1
|
Chen J, Zhou X, Dai N, Liu X, Liu S, Zhang H, Kong L, Ma H. The Long-Acting Serine Protease Inhibitor mPEG-SPA-MDSPI16 Alleviates LPS-Induced Acute Lung Injury. Int J Mol Sci 2024; 25:4567. [PMID: 38674153 PMCID: PMC11049807 DOI: 10.3390/ijms25084567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.
Collapse
Affiliation(s)
- Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinjun Zhou
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Nan Dai
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Shihan Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
2
|
Abdelkader I, Guisán JM, Sayari A, Fernández-Lorente G. Various Strategies for the Immobilization of a Phospholipase C from Bacillus cereus for the Modulation of Its Biochemical Properties. Molecules 2024; 29:1467. [PMID: 38611747 PMCID: PMC11013441 DOI: 10.3390/molecules29071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.
Collapse
Affiliation(s)
- Ines Abdelkader
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PB 1173, Km 4 Road Soukra, Sfax 3038, Tunisia; (I.A.); (A.S.)
| | - Jose M. Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2, UAM Campus, Cantoblanco, 28049 Madrid, Spain;
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, PB 1173, Km 4 Road Soukra, Sfax 3038, Tunisia; (I.A.); (A.S.)
| | - Gloria Fernández-Lorente
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Wang X, Sheng Y, Cui H, Qiao J, Song Y, Li X, Huang H. Corner Engineering: Tailoring Enzymes for Enhanced Resistance and Thermostability in Deep Eutectic Solvents. Angew Chem Int Ed Engl 2024; 63:e202315125. [PMID: 38010210 DOI: 10.1002/anie.202315125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Deep eutectic solvents (DESs), heralded for their synthesis simplicity, economic viability, and reduced volatility and flammability, have found increasing application in biocatalysis. However, challenges persist due to a frequent diminution in enzyme activity and stability. Herein, we developed a general protein engineering strategy, termed corner engineering, to acquire DES-resistant and thermostable enzymes via precise tailoring of the transition region in enzyme structure. Employing Bacillus subtilis lipase A (BSLA) as a model, we delineated the engineering process, yielding five multi-DESs resistant variants with highly improved thermostability, such as K88E/N89 K exhibited up to a 10.0-fold catalytic efficiency (kcat /KM ) increase in 30 % (v/v) choline chloride (ChCl): acetamide and 4.1-fold in 95 % (v/v) ChCl: ethylene glycol accompanying 6.7-fold thermal resistance improvement than wild type at ≈50 °C. The generality of the optimized approach was validated by two extra industrial enzymes, endo-β-1,4-glucanase PvCel5A (used for biofuel production) and esterase Bs2Est (used for plastics degradation). The molecular investigations revealed that increased water molecules at substrate binding cleft and finetuned helix formation at the corner region are two dominant determinants governing elevated resistance and thermostability. This study, coupling corner engineering with obtained molecular insights, illuminates enzyme-DES interaction patterns and fosters the rational design of more DES-resistant and thermostable enzymes in biocatalysis and biotransformation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
- Current address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
4
|
Xu X, Zhou T, Wei X, Jiang X, Cao J. Application of mPEG-CS-cRGD/ Bmi-1RNAi-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells. Drug Deliv 2023; 30:2180112. [PMID: 38095348 PMCID: PMC9946312 DOI: 10.1080/10717544.2023.2180112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Although surgery-based comprehensive therapy is becoming the main approach to treat laryngeal cancer, recurrence, metastasis, radiotherapy resistance and chemotherapy tolerance are still the main causes of death in patients. Targeted inhibition of laryngeal cancer stem cells has been considered as the consensus to cure laryngeal cancer. Our previous study has confirmed proto-oncogene Bmi-1 as a key regulator for self-renewal of laryngeal cancer stem cells. Targeted knockdown of Bmi-1 gene effectively inhibited the self-renewal and differentiation of laryngeal cancer stem cells, leading to the promoted sensitivity to chemotherapy including paclitaxel. However, due to off-target effects and quick degradation of the naked Bmi-1-RNAi small RNA oligo by nuclease in body fluids, it is urgently needed to develop a tumor-targeted delivery system with a protective shell. In this study, we designed and synthesized cRGD peptide-modified chitosan-polyethylene glycol slow-release nanoparticles (mPEG-CS-cRGD/Bmi-1RNAi-PTX) containing Bmi-1RNAi siRNA oligo and paclitaxel, which showed spherical in shape, 200 nm diameter in size, low cytotoxicity, strong DNA wrapping, resistance to nuclease degradation and high transfection efficiency to cells. Functional analysis indicated significant suppression of cell proliferation and migration and induction of apoptosis by the nanocomplex in laryngeal cancer cells in vitro. By application to the mouse model with laryngeal cancer, the nanocomplex inhibited tumor growth significantly in vivo. In addition, cRGD peptide, paclitaxel and Bmi-1 siRNA in the nanoparticles showed synergistic effects to suppress laryngeal cancer stem cells. In conclusion, this study not only developed a laryngeal tumor-targeted chemotherapeutic system, but also demonstrated a Bmi-1 RNAi-based chemotherapeutic strategy to inhibit cancer stem cells, having strong potential to treat laryngeal cancer patients suffering therapy resistance and/or tumor recurrence.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Tianhao Zhou
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
| | - Xudong Wei
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Xuelian Jiang
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, P.R. China
| | - Jiyan Cao
- Department of E.N.T, Gansu Provincial Hospital, Lanzhou, P.R. China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, P.R. China
| |
Collapse
|
5
|
Abdelkader I, Ben Mabrouk S, Hadrich B, Refai M, Fendri A, Sayari A. Optimization using response surface methodology of phospholipase C production from Bacillus cereus suitable for soybean oil degumming. Prep Biochem Biotechnol 2023; 53:1165-1175. [PMID: 36794326 DOI: 10.1080/10826068.2023.2177867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This work deals with the optimization of an extracellular phospholipase C production by Bacillus cereus (PLCBc) using Response Surface Methodology (RMS) and Box-Behnken design. In fact, after optimization, a maximum phospholipase activity (51 U/ml) was obtained after 6 h of cultivation on tryptone (10 g/L), yeast extract (10 g/L), NaCl (8.125 g/L), pH 7.5 with initial OD (0.15). The PLCBc activity, esteemed by the model (51 U) was very approximate to activity gutted experimentally (50 U). The PLCBc can be considered as thermoactive phospholipase since it showed a maximal activity of 50 U/mL at 60 °C using egg yolk or egg phosphatidylcholine (PC) as substrate. In addition, the enzyme was active at pH 7 and is stable after incubation at 55 °C for 30 min. The application of B. cereus phospholipase C in soybean oil degumming was investigated. Our results showed that when using enzymatic degumming, the residual phosphorus decrease more than with water degumming, indeed, it passes from 718 ppm in soybean crude oil to 100 ppm and 52 ppm by degumming using water and enzymatic process, respectively. The diacylgycerol (DAG) yield showed an increase of 1.2% with enzymatic degumming compared to soybean crude oil. This makes our enzyme a potential candidate for food industrial applications such as enzymatic degumming of vegetable oils.
Collapse
Affiliation(s)
- Ines Abdelkader
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh, Saudi Arabia
| | - Mohammed Refai
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
7
|
AIE-Featured Redox-Sensitive Micelles for Bioimaging and Efficient Anticancer Drug Delivery. Int J Mol Sci 2022; 23:ijms231810801. [PMID: 36142713 PMCID: PMC9505945 DOI: 10.3390/ijms231810801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, an amphiphilic polymer was prepared by conjugating methoxy poly(ethylene glycol) (mPEG) with tetraphenylethene (TPE) via disulfide bonds (Bi(mPEG-S-S)-TPE). The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs such as paclitaxel (PTX) in the core. Combining the effect of TPE, mPEG, and disulfide bonds, the Bi(mPEG-S-S)-TPE micelles exhibited excellent AIE feature, reduced protein adsorption, and redox-sensitive drug release behavior. An in vitro intracellular uptake study demonstrated the great imaging ability and efficient internalization of Bi(mPEG-S-S)-TPE micelles. The excellent anticancer effect and low systemic toxicity were further evidenced by the in vivo anticancer experiment. The Bi(mPEG-S-S)-TPE micelles were promising drug carriers for chemotherapy and bioimaging.
Collapse
|
8
|
Abstract
In recent years, structured phospholipids (SPLs), which are modified phospholipids (PLs), have attracted more attention due to their great potential for application in the field of pharmacy, food, cosmetics, and health. SPLs not only possess enhanced chemical, physical and nutritional properties, but also present superior bioavailability in comparison with other lipid forms, such as triacylglycerols, which make SPLs become more competitive carriers to increase the absorption of the specific fatty acids in the body. Compared with chemical-mediated SPLs, the process of enzyme-mediated SPLs has the advantages of high product variety, high substrate selectivity, and mild operation conditions. Both lipases and phospholipases can be used in the enzymatic production of SPLs, and the main reaction type contains esterification, acidolysis, and transesterification. During the preparation, reaction medium, acyl migration, water content/activity, substrates and enzymes, and some other parameters have significant effects on the production and purity of the desired PLs products. In this paper, the progress in enzymatic modification of PLs over the last 20 years is reviewed. Reaction types and characteristic parameters are summarized in detail and the parameters affecting acyl migration are first discussed to give the inspiration to optimize the enzyme-mediated SPLs preparation. To expand the application of enzyme-mediated SPLs in the future, the prospect of further study on SPLs is also proposed at the end of the paper.
Collapse
|
9
|
Rational engineering of phospholipase C from Bacillus cereus HSL3 for simultaneous thermostability and activity improvement. J Biotechnol 2022; 355:1-9. [DOI: 10.1016/j.jbiotec.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023]
|
10
|
Zhang GY, Wang YW, Guo LY, Lin LR, Niu SP, Xiong CH, Wei JY. PEGylation and antioxidant effects of a human glutathione peroxidase 1 mutant. Aging (Albany NY) 2022; 14:443-461. [PMID: 35020600 PMCID: PMC8791217 DOI: 10.18632/aging.203822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Human glutathione peroxidase1 (hGPx1) is a good antioxidant and potential drug, but the limited availability and poor stability of hGPx1 have affected its development and application. To solve this problem, we prepared a hGPx1 mutant (GPx1M) with high activity in an Escherichia coli BL21(DE3)cys auxotrophic strain using a single protein production (SPP) system. In this study, the GPx1M was conjugated with methoxypolyethylene glycol-succinimidyl succinate (SS-mPEG, Mw = 5 kDa) chains to enhance its stability. SS-mPEG-GPx1M and GPx1M exhibited similar enzymatic activity and stability toward pH and temperature change, and in a few cases, SS-mPEG-GPx1M was discovered to widen the range of pH stability and increase the temperature stability. Lys 38 was confirmed as PEGylated site by liquid-mass spectrometry. H9c2 cardiomyoblast cells and Sprague-Dawley (SD) rats were used to evaluate the effects of GPx1M and SS-mPEG-GPx1M on preventing or alleviating adriamycin (ADR)-mediated cardiotoxicity, respectively. The results indicated that GPx1M and SS-mPEG-GPx1M had good antioxidant effects in vitro and in vivo, and the effect of SS-mPEG-GPx1M is more prominent than GPx1M in vivo. Thus, PEGylation might be a promising method for the application of GPx1M as an important antioxidant and potential drug.
Collapse
Affiliation(s)
- Guang-Yuan Zhang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Yan-Wei Wang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Li-Ying Guo
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liang-Ru Lin
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Shao-Peng Niu
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Chang-Hao Xiong
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jing-Yan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, PR China
| |
Collapse
|
11
|
Weining W, Tang H, Chen Y, Liu J, Yu D, Yang F, Elfalleh W. Chemically modified magnetic immobilized phospholipase A 1 and its application for soybean oil degumming. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:317-326. [PMID: 35068576 PMCID: PMC8758861 DOI: 10.1007/s13197-021-05017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 01/03/2023]
Abstract
In this paper, the free Phospholipase A1 (PLA1) was immobilized on a magnetic carrier. The average particle diameter of the magnetic carrier was 97 ± 1.3 nm, and the average particle diameter of the magnetically immobilized PLA1 was 105 nm ± 1.3 nm. The enzyme activity was 1940.5 U/g. The magnetic enzyme was chemically modified with formaldehyde, dextran-aldehyde, and dextran-aldehyde-glycine. The proportions of primary amino groups in the modified magnetic immobilized enzyme PLA1 were 0, 53.5% and 47.3%, respectively. The optimum pH of the enzyme after chemical modification was 6.5. When the system temperature was 60 °C, the magnetically immobilized PLA1 modified with dextran-aldehyde-glycine had the optimal activity and stability. This chemically modified magnetic immobilized PLA1 was applied to soybean oil degumming at 60 °C, 6.5 h (reaction time), and 0.10 mg/kg (enzyme dosage). The phosphorus content in the degummed oil was 9.2 mg/kg. The relative enzyme activity was 77.6% after 7 reuses which would be potentially advantageous for industrial applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s13197-021-05017-4).
Collapse
Affiliation(s)
- Wang Weining
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Honglin Tang
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Yan Chen
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Jingyang Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, (LEEEP) LR18ES35, Ecole Nationale D’Ingénieurs de Gabès, Université de Gabès, 6072 Gabès, Tunisia
| |
Collapse
|
12
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
14
|
Physicochemical properties of Grass pea (Lathyrus sativus L.) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang L, Hu T, Jiang Z, Yan Q, Yang S. Efficient production of a novel alkaline cold-active phospholipase C from Aspergillus oryzae by molecular chaperon co-expression for crude oil degumming. Food Chem 2021; 350:129212. [PMID: 33609939 DOI: 10.1016/j.foodchem.2021.129212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
A novel alkaline cold-active phospholipase C (PLC) gene (AoPC) from Aspergillus oryzae was cloned. AoPC exhibited the highest sequence similarity of 32.5% with that of a PLC from Arabidopsis thaliana. The gene was co-expressed in Pichia pastoris with molecular chaperone PDI (protein disulfide isomerases), and the highest PLC activity of 82, 782 U mL-1 was achieved in a 5-L fermentor. The recombinant enzyme (AoPC) was most active at pH 8.0 and 25 °C, respectively, and it was stable over a broad pH range of 4.5-9.0 and up to 40 °C. It is the first fungal alkaline PLC. The application of AoPC (with 25% citric acid, w/w) in oil degumming process significantly reduced the phosphorus of crude soybean oil by 93.3% to a commercially acceptable level (<10 mg kg-1). Therefore, the relatively high yield and excellent properties of AoPC may possess it great potential in crude oil refining industry.
Collapse
Affiliation(s)
- Ling Wang
- College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China
| | - Tingting Hu
- College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agriculture University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China; College of Engineering, China Agriculture University, Beijing 100083, China.
| |
Collapse
|
16
|
Luo S, Ji L, Zhou L, Chen T, Zhong J, Liu W, Liu C. A new site-specific monoPEGylated β-lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity. Food Chem 2020; 343:128402. [PMID: 33406572 DOI: 10.1016/j.foodchem.2020.128402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
A new method was investigated to decline the antigenicity of β-Lactoglobulin (β-LG) by site specifically conjugating β-LG at the N-terminus with 5 kDa and 10 kDa monomethoxy polyethylene glycol propyl aldehyde (mPEG-ALD). The optimal reaction conditions were molar ratio of 1:10 (β-LG:mPEG-ALD), reaction time for 16 h, and pH 5.0, and the content of mono-PEGylated β-LG was 51.3%. The results showed that mono-PEGylated β-LG with molecular mass of 23.2 kDa and 28.5 kDa. The peptide fragments of mPEG5kDa-ALD-β-LG produced the same sequence pattern of β-LG except for the absence of one peptides f(1-14), indicating that α-amino group at the N-terminal was selectively modified. Furthermore, the conformation of modified β-LG underwent into slight change. The antigenicity of mPEG5kDa-ALD-β-LG and mPEG10kDa-ALD-β-LG decreased from 144.4 μg/mL to 66.7 and 39.0 μg/mL respectively. It was speculated that the steric hindrance effect of PEG was the main reason for the decline of antigenicity of β-LG.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
17
|
Mahdavian Mehr H, Koocheki A. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105899] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Xiang M, Wang L, Yan Q, Jiang Z, Yang S. High-level expression and characterization of a novel phospholipase C from Thielavia terrestris suitable for oil degumming. Int J Biol Macromol 2020; 156:740-748. [DOI: 10.1016/j.ijbiomac.2020.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/20/2020] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
|
19
|
Luo S, Lu X, Liu C, Zhong J, Zhou L, Chen T. Site specific PEGylation of β-lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Res Int 2019; 123:623-630. [DOI: 10.1016/j.foodres.2019.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
|
20
|
|
21
|
Eddehech A, Smichi N, Arhab Y, Noiriel A, Abousalham A, Gargouri Y, Zarai Z. Production, purification and functional characterization of phospholipase C from Bacillus thuringiensis with high catalytic activity. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Chemical Modification of Sweet Potato β-amylase by Mal-mPEG to Improve Its Enzymatic Characteristics. Molecules 2018; 23:molecules23112754. [PMID: 30356009 PMCID: PMC6278334 DOI: 10.3390/molecules23112754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
The sweet potato β-amylase (SPA) was modified by 6 types of methoxy polyethylene glycol to enhance its specific activity and thermal stability. The aims of the study were to select the optimum modifier, optimize the modification parameters, and further investigate the characterization of the modified SPA. The results showed that methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) was the optimum modifier of SPA; Under the optimal modification conditions, the specific activity of Mal-mPEG5000-SPA was 24.06% higher than that of the untreated SPA. Mal-mPEG5000-SPA was monomeric with a molecular weight of about 67 kDa by SDS-PAGE. The characteristics of Mal-mPEG5000-SPA were significantly improved. The Km value, Vmax and Ea in Mal-mPEG5000-SPA for sweet potato starch showed that Mal-mPEG5000-SPA had greater affinity for sweet potato starch and higher speed of hydrolysis than SPA. There was no significant difference of the metal ions’ effect on Mal-mPEG5000-SPA and SPA.
Collapse
|