1
|
Jiang Y, Hu X, Mei Y, Li X, Chen S, Yuan J, Wang Y, Tao R, Si J, Xu Z, Ke F, Yang H. A new UiO-66-NH 2 MOF-based nano-immobilized DFR enzyme as a biocatalyst for the synthesis of anthocyanidins. Int J Biol Macromol 2024; 277:134296. [PMID: 39094888 DOI: 10.1016/j.ijbiomac.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xiaodie Hu
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yu Mei
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xuefeng Li
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Shilin Chen
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingbo Yuan
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yang Wang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Ranran Tao
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingyu Si
- Department of Chemistry and Materials Engineering, Hefei University, Hefei 230601, People's Republic of China.
| | - Zezhong Xu
- Analytical and Testing Center, Hefei University, Hefei 230601, People's Republic of China.
| | - Fei Ke
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Hua Yang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
2
|
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024; 29:2021. [PMID: 38731512 PMCID: PMC11085290 DOI: 10.3390/molecules29092021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
| | - Masaya Miyazaki
- HaKaL Inc., Kurume Research Park, 1488-4 Aikawa, Kurume, Fukuoka 839-0864, Japan;
| |
Collapse
|
3
|
Gennari A, Simon R, Benvenutti EV, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. Magnetic core-shell cellulose system for the oriented immobilization of a recombinant β-galactosidase with a protein tag. Int J Biol Macromol 2024; 256:128418. [PMID: 38029902 DOI: 10.1016/j.ijbiomac.2023.128418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The objective of this study was to immobilize a recombinant β-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for β-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized β-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant β-galactosidase using a magnetic CS system and a CBD tag. This support facilitates β-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
4
|
Du M, Liu J, Huang B, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166429. [PMID: 37619739 DOI: 10.1016/j.scitotenv.2023.166429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bisphenol A (BPA) and its analogs are endocrine-disrupting chemicals that are frequently detected in environmental and human samples. However, the effective removal of BPA and its analogs has not yet been extensively studied. Herein, we introduce a novel enzyme reactor for the degradation of BPA and its analogs in water. The influence of pore size on the degradation efficiency of immobilized laccase in the spatial nanopores of hydrogel was investigated using BPA as a representative compound. This showed that nanopores enhance the activity of immobilized laccases in a pore size-dependent manner and increase their stability. Compared with the same amount of free laccase, the 50 mg/L BPA degradation performance of laccase immobilized in 76 nm nanopores increased to 300 %. Taking advantage of magnetic separation, this immobilized laccase can be reused, and its degradation capacity was maintained at over 73.7 % after ten reactions. Moreover, the degradation of seven BPA analogs was 1.03-5.88 times higher using laccase immobilized in nanopores compared with free laccase. Also, the biocatalyst could efficiently degrade BPA analogs in real water matrix. This study opens up a new avenue for the removal of BPA and its analogs by immobilizing laccase in nanopores, overcoming the key limitations introduced by the short enzyme life span and non-reusability.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Qiong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
6
|
Riaz R, Ashraf M, Hussain N, Baqar Z, Bilal M, Iqbal HMN. Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Letters 2023; 153:1587-1601. [DOI: 10.1007/s10562-022-04137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
7
|
Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications. Int J Biol Macromol 2023; 233:123539. [PMID: 36740122 DOI: 10.1016/j.ijbiomac.2023.123539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 μmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.
Collapse
|
8
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
9
|
Vainstein S, Banta S. Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3'-NADP(H). Protein Eng Des Sel 2023; 36:gzad009. [PMID: 37658768 DOI: 10.1093/protein/gzad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Oxidoreductases catalyze essential redox reactions, and many require a diffusible cofactor for electron transport, such as NAD(H). Non-canonical cofactor analogs have been explored as a means to create enzymatic reactions that operate orthogonally to existing metabolism. Here, we aimed to engineer the formate dehydrogenase from Candid boidinii (CbFDH) for activity with the non-canonical cofactor nicotinamide adenine dinucleotide 3'-phosphate (3'-NADP(H)). We used PyRosetta, the Cofactor Specificity Reversal Structural Analysis and Library Design (CSR-SALAD), and structure-guided saturation mutagenesis to identify mutations that enable CbFDH to use 3'-NADP+. Two single mutants, D195A and D195G, had the highest activities with 3'-NADP+, while the double mutant D195G/Y196S exhibited the highest cofactor selectivity reversal behavior. Steady state kinetic analyses were performed; the D195A mutant exhibited the highest KTS value with 3'-NADP+. This work compares the utility of computational approaches for cofactor specificity engineering while demonstrating the engineering of an important enzyme for novel non-canonical cofactor selectivity.
Collapse
Affiliation(s)
- Salomon Vainstein
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
10
|
George DM, Ramadoss R, Mackey HR, Vincent AS. Comparative computational study to augment UbiA prenyltransferases inherent in purple photosynthetic bacteria cultured from mangrove microbial mats in Qatar for coenzyme Q 10 biosynthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00775. [PMID: 36404947 PMCID: PMC9672418 DOI: 10.1016/j.btre.2022.e00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Coenzyme Q10 (CoQ10) is a powerful antioxidant with a myriad of applications in healthcare and cosmetic industries. The most effective route of CoQ10 production is microbial biosynthesis. In this study, four CoQ10 biosynthesizing purple photosynthetic bacteria: Rhodobacter blasticus, Rhodovulum adriaticum, Afifella pfennigii and Rhodovulum marinum, were identified using 16S rRNA sequencing of enriched microbial mat samples obtained from Purple Island mangroves (Qatar). The membrane bound enzyme 4-hydroxybenzoate octaprenyltransferase (UbiA) is pivotal for bacterial biosynthesis of CoQ10. The identified bacteria could be inducted as efficient industrial bio-synthesizers of CoQ10 by engineering their UbiA enzymes. Therefore, the mutation sites and substitution residues for potential functional enhancement were determined by comparative computational study. Two mutation sites were identified within the two conserved Asp-rich motifs, and the effect of proposed mutations in substrate binding affinity of the UbiA enzymes was assessed using multiple ligand simultaneous docking (MLSD) studies, as a groundwork for experimental studies.
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Biological Sciences, Carnegie Mellon University Qatar, Doha, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | |
Collapse
|
11
|
Yamaguchi H, Miyazaki M. Enzyme-immobilized microfluidic devices for biomolecule detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Converting the genomic knowledge base to build protein specific machine learning prediction models; a classification study on thermophilic serine protease. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zheng Y, Zhang B, Xie Y, Lin J, Wei D. Using a novel data-driven combinatorial mutagenesis strategy to engineer an alcohol dehydrogenase for efficient geraniol synthesis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Jailani N, Jaafar NR, Suhaimi S, Mackeen MM, Bakar FDA, Illias RM. Cross-linked cyclodextrin glucanotransferase aggregates from Bacillus lehensis G1 for cyclodextrin production: Molecular modeling, developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2022; 213:516-533. [PMID: 35636531 DOI: 10.1016/j.ijbiomac.2022.05.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
Type of cross-linking agents influence the stability and active cross-linked enzyme aggregates (CLEA) immobilization. The information of molecular interaction between enzyme-cross linker is not well explored thus screening wide numbers of cross-linker is crucial in CLEA development. This study combined the molecular modeling and experimental optimization to investigate the influences of different cross-linking agents in developing CLEA of cyclodextrin glucanotranferase G1 (CGTase G1) for cyclodextrins (CDs) synthesis. Seven types of cross-linkers were tested and CGTase G1 cross-linked with chitosan (CS-CGTG1-CLEA) displayed the highest activity recovery (84.6 ± 0.26%), aligning with its highest binding affinity, radius of gyration and flexibility through in-silico analysis towards CGTase G1. CS-CGTG1-CLEA was characterized and showed a longer half-life (30.06 ± 1.51 min) and retained a greater thermal stability (52.73 ± 0.93%) after 30 min incubation at optimal conditions compared to free enzyme (10.30 ± 1.34 min and 5.51 ± 2.10% respectively). CS-CGTG1-CLEA improved CDs production by 33% and yielded cumulative of 52.62 g/L CDs after five cycles for 2 h of reaction. This study reveals that abundant of hydroxyl group on chitosan interacted with CGTase G1 surface amino acid residues to form strong and stable CLEA thus can be a promising biocatalyst in CDs production.
Collapse
Affiliation(s)
- Nashriq Jailani
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Suhaily Suhaimi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mukram Mohamed Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
15
|
Ma C, Jiang C, Zhao D, Li S, Li R, Li L. Development in Detection Methods for the Expression of Surface-Displayed Proteins. Front Microbiol 2022; 13:899578. [PMID: 35558116 PMCID: PMC9085562 DOI: 10.3389/fmicb.2022.899578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Directed evolution is a widely-used engineering strategy for improving the stabilities or biochemical functions of proteins by repeated rounds of mutation and selection. A protein of interest is selected as the template and expressed on a molecular display platform such as a bacteriophage for engineering. Initially, the surface-displayed protein template needs to be checked against the desired target via ELISA to examine whether the functions of the displayed template remain intact. The ELISA signal is subject to the protein-target binding affinity. A low-affinity results in a weak ELISA signal which makes it difficult to determine whether the weak signal is because of low affinity or because of poor expression of the protein. Using a methyllysine-binding chromodomain protein Cbx1 that weakly binds to the histone H3K9me3 peptide, we developed and compared three different approaches to increase the signal-to-background ratio of ELISA measurements. We observed that the specific peptide-binding signal was enhanced by increasing the Cbx1 phage concentration on the ELISA plate. The introduction of previously known gain-of-function mutations to the Cbx1 protein significantly increased the ELISA signals. Moreover, we demonstrated that the H3K9me3-specific binding signal was enhanced by fusing Cbx1 with a high-affinity phosphotyrosine-binding protein and by coating the ELISA plate with a mixture of H3K9me3 and phosphotyrosine peptides. This approach also worked with binding to a lower affinity momomethyllysine peptide H3K9me1. These approaches may help improve ELISA experiments when dealing with low-affinity ligand-protein interactions.
Collapse
Affiliation(s)
- Chenglong Ma
- College of Life Sciences, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chunyang Jiang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Dongping Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shuhao Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lei Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Villalba-Rodríguez AM, Parra-Arroyo L, González-González RB, Parra-Saldívar R, Bilal M, Iqbal HM. Laccase-assisted biosensing constructs – Robust modalities to detect and remove environmental contaminants. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022. [DOI: 10.1016/j.cscee.2022.100180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
18
|
Crans DC, Brown M, Roess DA. Vanadium compounds promote biocatalysis in cells through actions on cell membranes. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Remonatto D, Miotti Jr. RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kamal S, Hussain F, Bibi I, Azeem M, Ahmad T, Iqbal HMN. Mutagenesis and Immobilization of ChitB-Protease for Induced De-staining and Goat Skin Dehairing Potentialities. Catal Letters 2022; 152:12-27. [DOI: 10.1007/s10562-021-03605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
|
23
|
Oliart-Ros RM, Badillo-Zeferino GL, Quintana-Castro R, Ruíz-López II, Alexander-Aguilera A, Domínguez-Chávez JG, Khan AA, Nguyen DD, Nadda AK, Sánchez-Otero MG. Production and Characterization of Cross-Linked Aggregates of Geobacillus thermoleovorans CCR11 Thermoalkaliphilic Recombinant Lipase. Molecules 2021; 26:7569. [PMID: 34946651 PMCID: PMC8708040 DOI: 10.3390/molecules26247569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.
Collapse
Affiliation(s)
- Rosa-María Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Giselle-Lilian Badillo-Zeferino
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Rodolfo Quintana-Castro
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Irving-Israel Ruíz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla C.P. 72570, Pue., Mexico;
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Jorge-Guillermo Domínguez-Chávez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dinh Duc Nguyen
- Department of Environmental and Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si 16227, Gyeonggi-do, Korea;
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Faculty of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - María-Guadalupe Sánchez-Otero
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| |
Collapse
|
24
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
25
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
26
|
Liu S, Bilal M, Rizwan K, Gul I, Rasheed T, Iqbal HMN. Smart chemistry of enzyme immobilization using various support matrices - A review. Int J Biol Macromol 2021; 190:396-408. [PMID: 34506857 DOI: 10.1016/j.ijbiomac.2021.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
The surface chemistry, pendent functional entities, and ease in tunability of various materials play a central role in properly coordinating with enzymes for immobilization purposes. Due to the interplay between the new wave of support matrices and enzymes, the development of robust biocatalytic constructs via protein engineering expands the practical scope and tunable catalysis functions. The concept of stabilization via functional entities manipulation, the surface that comprises functional groups, such as thiol, aldehyde, carboxylic, amine, and epoxy have been the important driving force for immobilizing purposes. Enzyme immobilization using multi-functional supports has become a powerful norm and presents noteworthy characteristics, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. There is a plethora of literature on traditional immobilization approaches, e.g., intramolecular chemical (covalent) attachment, adsorption, encapsulation, entrapment, and cross-linking. However, the existing literature is lacking state-of-the-art smart chemistry of immobilization. This review is a focused attempt to cover the literature gap of surface functional entities that interplay between support materials at large and enzyme of interest, in particular, to tailor robust biocatalysts to fulfill the growing and contemporary needs of several industrial sectors.
Collapse
Affiliation(s)
- Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Guangdong Province 518055, China
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
27
|
Vieira YA, Gurgel D, Henriques RO, Machado RAF, de Oliveira D, Oechsler BF, Furigo Junior A. A Perspective Review on the Application of Polyacrylonitrile-Based Supports for Laccase Immobilization. CHEM REC 2021; 22:e202100215. [PMID: 34669242 DOI: 10.1002/tcr.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/02/2021] [Indexed: 01/12/2023]
Abstract
The use of laccases applied in bioremediation processes has been increasingly studied, given the urgent need to overcome the environmental problems caused by emerging contaminants. It is known that immobilized enzymes have better operational stability under reaction conditions, allowing for greater applicability. However, given the lack of commercially available immobilized laccases, the search for immobilization materials and methods continues to gain effort. The use of polyacrylonitrile (PAN) to immobilize enzymes has been investigated since it is a low-cost material and can be modified and functionalized to well interact with the enzyme. This polymer can be used with different morphologies such as fibers, beads, and core-shell, presenting as an easily applicable alternative. This review presents the missing link between polymer and enzyme through an overview of PAN's current use as support for laccase immobilization and polymer functionalization methods, considering the importance of immobilized laccases in several industrial sectors.
Collapse
Affiliation(s)
- Yago Araujo Vieira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Danyelle Gurgel
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Ricardo Antonio Francisco Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, EQA/UFSC - Postal Code 476, CEP 88040-900, Florianopolis, SC, Brazil
| |
Collapse
|
28
|
Cen SY, Ge XY, Chen Y, Wang AJ, Feng JJ. Label-free electrochemical immunosensor for ultrasensitive determination of cardiac troponin I based on porous fluffy-like AuPtPd trimetallic alloyed nanodendrites. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Constitutive Expression in Komagataella phaffii of Mature Rhizopus oryzae Lipase Jointly with Its Truncated Prosequence Improves Production and the Biocatalyst Operational Stability. Catalysts 2021. [DOI: 10.3390/catal11101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) containing 28 C-terminal amino acids of the prosequence fused to the N-terminal mature sequence in ROL (proROL) was successfully expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris) under the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP). Although the sequence encoding the mature lipase (rROL) was also transformed, no clones were obtained after three transformation cycles, which highlights the importance of the truncated prosequence to obtain viable transformed clones. Batch cultures of the K. phaffii strain constitutively expressing proROL scarcely influenced growth rate and exhibited a final activity and volumetric productivity more than six times higher than those obtained with proROL from K. phaffii under the methanol-inducible alcohol oxidase 1 promoter (PAOX1). The previous differences were less marked in fed-batch cultures. N-terminal analysis confirmed the presence of the 28 amino acids in proROL. In addition, immobilized proROL exhibited increased tolerance of organic solvents and an operational stability 0.25 and 3 times higher than that of immobilized rROL in biodiesel and ethyl butyrate production, respectively. Therefore, the truncated prosequence enables constitutive proROL production, boosts bioprocess performance and provides a more stable biocatalyst in two reactions in which lipases are mostly used at industrial level, esterification (ethyl butyrate) and transesterification (biodiesel).
Collapse
|
30
|
Lee Y, Ng M, Daniel K, Wayne E. Rapid growth in the COVID-19 era. MRS BULLETIN 2021; 46:847-853. [PMID: 34608355 PMCID: PMC8480751 DOI: 10.1557/s43577-021-00185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT From Operation Warp Speed to the lipid mRNA vaccine, the COVID-19 pandemic has been a watershed moment for technological development, production, and implementation. The scale and pace of innovation and global collaboration has likely not been experienced since World War II. This article highlights some of the engineering accomplishments that occurred during the pandemic. We provide a broad overview of the technological achievements in vaccine design, antibody engineering, drug repurposing, and rapid diagnostic testing. We also discuss what the future of these technologies and the future of large-scale collaborations might look like moving forward. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Yerim Lee
- Department of Biomedical Engineering, and Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Michelle Ng
- Department of Biomedical Engineering, and Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Kristin Daniel
- Department of Biomedical Engineering, and Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Elizabeth Wayne
- Department of Biomedical Engineering, and Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| |
Collapse
|
31
|
Bilal M, Qamar SA, Ashraf SS, Rodríguez-Couto S, Iqbal HMN. Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv Colloid Interface Sci 2021; 293:102438. [PMID: 34023567 DOI: 10.1016/j.cis.2021.102438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nanobiocatalysis (NBC). NBC is an emerging innovation that offers significant considerations to expand the designing and fabrication of robust catalysts at the nanoscale with improved catalytic characteristics for multipurpose bioprocessing applications. In addition, nanostructured materials with unique structural, physical, chemical, and functional entities have manifested significant contributions in mimicking the enzyme microenvironment. A fine-tuned enzyme microenvironment with an added-value of NBC offers chemo- regio- and stereo- selectivities and specificities. Furthermore, NBC is growing rapidly and will become a powerful norm in bio-catalysis with much controlled features, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, improved mass transfer efficiency, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we present and discuss advances in NBC and its bioprocessing applications in different fields. Briefly, this review is focused on four parts, i.e., (1) NBC as a drive towards applied nanobiocatalysts (as an introduction with opportunities), (2) promising nanocarriers to develop nanobiocatalysts, (3) applications in the fields of biotransformation, biofuel production, carbohydrate hydrolysis, bio-/nanosensing, detergent formulations, and extraction and purification of value-added compounds, and (4) current challenges, concluding remarks, and future trends.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
32
|
Zhang L, Feng Y, Li L, Guo X, Du W, Wang S, Xiang J, Cheng P, Tang N. Construction of Magnetic Nanoparticle–Enzyme Complexes with High Loading Efficiency by In Situ Embedding Iron Oxide into Enzymes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Yuanyuan Feng
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Linlin Li
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xiaofang Guo
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Wei Du
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Songbo Wang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jun Xiang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Penggao Cheng
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Na Tang
- Tianjin Key Laboratory of Brine Chemical Industry and Ecological Utilization of Resources, College of Chemical Engineering & Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
33
|
de Andrade BC, Gennari A, Renard G, Nervis BDR, Benvenutti EV, Costa TMH, Nicolodi S, da Silveira NP, Chies JM, Volpato G, Volken de Souza CF. Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model. Int J Biol Macromol 2021; 184:159-169. [PMID: 34126150 DOI: 10.1016/j.ijbiomac.2021.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (Fe3O4-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed. The load of 600 Uenzyme/gsupport showed the highest recovered activity value (~50%). After the immobilization process, the recombinant β-galactosidase (HisGal) showed increased substrate affinity and greater thermal stability (~50×) compared to the free enzyme. The immobilized β-galactosidase was employed in batch processes for lactose hydrolysis of skim milk and cheese whey, resulting in hydrolysis rates higher than 50% after 15 cycles of reuse. The support used was obtained in the present study without modifying chemical agents. The support easily recovered from the reaction medium due to its magnetic characteristics. The iron nanoparticles functionalized with histidine and nickel were efficient in the oriented immobilization of the recombinant β-galactosidase, showing its potential application in other high-molecular-weight enzymes.
Collapse
Affiliation(s)
- Bruna Coelho de Andrade
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Gaby Renard
- National Institute of Science and Technology in Tuberculosis, Research Center for Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Sabrina Nicolodi
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Giandra Volpato
- Biotechnology course, Federal Institute of Education, Science, and Technology of Rio Grande do Sul - IFRS, Porto Alegre Campus, Porto Alegre, RS, Brazil
| | | |
Collapse
|
34
|
Federsel HJ, Moody TS, Taylor SJ. Recent Trends in Enzyme Immobilization-Concepts for Expanding the Biocatalysis Toolbox. Molecules 2021; 26:molecules26092822. [PMID: 34068706 PMCID: PMC8126217 DOI: 10.3390/molecules26092822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Enzymes have been exploited by humans for thousands of years in brewing and baking, but it is only recently that biocatalysis has become a mainstream technology for synthesis. Today, enzymes are used extensively in the manufacturing of pharmaceuticals, food, fine chemicals, flavors, fragrances and other products. Enzyme immobilization technology has also developed in parallel as a means of increasing enzyme performance and reducing process costs. The aim of this review is to present and discuss some of the more recent promising technical developments in enzyme immobilization, including the supports used, methods of fabrication, and their application in synthesis. The review highlights new support technologies such as the use of well-established polysaccharides in novel ways, the use of magnetic particles, DNA, renewable materials and hybrid organic–inorganic supports. The review also addresses how immobilization is being integrated into developing biocatalytic technology, for example in flow biocatalysis, the use of 3D printing and multi-enzymatic cascade reactions.
Collapse
Affiliation(s)
- Hans-Jürgen Federsel
- RISE Research Institutes of Sweden, Department of Chemical Process and Pharmaceutical Development, P.O. Box 5607, S-114 86 Stockholm, Sweden
- Correspondence: (H.-J.F.); (T.S.M.); Tel.: +46-70-311-55-53 (H.-J.F.); +44-28-3833-2200 (T.S.M.)
| | - Thomas S. Moody
- Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK;
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, N37 DN24 Athlone, Ireland
- Correspondence: (H.-J.F.); (T.S.M.); Tel.: +46-70-311-55-53 (H.-J.F.); +44-28-3833-2200 (T.S.M.)
| | - Steve J.C. Taylor
- Almac Sciences Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK;
| |
Collapse
|
35
|
Ricardi NC, Arenas LT, Benvenutti EV, Hinrichs R, Flores EEE, Hertz PF, Costa TMH. High performance biocatalyst based on β-d-galactosidase immobilized on mesoporous silica/titania/chitosan material. Food Chem 2021; 359:129890. [PMID: 33934029 DOI: 10.1016/j.foodchem.2021.129890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
A new support for the immobilization of β-d-galactosidase from Kluyveromyces lactis was developed, consisting of mesoporous silica/titania with a chitosan coating. This support presents a high available surface area and adequate pore size for optimizing the immobilization efficiency of the enzyme and, furthermore, maintaining its activity. The obtained supported biocatalyst was applied in enzyme hydrolytic activity tests with o-NPG, showing high activity 1223 Ug-1, excellent efficiency (74%), and activity recovery (54%). Tests of lactose hydrolysis in a continuous flow reactor showed that during 14 days operation, the biocatalyst maintained full enzymatic activity. In a batch system, after 15 cycles, it retained approximately 90% of its initial catalytic activity and attained full conversion of the lactose 100% (±12%). Additionally, with the use of the mesoporous silica/titania support, the biocatalyst presented no deformation and fragmentation, in both systems, demonstrating high operational stability and appropriate properties for applications in food manufacturing.
Collapse
Affiliation(s)
| | - Leliz Ticona Arenas
- Instituto de Química (IQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Edilson Valmir Benvenutti
- Instituto de Química (IQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ruth Hinrichs
- Instituto de Geociências (IGEO), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elí Emanuel Esparza Flores
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Plinho Francisco Hertz
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tania Maria Haas Costa
- Instituto de Química (IQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Salem K, Jabalera Y, Puentes-Pardo JD, Vilchez-Garcia J, Sayari A, Hmida-Sayari A, Jimenez-Lopez C, Perduca M. Enzyme Storage and Recycling: Nanoassemblies of α-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:4054-4063. [PMID: 35070520 PMCID: PMC8765010 DOI: 10.1021/acssuschemeng.0c08300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Indexed: 05/03/2023]
Abstract
Immobilization of enzymes has been extensively required in a wide variety of industrial applications as a way to ensure functionality and the potential of enzyme recycling after use. In particular, enzyme immobilization on magnetic nanoparticles (MNPs) could offer reusability by means of magnetic recovery and concentration, along with increased stability and robust activity of the enzyme under different physicochemical conditions. In the present work, microbial α-amylase (AmyKS) and xylanase (XAn11) were both immobilized on different types of MNPs [MamC-mediated biomimetic MNPs (BMNPs) and inorganic MNPs] by using two different strategies (electrostatic interaction and covalent bond). AmyKS immobilization was successful using electrostatic interaction with BMNPs. Instead, the best strategy to immobilize XAn11 was using MNPs through the hetero-crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The immobilization protocols were optimized by varying glutaraldehyde (GA) concentration, enzyme quantity, and reaction time. Under optimal conditions, 92% of AmyKS and 87% of XAn11 were immobilized on BMNPs and MNPs-E/N, respectively (here referred as AmyKS-BMNPs and XAn11-MNPs nanoassemblies). The results show that the immobilization of the enzymes did not extensively alter their functionality and increased enzyme stability compared to that of the free enzyme upon storage at 4 and 20 °C. Interestingly, the immobilized amylase and xylanase were reused for 15 and 8 cycles, respectively, without significant loss of activity upon magnetic recovery of the nanoassemblies. The results suggest the great potential of these nanoassemblies in bioindustry applications.
Collapse
Affiliation(s)
- Karima Salem
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Ylenia Jabalera
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jose David Puentes-Pardo
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jesus Vilchez-Garcia
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Adel Sayari
- ENIS,
Université de Sfax, BP “1173”, 3038 Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- . Phone: +34
958249833
| | - Massimiliano Perduca
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- . Phone: +39 0458027984
| |
Collapse
|
37
|
Cutiño-Avila BV, Sánchez-López MI, Cárdenas-Moreno Y, González-Durruthy M, Ramos-Leal M, Guerra-Rivera G, González-Bacerio J, Guisán JM, Ruso JM, Del Monte-Martínez A. Modeling and experimental validation of covalent immobilization of Trametes maxima laccase on glyoxyl and MANA-Sepharose CL 4B supports, for the use in bioconversion of residual colorants. Biotechnol Appl Biochem 2021; 69:479-491. [PMID: 33580532 DOI: 10.1002/bab.2125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2021] [Indexed: 11/05/2022]
Abstract
Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Bessy V Cutiño-Avila
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - María I Sánchez-López
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Yosberto Cárdenas-Moreno
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Michael González-Durruthy
- LAQV-REQUIMTE of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.,Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Ramos-Leal
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Instituto de Fruticultura Tropical, La Habana, Cuba
| | - Gilda Guerra-Rivera
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba.,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
38
|
Farhadi S, Riahi-Madvar A, Sargazi G, Mortazavi M. Immobilization of Lepidium draba peroxidase on a novel Zn-MOF nanostructure. Int J Biol Macromol 2021; 173:366-378. [PMID: 33453257 DOI: 10.1016/j.ijbiomac.2020.12.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
In the present study, ultrasound irradiation was utilized to synthesize a novel zinc metal-organic framework (MOF). Scanning electron microscopic images, exhibited homogenous morphology with a nano-sized distribution of the Zn-MOF structure as also confirmed by X-ray diffraction patterns. Following, physical immobilization of Lepidium draba peroxidase (LDP) were optimized on the Zn-MOF in phosphate buffer (50 mM, pH 6.5), ratio amount of MOF/enzyme; 7/1 after shaking for 15 min at 25 °C, with high protein loading of 109.9 mg/g and immobilization yield of 93.3%. Immobilized enzyme (IE) exhibited more than 330% enhanced specific activity and also exhibited more than 150% specific affinity to its substrate (3,3',5,5'-tetramethylbenzidine) with respect to the free enzyme (FE). Optimum temperature of the IE was obtained at 20 °C while its was 25 °C for the FE, and thermostability of the IE augmented at temperature of 30 °C and 40 °C by the factors of 104 and 108% respectively. pH stability under neutral and basic condition and storage stability of the IE improved with respect to the FE as well as its structural stability (Tm; 73 °C for IE vs. 63 °C for FE). Furthermore, immobilization is accompanied with alteration on the enzyme structure as revealed by the intrinsic and extrinsic fluorescence spectra.
Collapse
Affiliation(s)
- Soudabeh Farhadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, Kosar University of Bojnord, Bojnord, Iran.
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
39
|
Wang Z, Xie Q, Zhou H, Zhang M, Shen J, Ju D. Amino Acid Degrading Enzymes and Autophagy in Cancer Therapy. Front Pharmacol 2021; 11:582587. [PMID: 33510635 PMCID: PMC7836011 DOI: 10.3389/fphar.2020.582587] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Recently, there has been renewed interest in metabolic therapy for cancer, particularly in amino acid deprivation by enzymes. L-asparaginase was approved for the treatment of acute lymphoblastic leukemia by the U.S. Food and Drug Administration. Arginine deiminase and recombinant human arginase have been developed into clinical trials as potential cancer therapeutic agents for the treatment of arginine-auxotrophic tumors. Moreover, other novel amino acid degrading enzymes, such as glutaminase, methionase, lysine oxidase, phenylalanine ammonia lyase, have been developed for the treatment of malignant cancers. One of the greatest obstacles faced by anticancer drugs is the development of drug resistance, which is reported to be associated with autophagy. Autophagy is an evolutionarily conserved catabolic process that is responsible for the degradation of dysfunctional proteins and organelles. There is a growing body of literature revealing that, in response to metabolism stress, autophagy could be induced by amino acid deprivation. The manipulation of autophagy in combination with amino acid degrading enzymes is actively being investigated as a potential therapeutic approach in preclinical studies. Importantly, shedding light on how autophagy fuels tumor metabolism during amino acid deprivation will enable more potential combinational therapeutic strategies. This study summarizes recent advances, discussing several potential anticancer enzymes, and highlighting the promising combined therapeutic strategy of amino acid degrading enzymes and autophagy modulators in tumors
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Qinghong Xie
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haifeng Zhou
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
40
|
Chew JS, Ho TTN, Lee CLK. Biocatalytic ketone reductions using Biobeads for miniaturized high throughput experimentation. NEW J CHEM 2021. [DOI: 10.1039/d0nj04889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniaturized reactions conducted in parallel can lead to increased productivity in laboratories without depleting high value reagents.
Collapse
Affiliation(s)
- Jia Shen Chew
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Thi Thanh Nha Ho
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Chi-Lik Ken Lee
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
41
|
Yamaguchi H, Miyazaki M. Laccase aggregates via poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Laccase was for the first time immobilized as enzyme aggregates onto PEGA resin using the technique of poly-lysine-supported cross-linking. Immobilized laccase showed efficient enzymatic activity with high operational stability and good reusability.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Liberal Art Education Center
- Tokai University
- Kumamoto
- Japan
- Graduate School of Agriculture
| | - Masaya Miyazaki
- Center for Plasma Nano-interface Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
42
|
Chen R, Wei Q, Wei X, Liu Y, Zhang X, Chen X, Yin X, Xie T. Stable and efficient immobilization of bi-enzymatic NADPH cofactor recycling system under consecutive microwave irradiation. PLoS One 2020; 15:e0242564. [PMID: 33206717 PMCID: PMC7673530 DOI: 10.1371/journal.pone.0242564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
One of the challenges in biocatalysis is the development of stable and efficient bi-enzymatic cascades for bio-redox reactions coupled to the recycling of soluble cofactors. Aldo-keto reductase (LEK) and glucose dehydrogenase (GDH) can be utilized as the NADPH recycling system for economic and efficient biocatalysis of (R)-4-chloro-3-hydroxybutanoate ((R)-CHBE), an important chiral pharmaceutical intermediate. The LEK and GDH was efficiently co-immobilized in mesocellular siliceous foams (MCFs) under microwave irradiation (CoLG-MIA). while they were also co-immobilized by entrapment in calcium alginate without MIA as control (CoLG-CA). The relative activity of CoLG-MIA was increased to 140% compared with that of free LEK. The CoLG-MIA exhibited a wider range of pH and temperature stabilities compared with other preparations. The thermal, storage and batch operational stabilities of microwave-assisted immobilized LEK-GDH were also improved. The NADPH recycling system exhibited the potential as the stable and efficient catalyst for the industrial preparation of (R)-CHBE.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
- Faculty of Preventive Medicine of Medical College, Hangzhou Normal University, Hangzhou, P. R. China
| | - Qiuhui Wei
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Xin Wei
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Yuheng Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Xiaomin Zhang
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Xiabin Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Xiaopu Yin
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
43
|
Grebennikova O, Sviridova I, Matveeva V, Sulman M. Magnetic nanoparticles in biocatalysis. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1742-6596/1658/1/012018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Al-Harbi SA, Almulaiky YQ. Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads. Int J Biol Macromol 2020; 160:944-952. [DOI: 10.1016/j.ijbiomac.2020.05.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/27/2023]
|
45
|
Datta S, Rajnish KN, George Priya Doss C, Melvin Samuel S, Selvarajan E, Zayed H. Enzyme therapy: a forerunner in catalyzing a healthy society? Expert Opin Biol Ther 2020; 20:1151-1174. [PMID: 32597245 DOI: 10.1080/14712598.2020.1787980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The use of enzymes in various industries has been prevalent for centuries. However, their potency as therapeutics remained latent until the late 1950 s, when scientists finally realized the gold mine they were sitting on. Enzyme therapy has seen rapid development over the past few decades and has been widely used for the therapy of myriad diseases, including lysosomal storage disorders, cancer, Alzheimer's disease, irritable bowel syndrome, exocrine pancreatic insufficiency, and hyperuricemia. Enzymes are also used for wound healing, the treatment of microbial infections, and gene therapy. AREAS COVERED This is a comprehensive review of the therapeutic use of enzymes that can act as a guidepost for researchers and academicians and presents a general overview of the developments in enzyme therapy over the years, along with updates on recent advancements in enzyme therapy research. EXPERT OPINION Although enzyme therapy is immensely beneficial and induces little auxiliary damage, it has several drawbacks, ranging from high cost, low stability, low production, and hyperimmune responses to the failure to cure a variety of the problems associated with a disease. Further fine-tuning and additional clinical efficacy studies are required to establish enzyme therapy as a forerunner to catalyzing a healthy society.
Collapse
Affiliation(s)
- Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology , Vellore, TN, India
| | - S Melvin Samuel
- Materials Science and Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University , Doha, Qatar
| |
Collapse
|
46
|
Zambrano G, Chino M, Renzi E, Di Girolamo R, Maglio O, Pavone V, Lombardi A, Nastri F. Clickable artificial heme-peroxidases for the development of functional nanomaterials. Biotechnol Appl Biochem 2020; 67:549-562. [PMID: 33463759 DOI: 10.1002/bab.1969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 11/08/2022]
Abstract
Artificial metalloenzymes as catalysts are promising candidates for their use in different technologies, such as bioremediation, biomass transformation, or biosensing. Despite this, their practical exploitation is still at an early stage. Immobilized natural enzymes have been proposed to enhance their applicability. Immobilization may offer several advantages: (i) catalyst reuse; (ii) easy separation of the enzyme from the reaction medium; (iii) better tolerance to harsh temperature and pH conditions. Here, we report an easy immobilization procedure of an artificial peroxidase on different surfaces, by means of click chemistry. FeMC6*a, a recently developed peroxidase mimic, has been functionalized with a pegylated aza-dibenzocyclooctyne to afford a "clickable" biocatalyst, namely FeMC6*a-PEG4@DBCO, which easily reacts with azide-functionalized molecules and/or nanomaterials to afford functional bioconjugates. The clicked biocatalyst retains its structural and, to some extent, its functional behaviors, thus housing high potential for biotechnological applications.
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Emilia Renzi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy.,Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| |
Collapse
|
47
|
Design and Construction of an Effective Expression System with Aldehyde Tag for Site-Specific Enzyme Immobilization. Catalysts 2020. [DOI: 10.3390/catal10040410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In recent years, the development and application of site-specific immobilization technology for proteins have undergone significant advances, which avoids the unwanted and random covalent linkage between the support and active site of protein in the covalent immobilization. Formylglycine generating enzyme (FGE) can transform the cysteine from a conversed 6-amino-acid sequence CXPXR into formylglycine with an aldehyde group (also termed as “aldehyde tag”). Based on the frame of pET-28a, the His-tags were replaced with aldehyde tags. Afterward, a set of plasmids were constructed for site-specific covalent immobilization, their His-tags were knock out (DH), or were replaced at different positions: N-terminal (NQ), C-terminal (CQ), or both (DQ) respectively. Three different enzymes, thermophilic acyl aminopeptidase (EC 3.4.19.1) from Sulfolobus tokodaii (ST0779), thermophilic dehalogenase (EC 3.8.1.2) from Sulfolobus tokodaii (ST2570), and Lipase A (EC 3.1.1.3) from Bacillus subtilis (BsLA) were chosen as model enzymes to connect with these plasmid systems. The results showed that different aldehyde-tagged enzymes can be successfully covalently attached to different carriers modified with an amino group, proving the universality of the method. The new immobilized enzyme also presented better thermostability and reutilization than those of the free enzyme.
Collapse
|
48
|
Ma CB, Zhang Y, Liu Q, Du Y, Wang E. Enhanced Stability of Enzyme Immobilized in Rationally Designed Amphiphilic Aerogel and Its Application for Sensitive Glucose Detection. Anal Chem 2020; 92:5319-5328. [DOI: 10.1021/acs.analchem.9b05858] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chong-Bo Ma
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Institute of Functional Materials Chemistry, and Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Parra-Arroyo L, Parra-Saldivar R, Ramirez-Mendoza RA, Keshavarz T, Iqbal HMN. Laccase-Assisted Cues: State-of-the-Art Analytical Modalities for Detection, Quantification, and Redefining “Removal” of Environmentally Related Contaminants of High Concern. MICROBIOLOGY MONOGRAPHS 2020. [DOI: 10.1007/978-3-030-47906-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Bilal M, Iqbal HMN. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends. Crit Rev Food Sci Nutr 2020; 60:2052-2066. [PMID: 31210055 DOI: 10.1080/10408398.2019.1627284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the recent progress in biotechnology, a wide variety of novel enzymes with unique physicochemical properties and diverse applications has been introduced, and new application list continues to extend in the future. Enzymes obtained from microorganisms, including bacteria, fungi, yeast are widely applied in numerous food formulations for intensifying their texture and taste. Owing to several desirable characteristics such as easy, cost-efficient and stable production, microbial-derived enzymes are preferred source in contrast to animals or plants. Enzymatic processes have a considerable impact in controlling the characteristics such as (1) physiochemical properties, (2) rheological functionalities, (3) facile process as compared to the chemical-based processing, (4) no or minimal consumption of harsh chemicals, (5) overall cost-effective ratio, (6) sensory and flavor qualities, and (7) intensifying the stability, shelf life and overall quality of the product, etc. in the food industry. Also, enzyme-catalyzed processing has also been designed for new food applications such as extraction of bioactive compounds, nutrient-rich and texture improved foods production, and eliminating food safety hazards. Herein, we reviewed recent applications of food-processing enzymes and highlighted promising technologies to diversify their application range in food industries. Immobilization technology enabled biocatalysts to be used cost-effectively due to reusability with negligible or no activity loss. Integrated progress in novel enzyme discovery, and recombinant DNA technology, as well as protein engineering and bioprocess engineering strategies, are believed to rapidly propagate biocatalysis at industrial-scale food processing or green and sustainable chemical manufacturing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|