheng C, Song H, Zhang Q. Drug Self-delivery Nanorods Enhance Photodynamic Therapy of Triple-Negative Breast Cancer by inhibiting Oxidative Phosphorylation. Int J Pharm 2022; 621:121775. [PMID: 35489603 DOI: 10.1016/j.ijpharm.2022.121775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) shows very high potential for the clinical treatment of triple-negative breast cancer. However, the efficacy of PDT is significantly weakened by tumor hypoxia, the relatively high intracellular glutathione levels and the active proliferation of cancer cells. To address these issues, we developed a novel drug self-delivery nanorod (defined as AINRs) through the hydrophobic interaction among the mitochondrial complex III inhibitor (atovaquone, ATO), the photosensitizer (indocyanine green, ICG) and the dispersion stabilizer (distearoyl phosphoethanolamine-polyethylene glycol 2000, DSPE-PEG 2000). The AINRs showed a rod-like morphology with a mean diameter of 120.6 ± 5.4 nm, a zeta potential of -26.35 ± 1.63 mV and a significantly high drug loading rate of 93.48%. The results of in vitro cell experiments involving triple-negative breast cancer cell lines (4T1 cells and MDA-MB-231 cells) indicated that the AINRs could effectively block the oxidative phosphorylation of cancer cells through the inhibition of mitochondrial complex III, which results in the reduction of endogenous oxygen consumption and the decrease of the intracellular ATP level. The reduction of ATP content further inhibited the glutathione synthesis and arrested the cell cycle at the S-phase, which results in enhanced in vitro PDT efficacy of ICG. The results of in vivo antitumor activity in 4T1-bearing mice showed that the tumor growth inhibition rate of the AINRs with near-infrared laser irradiation (NIR) was 90%, whereas the tumor growth inhibition rates of the AINRs without NIR, ICG with NIR and doxorubicin (3 mg/kg) were only 31.68%, 61.15% and 24.59%, respectively. In addition, the results of safety studies, including body weights, biochemical indicators and H&E staining images of the main organs demonstrated the security of the AINRs. In summary, this study showed that the oxidative phosphorylation inhibition of triple-negative breast cancer was a safe and effective method to enhance its PDT efficacy.
Collapse
Affiliation(s)
- Wenhao Gao
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Jialiang Zhang
- Innovation center for cancer research, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Weifeng Wang
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Mulan Chen
- Department of Breast Cancer, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Changqing Zheng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Hongtao Song
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China.
| | - Qian Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China.
| |
Collapse
|
29
|
Zardavas D. Clinical development of antibody-drug conjugates in triple negative breast cancer: Can we jump higher? Expert Opin Investig Drugs 2022; 31:633-644. [PMID: 35451891 DOI: 10.1080/13543784.2022.2070064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is an aggressive BC subtype, associated with higher rates of relapse in the primary disease setting and shorter overall survival upon metastatic relapse. The advent of antibody-drug conjugates (ADC), able to deliver selectively potent chemotherapeutic agents, has demonstrated promising clinical activity, with the first approval of an ADC, i.e. Sacituzumab Govitecan, in the metastatic setting. The main scope of this paper is to provide the most recent data indicating the promise of this novel class of drugs, as potential tools to improve clinical outcomes of patients diagnosed with TNBC. AREAS COVERED In this article, upon review of the main characteristics of TNBC, and those of ADCs, an overview of the data from clinical trials assessing ADCs in TNBC will be provided, including those that led to the first approval of such a drug for patients with metastatic disease; furthermore, several other ADCs targeting different proteins (over)expressed by TNBC undergo clinical development. Combinations of ADCs with other targeted agents are discussed; the most pertinent considerations for improving the chances of successful clinical development of ADCs in TNBC are provided. EXPERT OPINION ADCs are a potent class of targeted anticancer assets, with demonstrated efficacy against metastatic TNBC. Such assets could further improve clinical outcomes of patients with TNBC, and successful development depends upon: i) successful triaging of patients with the right ADC, ii) technical optimization of ADCs to maximize the efficacy, while reducing toxicity, and iii) assess rationally chosen combinations with synergistic antitumor activity and acceptable safety profile.
Collapse
|
30
|
Tanaka T, Ohishi T, Saito M, Kawada M, Kaneko MK, Kato Y. TrMab-6 Exerts Antitumor Activity in Mouse Xenograft Models of Breast Cancers. Monoclon Antib Immunodiagn Immunother 2022; 41:32-38. [PMID: 35225665 DOI: 10.1089/mab.2021.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2) has been reported to be overexpressed in many cancers, and is involved in cancer cell proliferation, invasion, and metastasis. We previously developed a highly sensitive anti-TROP2 monoclonal antibody (mAb) (clone TrMab-6; mouse IgG2b, kappa) using a Cell-Based Immunization and Screening method. TrMab-6 is useful for investigations using flow cytometry, Western blotting, and immunohistochemistry and possesses antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against TROP2-expressing triple-negative breast cancer (TNBC) cell lines, such as MDA-MB-231 and MDA-MB-468. This study investigated whether TrMab-6 possesses in vivo antitumor activities via ADCC/CDC activities using mouse xenograft models of TNBC cell lines. In vivo experiments on MDA-MB-231 and MDA-MB-468 xenografts revealed that TrMab-6 significantly reduced tumor growth compared with normal mouse IgG treatment. The findings of this study suggest that TrMab-6 is a promising treatment option for TROP2-expressing TNBC.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol 2021; 9:798882. [PMID: 34950650 PMCID: PMC8688801 DOI: 10.3389/fbioe.2021.798882] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is the most significant causes of cancer chemotherapy failure. Various mechanisms of drug resistance include tumor heterogeneity, tumor microenvironment, changes at cellular levels, genetic factors, and other mechanisms. In recent years, more attention has been paid to tumor resistance mechanisms and countermeasures. Nanomedicine is an emerging treatment platform, focusing on alternative drug delivery and improved therapeutic effectiveness while reducing side effects on normal tissues. Here, we reviewed the principal forms of drug resistance and the new possibilities that nanomaterials offer for overcoming these therapeutic barriers. Novel nanomaterials based on tumor types are an excellent modality to equalize drug resistance that enables gain more rational and flexible drug selectivity for individual patient treatment. With the emergence of advanced designs and alternative drug delivery strategies with different nanomaterials, overcome of multidrug resistance shows promising and opens new horizons for cancer therapy. This review discussed different mechanisms of drug resistance and recent advances in nanotechnology-based therapeutic strategies to improve the sensitivity and effectiveness of chemotherapeutic drugs, aiming to show the advantages of nanomaterials in overcoming of drug resistance for tumor chemotherapy, which could accelerate the development of personalized medicine.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuqin Zhu
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Weiju Wang
- Department of Pathology, Qingyuan Maternal and Child Health Hospital, Qingyuan, China
| | - Gaoxiong Wang
- Department of Pathology, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Huang YK, Tian HR, Zhang MZ, He JL, Liu J, Ni PH. Monoclonal Antibody-conjugated Polyphosphoester-hyd-DOX Prodrug Nanoparticles for Targeted Chemotherapy of Liver Cancer Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng 2021; 5:1048-1058. [PMID: 34045730 PMCID: PMC8497438 DOI: 10.1038/s41551-021-00728-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/12/2021] [Indexed: 02/01/2023]
Abstract
In patients with glioblastoma, resistance to the chemotherapeutic temozolomide (TMZ) limits any survival benefits conferred by the drug. Here we show that the convection-enhanced delivery of nanoparticles containing disulfide bonds (which are cleaved in the reductive environment of the tumour) and encapsulating an oxaliplatin prodrug and a cationic DNA intercalator inhibit the growth of TMZ-resistant cells from patient-derived xenografts, and hinder the progression of TMZ-resistant human glioblastoma tumours in mice without causing any detectable toxicity. Genome-wide RNA profiling and metabolomic analyses of a glioma cell line treated with the cationic intercalator or with TMZ showed substantial differences in the signalling and metabolic pathways altered by each drug. Our findings suggest that the combination of anticancer drugs with distinct mechanisms of action with selective drug release and convection-enhanced delivery may represent a translational strategy for the treatment of TMZ-resistant gliomas.
Collapse
|
34
|
Tanaka T, Ohishi T, Asano T, Takei J, Nanamiya R, Hosono H, Sano M, Harada H, Kawada M, Kaneko MK, Kato Y. An anti‑TROP2 monoclonal antibody TrMab‑6 exerts antitumor activity in breast cancer mouse xenograft models. Oncol Rep 2021; 46:132. [PMID: 34013368 PMCID: PMC8144932 DOI: 10.3892/or.2021.8083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2), reported to be overexpressed in several types of cancer, is involved in cell proliferation, invasion, metastasis, and poor prognosis of many types of cancer. Previously, a highly sensitive anti-TROP2 monoclonal antibody (clone TrMab-6; mouse IgG2b, κ) was developed using a Cell-Based Immunization and Screening (CBIS) method. TrMab-6 was useful for investigations using flow cytometry, western blot, and immunohistochemistry. The aim of the present study was to investigate whether TrMab-6 possesses in vitro antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) activities or in vivo antitumor activities using mouse xenograft models of TROP2-overexpressed CHO-K1 (CHO/TROP2) and breast cancer cell lines, including MCF7, MDA-MB-231, and MDA-MB-468. In vitro experiments revealed that TrMab-6 strongly induced ADCC and CDC activities against CHO/TROP2 and the three breast cancer cell lines, whereas it did not show those activities against parental CHO-K1 and MCF7/TROP2-knockout cells. Furthermore, in vivo experiments on CHO/TROP2 and MCF7 ×enografts revealed that TrMab-6 significantly reduced tumor growth, whereas it did not show antitumor activities against parental CHO-K1 and MCF7/TROP2-knockout xenografts. The findings suggest that TrMab-6 is a promising treatment option for TROP2-expressing breast cancers.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
35
|
Keihan Shokooh M, Emami F, Jeong JH, Yook S. Bio-Inspired and Smart Nanoparticles for Triple Negative Breast Cancer Microenvironment. Pharmaceutics 2021; 13:287. [PMID: 33671698 PMCID: PMC7926463 DOI: 10.3390/pharmaceutics13020287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) with poor prognosis and aggressive nature accounts for 10-20% of all invasive breast cancer (BC) cases and is detected in as much as 15% of individuals diagnosed with BC. Currently, due to the absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) receptor, there is no hormone-based therapy for TNBC. In addition, there are still no FDA-approved targeted therapies for patients with TNBC. TNBC treatment is challenging owing to poor prognosis, tumor heterogeneity, chemotherapeutic side effects, the chance of metastasis, and multiple drug-resistance. Therefore, various bio-inspired tumor-homing nano systems responding to intra- and extra- cellular stimuli are an urgent need to treat TNBC patients who do not respond to current chemotherapy. In this review, intensive efforts have been made for exploring cell-membrane coated nanoparticles and immune cell-targeted nanoparticles (immunotherapy) to modulate the tumor microenvironment and deliver accurate amounts of therapeutic agents to TNBC without stimulating the immune system.
Collapse
Affiliation(s)
- Mahsa Keihan Shokooh
- Department of Pharmaceutics, College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| |
Collapse
|
36
|
Fu Y, Hua P, Lou Y, Li Z, Jia M, Jing Y, Cai M, Wang H, Tong T, Gao J. Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging. ACS OMEGA 2020; 5:32456-32465. [PMID: 33376883 PMCID: PMC7758963 DOI: 10.1021/acsomega.0c04597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
The transmembrane glycoprotein Trop2 plays important roles in various types of human cancers, especially lung cancer. Although it has been found to form clusters on cancer cell membranes, the factors that affect its clustering are not yet fully understood. Here, using direct stochastic optical reconstruction microscopy (dSTORM), we found that Trop2 generated more, larger, and denser clusters on apical cell membranes than on basal membranes and that the differences might be related to the different membrane structures. Moreover, dual-color dSTORM imaging revealed significant colocalization of Trop2 and lipid rafts, and methyl-β-cyclodextrin disruption dramatically impaired the formation of Trop2 clusters, indicating a key role of lipid rafts in Trop2 clustering. Additionally, depolymerization of the actin cytoskeleton decreased Trop2 cluster numbers and areas, revealing that actin can stabilize the clusters. More importantly, stimulation of Trop2 in cancer cells hardly changed the cluster morphology, suggesting that Trop2 is activated and forms clusters in cancer cells. Altogether, our work links the spatial organization of Trop2 to different membrane structures and Trop activation and uncovers the essential roles of lipid rafts and actin in Trop2 cluster maintenance.
Collapse
Affiliation(s)
- Yilin Fu
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Peiyan Hua
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Yan Lou
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Zihao Li
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Meng Jia
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Yingying Jing
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
- University
of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230027, China
| | - Mingjun Cai
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
| | - Hongda Wang
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
- University
of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230027, China
- Qingdao
National Laboratory for Marine Science and Technology, Laboratory for Marine Biology and Biotechnology, Wenhai Road, Qingdao, Shandong 266237, China
| | - Ti Tong
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Jing Gao
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
37
|
Malavia N, Kuche K, Ghadi R, Jain S. A bird's eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release 2020; 330:72-100. [PMID: 33321156 DOI: 10.1016/j.jconrel.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer. It is characterized by the absence of estrogen, progesterone and human epidermal growth factor receptors. The main issue with TNBC is that it exhibits poor prognosis, high risk of relapse, short progression-free survival and low overall survival in patients. This is because the conventional therapy used for managing TNBC has issues pertaining to poor bioavailability, lower cellular uptake, increased off-target effects and development of resistance. To overcome such pitfalls, several other approaches are explored. In this context, the present manuscript showcases three of the most widely used approaches which are (i) nanotechnology-based approach; (ii) gene therapy approach and (iii) Phytochemical-based approach. The ultimate focus is to present and explain the insightful reports based on these approaches. Further, the review also expounds on the identified molecular targets and novel targeting ligands which are explored for managing TNBC effectively. Thus, in a nutshell, the review tries to highlight these existing treatment approaches which might inspire for future development of novel therapies with a potential of overshadowing TNBC.
Collapse
Affiliation(s)
- Nilesh Malavia
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, India.
| |
Collapse
|
38
|
Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P. Trop2: Jack of All Trades, Master of None. Cancers (Basel) 2020; 12:E3328. [PMID: 33187148 PMCID: PMC7696911 DOI: 10.3390/cancers12113328] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
39
|
Oshiro-Júnior JA, Rodero C, Hanck-Silva G, Sato MR, Alves RC, Eloy JO, Chorilli M. Stimuli-responsive Drug Delivery Nanocarriers in the Treatment of Breast Cancer. Curr Med Chem 2020; 27:2494-2513. [PMID: 30306849 DOI: 10.2174/0929867325666181009120610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.
Collapse
Affiliation(s)
- João A Oshiro-Júnior
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil.,Graduation Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, PB, Brazil
| | - Camila Rodero
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Gilmar Hanck-Silva
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Mariana R Sato
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Renata Carolina Alves
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Josimar O Eloy
- College of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
40
|
Zhang L, Xu H, Wu X, Huang W, Zhang T, Hao P, Peng B, Zan X. A Strategy to Fight against Triple-Negative Breast Cancer: pH-Responsive Hexahistidine-Metal Assemblies with High-Payload Drugs. ACS APPLIED BIO MATERIALS 2020; 3:5331-5341. [PMID: 35021707 DOI: 10.1021/acsabm.0c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Long Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Tinghong Zhang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Peng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| |
Collapse
|
41
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
42
|
Kamalzare S, Noormohammadi Z, Rahimi P, Atyabi F, Irani S, Tekie FSM, Mottaghitalab F. Carboxymethyl dextran‐trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: An effective siRNA delivery system for HIV‐1 Nef. J Cell Physiol 2019; 234:20554-20565. [DOI: 10.1002/jcp.28655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Sara Kamalzare
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS Pasteur Institute of Iran Tehran Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | | | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
Liu J, Yang D, Yin Z, Gao M, Tong H, Su Y, Zhu J, Ye C, Zhang H. A novel human monoclonal Trop2-IgG antibody inhibits ovarian cancer growth in vitro and in vivo. Biochem Biophys Res Commun 2019; 512:276-282. [PMID: 30879767 DOI: 10.1016/j.bbrc.2019.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
Abstract
Trop2 is a tumor-related antigen closely related to the development of a variety of tumors and has been identified as a promising target for cancer immunotherapy. In this study, a Trop2-IgG antibody was constructed by a eukaryotic expression system based on our previously constructed Trop2-Fab antibody. SDS-PAGE, cell ELISA, affinity assays, fluorescence staining and FACS analyses were performed to characterize Trop2-IgG. Then, CCK-8, wound healing, Transwell and annexin V-PI assays were employed to evaluate the tumor inhibitory effects of Trop2-IgG on OC in vitro, while tumor-bearing mice were constructed to examine the tumor inhibitory effects of Trop2-IgG on OC in vivo. Trop2-IgG was successfully constructed by a eukaryotic expression system and maintained recognition characteristics to Trop2 antigen. In vitro, Trop2-IgG could inhibited tumor cell growth, migration, and invasion compared to those of control cells and induced tumor cell apoptosis. In vivo, Trop2-IgG exerted critical tumor inhibitory effects in OC xenografts. Our data suggest that the use of Trop2-IgG provides a potential therapeutic strategy for the immunotherapy of Trop2-expressing OC.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Department of Obstetrics and Gynecology, Weihai Central Hospital, Weihai, Shandong, China
| | - Dazhen Yang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengna Yin
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyun Gao
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Tong
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiping Su
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Zhu
- Department of Pathology, Key Laboratory of Antibody Technique of the Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China; Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Zaman S, Jadid H, Denson AC, Gray JE. Targeting Trop-2 in solid tumors: future prospects. Onco Targets Ther 2019; 12:1781-1790. [PMID: 30881031 PMCID: PMC6402435 DOI: 10.2147/ott.s162447] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trop-2 is a transmembrane glycoprotein that is upregulated in all cancer types independent of baseline levels of Trop-2 expression. Trop-2 is an ideal candidate for targeted therapeutics due to it being a transmembrane protein with an extracellular domain overexpressed on a wide variety of tumors as well as its upregulated expression relative to normal cells. As a result, several Trop-2-targeted therapeutics have recently been developed for clinical use, such as anti-Trop-2 antibodies and Trop-2-targeted antibody-drug conjugates (ADC). Subsequently, multiple early-phase clinical trials have demonstrated safety and clinical benefit of Trop-2-based ADCs across multiple tumor types. This includes clinical benefit and tolerability in tumor types with limited treatment options, such as triple-negative breast cancer, platinum-resistant urothelial cancer, and small-cell lung cancer. In this review, we elaborate on all clinical trials involving Trop-2.
Collapse
Affiliation(s)
- Saif Zaman
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hassan Jadid
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Aaron C Denson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | - Jhanelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| |
Collapse
|
45
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|
46
|
Hou J, Lv A, Deng Q, Zhang G, Hu X, Cui H. TROP2 promotes the proliferation and metastasis of glioblastoma cells by activating the JAK2/STAT3 signaling pathway. Oncol Rep 2018; 41:753-764. [PMID: 30431125 PMCID: PMC6312989 DOI: 10.3892/or.2018.6859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2), a single transmembrane domain protein, is often found to be highly expressed in various types of human cancers. However, the biological function and molecular mechanism of TROP2 in glioblastoma have not been fully elucidated, particularly in regards to cell proliferation and metastasis of glioblastoma cells. In the present study, it was demonstrated that TROP2 expression was increased in glioblastoma tissues and glioblastoma cell lines by immunohistochemical analysis and western blot analysis. High TROP2 expression was significantly correlated with the poor survival of glioblastoma patients. MTT assay, BrdU incorporation assay, flow cytometry and Transwell assay were performed to demonstrate that knockdown of TROP2 in glioblastoma cells inhibited cell proliferation and metastasis. We found that the effects of TROP2-knockdown on glioblastoma cells were associated with the inhibition of JAK2 and STAT3 phosphorylation and decreased transcription of STAT3 target genes. In addition, blocking the activation of JAK2/STAT3 signaling by WP1066 negated the effects of TROP2 overexpression. Furthermore, exogenous IL-6, which functions as a potent activator of JAK2/STAT3 signaling, was able to rescue the phosphorylation of JAK2 and STAT3 in TROP2-silenced glioblastoma cells and regulate phenotypic changes in these cells. Therefore, we revealed a novel mechanism by which TROP2 activates the JAK2/STAT3 pathway to promote the growth and metastasis of glioblastoma cells. These data offer insight into the function of TROP2 in glioblastoma and indicate that TROP2 is a promising biomarker and therapeutic target for glioblastoma patients.
Collapse
Affiliation(s)
- Jianbing Hou
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Ailing Lv
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Qing Deng
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Guanghui Zhang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Xiaosong Hu
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
47
|
Mukwaya V, Wang C, Dou H. Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. POLYM INT 2018. [DOI: 10.1002/pi.5702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| |
Collapse
|
48
|
Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018; 9:28989-29006. [PMID: 29989029 PMCID: PMC6034748 DOI: 10.18632/oncotarget.25615] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
TROP-2 is a glycoprotein first described as a surface marker of trophoblast cells, but subsequently shown to be increased in many solid cancers, with lower expression in certain normal tissues. It regulates cancer growth, invasion and spread by several signaling pathways, and has a role in stem cell biology and other diseases. This review summarizes TROP-2's properties, especially in cancer, and particularly its role as a target for antibody-drug conjugates (ADC) or immunotherapy. When the irinotecan metabolite, SN-38, is conjugated to a humanized anti-TROP-2 antibody (sacituzumab govitecan), it shows potent broad anticancer activity in human cancer xenografts and in patients with advanced triple-negative breast, non-small cell and small-cell lung, as well as urothelial cancers.
Collapse
Affiliation(s)
- David M. Goldenberg
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
- IBC Pharmaceuticals, Inc., Morris Plains, NJ, USA
| | - Rhona Stein
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
| | - Robert M. Sharkey
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
- Immunomedics, Inc., Morris Plains, NJ, USA
| |
Collapse
|
49
|
Gu QZ, Nijiati A, Gao X, Tao KL, Li CD, Fan XP, Tian Z. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling. Mol Med Rep 2018; 18:1782-1788. [PMID: 29845216 DOI: 10.3892/mmr.2018.9083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (TROP2) has been noted to serve an important role in the proliferation and migration of various types of human cancers. However, the potential role and the molecular mechanisms of TROP2 in osteosarcoma (OS) remain largely unclear. In the present study, high expression of TROP2 in human OS tissues and cell lines was observed. Overexpression of TROP2 promoted the proliferation and migration of OS cell lines, while TROP2 knockdown markedly decreased cell growth and migration. Furthermore, it was revealed that TROP2 overexpression significantly activated the phosphoinositide 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway. Collectively, these results suggested that TROP2 may promote OS cell proliferation and migration via PI3K/AKT signaling and may serve as a novel treatment target for OS.
Collapse
Affiliation(s)
- Qing-Zhi Gu
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abulimiti Nijiati
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xing Gao
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Kai-Liang Tao
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Cheng-Duo Li
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xue-Peng Fan
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zheng Tian
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|