1
|
Xu K, Fu H, Chen Q, Sun R, Li R, Zhao X, Zhou J, Wang X. Engineering thermostability of industrial enzymes for enhanced application performance. Int J Biol Macromol 2024; 291:139067. [PMID: 39730046 DOI: 10.1016/j.ijbiomac.2024.139067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Thermostability is a key factor for the industrial application of enzymes. This review categorizes enzymes by their applications and discusses the importance of engineering thermostability for practical use. It summarizes fundamental theories and recent advancements in enzyme thermostability modification, including directed evolution, semi-rational design, and rational design. Directed evolution uses high-throughput screening to generate random mutations, while semi-rational design combines hotspot identification with screening. Rational design focuses on key residues to enhance stability by improving rigidity, foldability, and reducing aggregation. The review also covers rational strategies like engineering folding energy, surface charge, machine learning methods, and consensus design, along with tools that support these approaches. Practical examples are critically assessed to highlight the benefits and limitations of these strategies. Finally, the challenges and potential contributions of artificial intelligence in enzyme thermostability engineering are discussed.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Haoran Fu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiming Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruosong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Gonzalez-Vasquez AD, Hocine ES, Urzúa M, Rocha-Martin J, Fernandez-Lafuente R. Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization. Enzyme Microb Technol 2024; 181:110517. [PMID: 39321567 DOI: 10.1016/j.enzmictec.2024.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Ficin extract has been immobilized using different supports: glyoxyl and Aspartic/1,6 hexamethylenediamine (Asp/HA) agarose beads. The latter was later submitted to glutaraldehyde modification to get covalent immobilization. The activities of these 3 kinds of biocatalysts were compared utilizing 4 different substrates, casein, hemoglobin and bovine serum albumin and benzoyl-arginine-p-nitroanilide at pH 7 and 5. Using glyoxyl-agarose, the effect of enzyme-support reaction time on the activity versus the four substrates at both pH values was studied. Reaction time has been shown to distort the enzyme due to an increase in the number of covalent support-enzyme bonds. Surprisingly, for all the substrates and conditions the prolongation of the enzyme-support reaction did not imply a decrease in enzyme activity. Using the Asp/HA supports (with different amount of HA) differences in the effect on enzyme activity versus the different substrates are much more significant, while with some substrates the immobilization produced a decrease in enzyme activity, with in other cases the activity increased. These different effects are even increased after glutaraldehyde treatment. That way, the conformational changes induced by the biocatalyst immobilization or the chemical modification fully altered the enzyme protein specificity. This may also have some implications when following enzyme inactivation.
Collapse
Affiliation(s)
- Alex D Gonzalez-Vasquez
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - El Siar Hocine
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
3
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
4
|
Lei H, Liu F, Jia M, Ni H, Han Y, Chen J, Wang H, Gu H, Chen Y, Lin Y, Wang P, Yang Z, Cai Y. An overview of the direct interaction of synthesized silver nanostructures and enzymes. Int J Biol Macromol 2024; 279:135154. [PMID: 39214212 DOI: 10.1016/j.ijbiomac.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Silver nanoparticles (AgNPs) have drawn a lot of attention from a variety of fields, particularly the biological and biomedical sciences. As a result, it is acknowledged that AgNPs' direct interactions with macromolecules such as DNA, proteins, and enzymes are essential for both therapeutic and nanotoxicological applications. Enzymes as important catalysts may interact with AgNP surfaces in a variety of ways. Therefore, mechanistic investigation into the molecular effects of AgNPs on enzyme conformation and function is necessary for a comprehensive assessment of their interactions. In this overview, we aimed to overview the various strategies for producing AgNPs. We then discussed the enzyme activity inhibition (EAI) mechanism by nanostructured particles, followed by an in-depth survey of the interaction of AgNPs with different enzymes. Furthermore, various parameters influencing the interaction of NPs and enzymes, as well as the antibacterial and anticancer effects of AgNPs in the context of the enzyme inhibitors, were discussed. In summary, useful information regarding the biological safety and possible therapeutic applications of AgNPs-enzyme conjugates may be obtained from this review.
Collapse
Affiliation(s)
- Haoqiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Fengjie Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Meng Jia
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huanhuan Ni
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Yanfeng Han
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Junyuan Chen
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Huan Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yiqi Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yixuan Lin
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
6
|
Lin N, Wang M, Gong H, Li N, Liu F, Wu Y, Sun X, Yang Q, Tan X. Immobilizing DNase in ternary AuAgCu hydrogels to accelerate biofilm disruption for synergistically enhanced therapy of MRSA infections. Int J Biol Macromol 2024; 277:134518. [PMID: 39111496 DOI: 10.1016/j.ijbiomac.2024.134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Bacterial biofilm-related infections have become a significant global concern in public health and economy. Extracellular DNA (eDNA) is regarded as one of the key elements of extracellular polymeric substances (EPS) in bacterial biofilm, providing robust support to maintain the stability of bacterial biofilms for fighting against environmental stresses (such as antibiotics, reactive oxygen species (ROS), and hyperthermia). In this study, ternary AuAgCu hydrogels nanozyme with porous network structures were utilized for the immobilization of DNase (AuAgCu@DNase hydrogels) to realize enhanced biofilm decomposition and antibacterial therapy of MRSA. The prepared AuAgCu@DNase hydrogels can efficiently hydrolyze eDNA in biofilms so that the generated ROS and hyperthermia by laser irradiation can permeate into the interior of the biofilm to achieve deep sterilization. The typical interface interactions between AuAgCu hydrogels and DNase and the excellent photothermal-boost peroxidase-like performances of AuAgCu hydrogels take responsibility for the enhanced antibacterial activity. In the MRSA-infected wounds model, the in vivo antibacterial results revealed that the AuAgCu@DNase hydrogels possess excellent drug-resistant bacteria-killing performance with superb biocompatibility. Meanwhile, the pathological analysis of collagen deposition and fibroblast proliferation of wounds demonstrate highly satisfactory wound healing. This work offers an innovative path for developing nanozyme-enzyme antibacterial composites against drug-resistant bacteria and their biofilms.
Collapse
Affiliation(s)
- Nanyun Lin
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; NHC Key Laboratory of Birth Defect Research and Prevention, MOE Key Lab of Rare Pediatric Disease & Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Minghui Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongyu Gong
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Na Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yingying Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ximei Sun
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; NHC Key Laboratory of Birth Defect Research and Prevention, MOE Key Lab of Rare Pediatric Disease & Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; NHC Key Laboratory of Birth Defect Research and Prevention, MOE Key Lab of Rare Pediatric Disease & Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
8
|
Mandal D, Sarmah JK, Harish V, Gupta J. Antioxidant, In Vitro Cytotoxicity, and Anti-diabetic Attributes of a Drug-Free Guar Gum Nanoformulation as a Novel Candidate for Diabetic Wound Healing. Mol Biotechnol 2024:10.1007/s12033-024-01261-z. [PMID: 39212825 DOI: 10.1007/s12033-024-01261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating intersection of diabetes and impaired wound healing poses a substantial societal burden, marked by an increasing prevalence of chronic wounds. Diabetic individuals struggle with hindered recovery, attributed to compromised blood circulation and diminished immune function, resulting in prolonged healing periods and elevated healthcare expenditures. To address this challenge, we report here a drug-free novel guar gum (GG)-based nano-formulation which is effective against diabetic wound healing. Nanoparticles with an average particle size of 32.4 nm display stability with negative zeta potential. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) analysis reveal alterations in thermal properties and molecular structures induced by the nano-particulation process. In vitro studies highlight the antioxidant potential of GGNP through concentration-dependent free radical scavenging activity in DPPH and ABTS assays. The nanoformulation also exhibits inhibitory effects on α-glucosidase and α-amylase enzymes. Cell viability studies have indicated moderate cytotoxicity in L929 cells and significant proliferation and migration in HaCaT cells, suggesting a positive impact on skin cells. In vitro enzymatic activity assessments under hyperglycaemic conditions reveal the potential of GGNP to modulate glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase activities as well as decreasing lipid peroxidation (LPO) levels, showcasing an antioxidant response. These results suggest GGNP as a promising candidate in diabetic wound healing.
Collapse
Affiliation(s)
- Debojyoti Mandal
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Jayanta K Sarmah
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India.
| |
Collapse
|
9
|
Matysik J, Długosz O, Banach M. Development of Nanozymatic Characteristics in Metal-Doped Oxide Nanomaterials. J Phys Chem B 2024; 128:8007-8016. [PMID: 39120940 PMCID: PMC11345814 DOI: 10.1021/acs.jpcb.4c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Nanozymes are nanoscale materials that exhibit enzymatic-like activity, combining the benefits of nanomaterials with biocatalytic effects. The addition of metals to nanomaterials can enhance their nanozyme activity by mimicking the active sites of enzymes, providing structural support and promoting redox activity. In this study, nanostructured oxide and silicate-phosphate nanomaterials with varying manganese and copper additions were characterized. The objective was to assess the influence of metal modifications (Mn and Cu) on the acquisition of the nanozymatic activity by selected nanomaterials. An increase in manganese content in each material enhanced proteolytic activity (from 20 to 40 mUnit/mg for BG-Mn), while higher copper addition in glassy materials increased activity by 40%. Glassy materials exhibited approximately twice the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical activity (around 40 μmol/mL) compared to that of oxide materials. The proteolytic and antioxidant activities discussed in the study can be considered indicators for evaluating the enzymatic properties of the nanomaterials. Observations conducted on nanomaterials may aid in the development of materials with enhanced catalytic efficiency and a wide range of applications.
Collapse
Affiliation(s)
- Julia Matysik
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| | - Olga Długosz
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| |
Collapse
|
10
|
Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today 2024; 29:104060. [PMID: 38866357 DOI: 10.1016/j.drudis.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | | | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
11
|
Zhang Q, Li N, Hou Y, Fan M, Zhang Y, Dang F. Co-immobilization of crosslinked enzyme aggregates on lysozyme functionalized magnetic nanoparticles for enhancing stability and activity. Int J Biol Macromol 2024; 273:133180. [PMID: 38880453 DOI: 10.1016/j.ijbiomac.2024.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Surface chemistry of carriers plays a key role in enzyme loading capacity, structure rigidity, and thus catalyze activity of immobilized enzymes. In this work, the two model enzymes of horseradish peroxidase (HRP) and glucose oxidase (GOx) are co-immobilized on the lysozyme functionalized magnetic core-shell nanocomposites (LYZ@MCSNCs) to enhance their stability and activity. Briefly, the HRP and GOx aggregates are firstly formed under the crosslinker of trimesic acid, in which the loading amount and the rigidity of the enzyme can be further increased. Additionally, LYZ easily forms a robust anti-biofouling nanofilm on the surface of SiO2@Fe3O4 magnetic nanoparticles with abundant functional groups, which facilitate chemical crosslinking of HRP and GOx aggregates with minimized inactivation. The immobilized enzyme of HRP-GOx@LYZ@MCSNCs exhibited excellent recovery activity (95.6 %) higher than that of the free enzyme (HRP&GOx). Specifically, 85 % of relative activity was retained after seven cycles, while 73.5 % of initial activity was also remained after storage for 33 days at 4 °C. The thermal stability and pH adaptability of HRP-GOx@LYZ@MCSNCs were better than those of free enzyme of HRP&GOx. This study provides a mild and ecofriendly strategy for multienzyme co-immobilization based on LYZ functionalized magnetic nanoparticles using HRP and GOx as model enzymes.
Collapse
Affiliation(s)
- Qiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| | - Yawen Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Miao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Yuxiu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China.
| |
Collapse
|
12
|
Jangir A, Kumar Biswas A, Arsalan A, Faslu Rahman CK, Swami S, Agrawal R, Bora B, Kumar Mendiratta S, Talukder S, Chand S, Kumar D, Ahmad T, Ratan Sen A, Naveena BM, Singh Yadav A, Jaywant Rokade J. Development of superoxide dismutase based visual and spectrophotometric method for rapid differentiation of fresh and frozen-thawed buffalo meat. Food Chem 2024; 444:138659. [PMID: 38325091 DOI: 10.1016/j.foodchem.2024.138659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Study aimed to develop biomarker-based assay for rapid detection of fresh and frozen-thawed buffalo meat in the supply chain. The method is based on development of a solvent system and identification of suitable substrate and developer for screening of biomarkers. For the confirmation column chromatography, gel electrophoresis and Western Blotting were carried out. Validation was done by intra- and inter-day validation, storability study, and determination of thermal history. Best results were shown with pH 8.0 Tris-HCl; extraction buffer, 205 µM nicotinamide adenine dinucleotide hydrogen; substrate, 184 µM Nitroblue tetrazolium, and 1.9 µM phenazine methosulfate; developer. The thermal history ranged from 0.14 to 0.17 during storage at -20 °C. The intra- and inter-day assay precision (CV %) ranged from 5.3 to 6.5 %; in chilled and 14.1 - 9.2 % in frozen-thawed samples. The study confirmed SOD as a viable biomarker. Developed method using SOD has significant potential for rapidly differentiating chilled or frozen-thawed meat.
Collapse
Affiliation(s)
- Apeksha Jangir
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Ashim Kumar Biswas
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India.
| | - Abdullah Arsalan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - C K Faslu Rahman
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Shalu Swami
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Ravikant Agrawal
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Bedika Bora
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Suman Talukder
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Sagar Chand
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Devendra Kumar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Tanbir Ahmad
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Arup Ratan Sen
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Basappa M Naveena
- ICAR-National Meat Research Institute, Chengicherla, Boduppal 500 092, A.P., India
| | - Ajit Singh Yadav
- Division of Post-Harvest Technology, ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| | - Jaydip Jaywant Rokade
- Division of Post-Harvest Technology, ICAR-Central Avian Research Institute, Izatnagar, Bareilly 243 122, U.P., India
| |
Collapse
|
13
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
14
|
de Barros HR, da Silva RTP, Fernandes R, Toro-Mendoza J, Coluzza I, Temperini MLA, Cordoba de Torresi SI. Unraveling the Nano-Bio Interface Interactions of a Lipase Adsorbed on Gold Nanoparticles under Laser Excitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5663-5672. [PMID: 38451216 DOI: 10.1021/acs.langmuir.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The complex nature and structure of biomolecules and nanoparticles and their interactions make it challenging to achieve a deeper understanding of the dynamics at the nano-bio interface of enzymes and plasmonic nanoparticles subjected to light excitation. In this study, circular dichroism (CD) and Raman spectroscopic experiments and molecular dynamics (MD) simulations were used to investigate the potential changes at the nano-bio interface upon plasmonic excitation. Our data showed that photothermal and thermal heating induced distinct changes in the secondary structure of a model nanobioconjugate composed of lipase fromCandida antarcticafraction B (CALB) and gold nanoparticles (AuNPs). The use of a green laser led to a substantial decrease in the α-helix content of the lipase from 66% to 13% and an increase in the β-sheet content from 5% to 31% compared to the initial conformation of the nanobioconjugate. In contrast, the differences under similar thermal heating conditions were only 55% and 11%, respectively. This study revealed important differences related to the enzyme secondary structure, enzyme-nanoparticle interactions, and the stability of the enzyme catalytic triad (Ser105-Asp187-His224), influenced by the instantaneous local temperature increase generated from photothermal heating compared to the slower rate of thermal heating of the bulk. These results provide valuable insights into the interactions between biomolecules and plasmonic nanoparticles induced by photothermal heating, advancing plasmonic biocatalysis and related fields.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
| | - Rafael Trivella Pacheco da Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Rafaella Fernandes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Jhoan Toro-Mendoza
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Científicas, Carretera Panamericana, Km 11, Altos de Pipe, Caracas 1020, Venezuela
| | - Ivan Coluzza
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Marcia L A Temperini
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Susana I Cordoba de Torresi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| |
Collapse
|
15
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
16
|
Chen C, Li J, Luo F, Lin Z, Wang J, Zhang T, Huang A, Qiu B. Eu MOF-enhanced FeNCD nanozymes for fluorescence and highly sensitive colorimetric detection of tetracycline. Analyst 2024; 149:815-823. [PMID: 38117163 DOI: 10.1039/d3an02046k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The constrained enzymatic activity and aggregation challenges encountered by small-sized nanozymes pose obstacles to their practical utility, necessitating a strategy to mitigate aggregation and boost enzymatic catalytic efficiency. In this work, a negatively charged Eu MOF was utilized as the encapsulation matrix, encapsulating the small-sized nanozymes FeNCDs into the Eu MOF to synthesize an FeNCDs@Eu MOF. The dispersibility of the encapsulated FeNCDs was increased, and owing to the negative charge of the FeNCDs@Eu MOF, electrostatic pre-concentration of the positively charged target molecule tetracycline (TC) was facilitated, thereby amplifying the enzymatic catalytic efficiency of the FeNCDs. The response of the FeNCDs to TC increased by nearly 6 times upon encapsulation. The TC detection limit (LOD) of the FeNCDs@Eu MOF-based sensor is as low as 11.63 nM. The incorporation of fluorescence detection expanded the linear range of the sensor, rendering it more suitable for practical sample detection.
Collapse
Affiliation(s)
- Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Tao Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, P. R. China.
| | - Aiwen Huang
- Clinical Pharmacy Department, 900th Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, P. R. China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
17
|
Khalid A, Ali S, Rukhma, Jahangeer M, Sarwar A, Nelofer R, Aziz T, Alharbi M, Alasmari AF, Albekairi TH. Immobilization of Aspergillus oryzae tyrosine hydroxylase on ZnO nanocrystals for improved stability and catalytic efficiency towards L-dopa production. Sci Rep 2023; 13:22882. [PMID: 38129644 PMCID: PMC10739923 DOI: 10.1038/s41598-023-50198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
The current study focuses on the submerged fermentation of tyrosine hydroxylase (TH) from Aspergillus oryzae IIB-9 and its immobilization on zinc oxide nanocrystals (ZnO-NPs) for increased L-dopa production. The volume of Vogel's medium (75 ml), period of incubation (72 h), initial pH (5.5), and size of inoculum (1.5 ml) were optimal for maximum TH activity. The watch glass-dried (WG) and filter paper-dried (FP) ZnO-NPs were prepared and characterized using analytical techniques. The UV-Vis spectra revealed 295 and 285 nm absorption peaks for WG-ZnO-NPs and FP-ZnO-NPs dispersed in isopropanol. X-ray diffraction analysis confirmed the crystalline nature of ZnO-NPs. FTIR spectra band from 740 to 648.1/cm and 735.8/cm to 650.1/cm showed the stretching vibrations of WG-ZnO-NPs and FP-ZnO-NPs, respectively. The particle size of ZnO-NPs observed by scanning electron microscopy (SEM) images was between 130 and 170 nm. Furthermore, the stability of immobilized TH on ZnO-NPs was determined by varying the incubation period (10 min for WG-NPs and 15 min for FP-NPs) and temperature (45 °C and 30 °C for WG and FP-NPs, respectively). Incubating enzymes with various copper, iron, manganese, and zinc salts studied the catalytic efficiency of TH. Immobilization of TH on ZnO-NPs resulted in an 11.05-fold increase in TH activity, thus enhancing stability and catalytic efficiency.
Collapse
Affiliation(s)
- Ansa Khalid
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Rukhma
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road, Lahore, Pakistan
| | - Muhammad Jahangeer
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road, Lahore, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road, Lahore, Pakistan
| | - Rubina Nelofer
- Food and Biotechnology Research Center, PCSIR Laboratories Complex Ferozpur Road, Lahore, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene, and Quality, Department of Agriculture, University of Ioannina, 471 32, Arta, Greece.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Li J, Shi J, Wang Y, Yao H, Meng L, Liu H. An elaborate biomolecular keypad lock based on electrochromism of viologen derivatives and bioelectrocatalytic reduction of CO 2 at supramolecular hydrogel film electrodes. Biosens Bioelectron 2023; 238:115560. [PMID: 37542980 DOI: 10.1016/j.bios.2023.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Herein, the short peptide N-fluorenemethoxycarbonyl diphenylalanine (Fmoc-FF) was used to immobilize both diallyl viologen (DAV) and the enzyme formate dehydrogenase (FDH) to form Fmoc-FF/DAV/FDH supramolecular hydrogel films on an electrode surface by a simple solvent-controlled self-assembly method. The DAV component in the films exhibited multiple properties, such as electrochromism and electrofluorochromism, and acted as an electrochemical mediator. A high efficiency of bioelectrocatalytic reduction of CO2 to formate (HCOO-) was obtained by the natural FDH enzyme and the artificial coenzyme factor DAV both immobilized in the same films. The supramolecular hydrogel films with CO2, voltage and light as stimulating factors and current, fluorescence and UV-vis extinction as responsive signals, were further applied for the construction of complex biomolecular logic systems and information encryption. A 3-input/7-output biomolecular logic gate and several logic devices, including an encoder/decoder, a parity checker, and a keypad lock, were constructed. Especially, the biomolecular keypad lock with 3 types of signals as outputs significantly enhanced the security level of information encryption. In this work, a supramolecular self-assembly interface was simply fabricated with complex biomolecular computational functions using immobilized molecules as the computational core, greatly broadening the application range of supramolecular hydrogel films and providing an idea for new designs of bioinformation encryption through the use of a simple film system.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jiaqi Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yizhu Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Huiqin Yao
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Lingchen Meng
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
20
|
Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv 2023; 13:28008-28020. [PMID: 37746345 PMCID: PMC10517100 DOI: 10.1039/d3ra04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of β-lactamase and DNA gyrase.
Collapse
Affiliation(s)
- Tahreem Aziz
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Zain Ul Abidin
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | | | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
21
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
22
|
Li L, Ma C, Chai H, He YC. Biological valorization of lignin-derived vanillin to vanillylamine by recombinant E. coli expressing ω-transaminase and alanine dehydrogenase in a petroleum ether-water system. BIORESOURCE TECHNOLOGY 2023:129453. [PMID: 37406835 DOI: 10.1016/j.biortech.2023.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Vanillylamine, as an important drug precursor and fine chemical intermediate, has great economic value. By constructing a strategy of double enzyme co-expression, one newly constructed recombinant E. coli HNIQLE-AlaDH expressing ω-transaminase from Aspergillus terreus and alanine dehydrogenase from Bacillus subtilis was firstly used aminate lignin-derived vanillin to vanillylamine by using a relatively low dosage of amine donors (vanillin:L-alanine:isopropylamine = 1:1:1, mol/mol/mol). In addition, in a two-phase system (water:petroleum ether = 80:20 v/v), the bioconversion of vanillin to vanillylamine was catalyzed by HNIQLE-AlaDH cell under the ambient condition, and the vanillylamine yield was 71.5%, respectively. This double-enzyme HNIQLE-AlaDH catalytic strategy was applied to catalyze the bioamination of furfural and 5-hydroxymethylfurfural with high amination efficiency. It showed that the double-enzyme catalytic strategy in this study promoted L-alanine to replace D-Alanine to participate in bioamination of vanillin and its derivatives, showing a great prospect in the green biosynthesis of biobased chemicals from biomass.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Haoyu Chai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China; School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
23
|
Ma Y, Zhang M, Wu J, Zhao Y, Du X, Huang H, Zhou Y, Liu Y, Kang Z. The Key Effect of Carboxyl Group and CuN 2 O 2 Coordinate Structure for Cu, N Co-Doped Carbon Dots with Peroxidase-Like Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300883. [PMID: 37029573 DOI: 10.1002/smll.202300883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Carbon dots (CDs) with good water solubility and biocompatibility have become a research hotspot in the nano-enzyme and biomedical field. However, the problems of low catalytic activity and ambiguous catalytic site of CDs as nanozymes still need to be addressed. In this work, CDs loaded with Cu single atoms are obtained through pyrolysis, and the coordination structure and surface functional groups are regulated by adjusting the pyrolysis temperature. CDs obtained at 300 °C (named Cu-CDs-300) have the most carboxyl content and Cu is coordinated in the form of CuN2 O2 , which can better decompose H2 O2 to produce free radical and is beneficial to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The vmax is 6.56*10-7 m s-1 , 6.56 times higher than that of horseradish peroxidase (HRP). Moreover, Cu-CDs-300 can effectively lead to CT26 apoptosis by generating much free radicals. This work demonstrates the synergistic effect of oxygen-containing functional groups and metal coordination structures on peroxide-like activity of CDs and provides new ideas for the design of clear active structure and high efficiency peroxide-like single atom CDs catalyst.
Collapse
Affiliation(s)
- Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macao, Taipa, 999078, P. R. China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yajie Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Du
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yunjie Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macao, Taipa, 999078, P. R. China
| |
Collapse
|
24
|
Ikram M, Shahzadi A, Haider A, Imran M, Hayat S, Haider J, Ul-Hamid A, Rasool F, Nabgan W, Mustajab M, Ali S, Al-Shanini A. Toward Efficient Bactericidal and Dye Degradation Performance of Strontium- and Starch-Doped Fe 2O 3 Nanostructures: In Silico Molecular Docking Studies. ACS OMEGA 2023; 8:8066-8077. [PMID: 36872998 PMCID: PMC9979251 DOI: 10.1021/acsomega.2c07980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, various concentrations of strontium (Sr) into a fixed amount of starch (St) and Fe2O3 nanostructures (NSs) were synthesized with the co-precipitation approach to evaluate the antibacterial and photocatalytic properties of the concerned NSs. The study aimed to synthesize nanorods of Fe2O3 with co-precipitation to enhance the bactericidal behavior with dopant-dependent Fe2O3. Advanced techniques were utilized to investigate the structural characteristics, morphological properties, optical absorption and emission, and elemental composition properties of synthesized samples. Measurements via X-ray diffraction confirmed the rhombohedral structure for Fe2O3. Fourier-transform infrared analysis explored the vibrational and rotational modes of the O-H functional group and the C=C and Fe-O functional groups. The energy band gap of the synthesized samples was observed in the range of 2.78-3.15 eV, which indicates that the blue shift in the absorption spectra of Fe2O3 and Sr/St-Fe2O3 was identified with UV-vis spectroscopy. The emission spectra were obtained through photoluminescence spectroscopy, and the elements in the materials were determined using energy-dispersive X-ray spectroscopy analysis. High-resolution transmission electron microscopy micrographs showed NSs that exhibit nanorods (NRs), and upon doping, agglomeration of NRs and nanoparticles was observed. Efficient degradations of methylene blue increased the photocatalytic activity in the implantation of Sr/St on Fe2O3 NRs. The antibacterial potential for Escherichia coli and Staphylococcus aureus was measured against ciprofloxacin. E. coli bacteria exhibit inhibition zones of 3.55 and 4.60 mm at low and high doses, respectively. S. aureus shows the measurement of inhibition zones for low and high doses of prepared samples at 0.47 and 2.40 mm, respectively. The prepared nanocatalyst showed remarkable antibacterial action against E. coli bacteria rather than S. aureus at high and low doses compared to ciprofloxacin. The best-docked conformation of the dihydrofolate reductase enzyme against E. coli for Sr/St-Fe2O3 showed H-bonding interactions with Ile-94, Tyr-100, Tyr-111, Trp-30, ASP-27, Thr-113, and Ala-6.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab 57000, Pakistan
| | - Shaukat Hayat
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Junaid Haider
- Tianjin
Institute
of Industrial Biotechnology, Chinese Academy
of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Faiz Rasool
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, Tarragona 43007, Spain
| | - Muhammad Mustajab
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla, Hadhramout 50512, Yemen
| |
Collapse
|
25
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
26
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
27
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
28
|
Chen E, Wang T, Tu Y, Sun Z, Ding Y, Gu Z, Xiao S. ROS-scavenging biomaterials for periodontitis. J Mater Chem B 2023; 11:482-499. [PMID: 36468674 DOI: 10.1039/d2tb02319a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is defined as a chronic inflammatory disease in which the continuous activation of oxidative stress surpasses the reactive oxygen species (ROS) scavenging capacity of the endogenous antioxidative defense system. Studies have demonstrated that ROS-scavenging biomaterials should be promising candidates for periodontitis therapy. To benefit the understanding and design of scavenging biomaterials for periodontitis, this review details the relationship between ROS and periodontitis, including direct and indirect damage, the application of ROS-scavenging biomaterials in periodontitis, including organic and inorganic ROS-scavenging biomaterials, and the various dosage forms of fabricated materials currently used for periodontal therapy. Finally, the current situation and further prospects of ROS-scavenging biomaterials in periodontal applications are summarized. Expecting that improved ROS-scavenging biomaterials could be better designed and developed for periodontal and even clinical application.
Collapse
Affiliation(s)
- Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Tu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - ZhiYuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
29
|
Abed KM, Hayyan A, Elgharbawy AAM, Hizaddin HF, Hashim MA, Hasan HA, Hamid MD, Zuki FM, Saleh J, Aldaihani AGH. Palm Raceme as a Promising Biomass Precursor for Activated Carbon to Promote Lipase Activity with the Aid of Eutectic Solvents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248734. [PMID: 36557866 PMCID: PMC9781083 DOI: 10.3390/molecules27248734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
Collapse
Affiliation(s)
- Khalid M. Abed
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad 10071, Iraq
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Amal A. M. Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
| | - Hanee F. Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (A.H.); (H.F.H.); (H.A.H.)
| | - Mahar Diana Hamid
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fathiah M. Zuki
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jehad Saleh
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | |
Collapse
|
30
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
31
|
Lipase and Its Unique Selectivity: A Mini-Review. J CHEM-NY 2022. [DOI: 10.1155/2022/7609019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contrary to other solid catalysts, enzymes facilitate more sophisticated chemical reactions because most enzymes specifically interact with substrates and release selective products. Lipases (triacylglycerol hydrolase, EC 3.1.1.3), which can catalyze the cleavage and formation of various acyl compounds, are one of the best examples of enzymes with a unique substrate selectivity. There are already several commercialized lipases that have become important tools for various lipid-related studies, although there is still a need to discover novel lipases with unique substrate selectivity to facilitate more innovative reactions in human applications such as household care, cosmetics, foods, and pharmaceuticals. In this mini-review, we focus on concisely demonstrating not only the general information of lipases but also their substate selectivities: typoselectivity, regioselectivity, and stereoselectivity. We highlight the essential studies on selective lipases in terms of enzymology. Furthermore, we introduce several examples of analysis methodology and experimental requirements to determine each selectivity of lipases. This work would stress the importance of integrating our understanding of lipase chemistry to make further advances in the relevant fields.
Collapse
|
32
|
Ikram M, Haider A, Naz S, Bari MA, Haider J, Ul-Hamid A, Nabgan W, Imran M, Nazir G, Ali S. Chitosan and carbon nitride doped barium hydroxide nanoparticles served as dye degrader and bactericidal potential: A molecular docking study. Int J Biol Macromol 2022; 224:938-949. [DOI: 10.1016/j.ijbiomac.2022.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
33
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts 2022. [DOI: 10.3390/catal12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study implements a convenient microreactor for biocatalysis with enzymes immobilized on magnetic nanoparticles (MNPs). The enzyme immobilized onto MNPs by adsorption or by covalent bonds was lipase B from Candida antarctica (CaLB). The MNPs for adsorption were obtained by covering the magnetite core with a silica shell and later with hexadecyltrimethoxysilane, while for covalent immobilization, the silica-covered MNPs were functionalized by a layer forming from mixtures of hexadecyl- and 3-(2-aminoethylamino)propyldimethoxymethylsilanes in 16:1 molar ratio, which was further activated with neopentyl glycol diglycidyl ether (NGDE). The resulting CaLB-MNPs were tested in a convenient continuous flow system, created by 3D printing to hold six adjustable permanent magnets beneath a polytetrafluoroethylene tube (PTFE) to anchor the MNP biocatalyst inside the tube reactor. The anchored CaLB-MNPs formed reaction chambers in the tube for passing the fluid through and above the MNP biocatalysts, thus increasing the mixing during the fluid flow and resulting in enhanced activity of CaLB on MNPs. The enantiomer selective acylation of 4-(morpholin-4-yl)butan-2-ol (±)-1, being the chiral alcohol constituent of the mucolytic drug Fedrilate, was carried out by CaLB-MNPs in the U-shape reactor. The CaLB-MNPs in the U-shape reactor were compared in batch reactions to the lyophilized CaLB and to the CaLB-MNPs using the same reaction composition, and the same amounts of CaLB showed similar or higher activity in flow mode and superior activity as compared to the lyophilized powder form. The U-shape permanent magnet design represents a general and easy-to-access implementation of MNP-based flow microreactors, being useful for many biotransformations and reducing costly and time-consuming downstream processes.
Collapse
|
35
|
Kulkarni C, Mohanty H, Bhagit A, Rathod P, Yadav RP. Anti-plasmodial and mosquitocidal potential of metallic nanoparticles: a perspective. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Ikram M, Rasheed F, Haider A, Naz S, Ul-Hamid A, Shahzadi A, Haider J, Shahzadi I, Hayat S, Ali S. Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO 2 quantum dots: in silico molecular docking studies. NANOSCALE ADVANCES 2022; 4:3764-3776. [PMID: 36133332 PMCID: PMC9470022 DOI: 10.1039/d2na00383j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) and cellulose nanocrystal (CNC)-doped TiO2 quantum dots (QDs) were effectively synthesized by employing the co-precipitation method for the degradation of dyes and antimicrobial applications. A series of characterizations, i.e., XRD, FTIR, UV-visible spectroscopy, EDS, FE-SEM, and HR-TEM, was used to characterize the prepared samples. A reduction in PL intensity was observed, while the band gap energy (E g) decreased from 3.22 to 2.96 eV upon the incorporation of GO/CNC in TiO2. In the Raman spectra, the D and G bands were detected, indicating the presence of graphene oxide in the composites. Upon doping, the crystallinity of TiO2 increased. HR-TEM was employed to estimate the interlayer d-spacing of the nanocomposites, which matched well with the XRD data. The photocatalytic potential of the prepared samples was tested against methylene blue, methylene violet, and ciprofloxacin (MB:MV:CF) when exposed to visible light for a certain period. The antibacterial activity of GO/CNC/TiO2 QDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria in vitro was tested to determine their potential for medicinal applications. The molecular docking investigations of CNC-TiO2 and GO/CNC-doped TiO2 against DNA gyrase and FabI from E. coli and S. aureus were found to be consistent with the results of the in vitro bactericidal activity test. We believe that the prepared nanocomposites will be highly efficient for wastewater treatment and antimicrobial activities.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Fahad Rasheed
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 6000 Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab 54000 Pakistan
| | - Shaukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
37
|
Khoja IA, Arsalan A, Biswas AK, Tandon S. Casein zymography based detection and one step purification for simultaneous quantification of calcium induced endogenous proteases in breast and thigh muscles from different chicken breeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- I. A. Khoja
- Division of Post‐Harvest Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. Arsalan
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. K. Biswas
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | | |
Collapse
|
38
|
Venturin B, Rodrigues HC, Bonassa G, Hollas CE, Bolsan AC, Antes FG, De Prá MC, Fongaro G, Treichel H, Kunz A. Key enzymes involved in anammox-based processes for wastewater treatment: An applied overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10780. [PMID: 36058650 DOI: 10.1002/wer.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.
Collapse
Affiliation(s)
- Bruno Venturin
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | | | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Airton Kunz
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Golgeri M DB, Mulla SI, Bagewadi ZK, Tyagi S, Hu A, Sharma S, Bilal M, Bharagava RN, Ferreira LFR, Gurumurthy DM, Nadda AK. A systematic review on potential microbial carbohydrases: current and future perspectives. Crit Rev Food Sci Nutr 2022; 64:438-455. [PMID: 35930295 DOI: 10.1080/10408398.2022.2106545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.
Collapse
Affiliation(s)
- Dilshad Begum Golgeri M
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
- Department of Biochemistry, Indian Academy Degree College-Autonomous Kalyanagar, Bangalore, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, India
| | - Swati Tyagi
- IRRI- South Asia Regional centre, Varanasi, Uttar Pradesh, India
| | - Anyi Hu
- Institute of Urban Environment Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Xiamen, China
| | - Swati Sharma
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bharagava
- Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | | | | | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
40
|
Nanocellulose and natural deep eutectic solvent as potential biocatalyst system toward enzyme immobilization. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Yang R, Dong W, Ren Y, Xue Y, Cui H. Luminol functionalized tin dioxide nanoparticles with catalytic effect for sensitive detection of glucose and uric acid. Anal Chim Acta 2022; 1220:340070. [DOI: 10.1016/j.aca.2022.340070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
|
42
|
Chen Z, Zhao Y, Liu Y. Advanced Strategies in Enzyme Activity Regulation for Biomedical Applications. Chembiochem 2022; 23:e202200358. [PMID: 35896516 DOI: 10.1002/cbic.202200358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are important macromolecular biocatalysts that accelerate chemical and biochemical reactions in living organisms. Most human diseases are related to alterations in enzyme activity. Moreover, enzymes are potential therapeutic tools for treating different diseases, such as cancer, infections, and cardiovascular and cerebrovascular diseases. Precise remote enzyme activity regulation provides new opportunities to combat diseases. This review summarizes recent advances in the field of enzyme activity regulation, including reversible and irreversible regulation. It also discusses the mechanisms and approaches for on-demand control of these activities. Furthermore, a range of stimulus-responsive inhibitors, polymers, and nanoparticles for regulating enzyme activity and their prospective biomedical applications are summarized. Finally, the current challenges and future perspectives on enzyme activity regulation are discussed.
Collapse
Affiliation(s)
- Zihan Chen
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yu Zhao
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yang Liu
- Nankai University, College of Chemistry, 94 Weijin Rd., Mengminwei Bldg 412, 300071, Tianjin, CHINA
| |
Collapse
|
43
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022; 61:e202116073. [DOI: 10.1002/anie.202116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
44
|
Apushkinskaya N, Zolotukhina E, Butyrskaya E, Silina Y. In situ modulation of enzyme activity via heterogeneous catalysis utilizing solid electroplated cofactors. Comput Struct Biotechnol J 2022; 20:3824-3832. [PMID: 35891780 PMCID: PMC9307585 DOI: 10.1016/j.csbj.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
During product isolation the received bioreceptors often do not exhibit a sufficient biochemical activity due to multistep dissociation and loss of cofactors. However, for bioelectrochemical applications the presence of cofactors is necessary for a successful oxidative or reductive conversion of the substrates to the products. Herein, we show how the immobilization of the required electroplated cofactors in a design of amperometric electrodes can in situ assist the activity of apo-enzymes. Compared to conventional approaches used in enzyme engineering this tailored nanoengineering methodology is superior from economic point of view, labor and time costs, storage conditions, reduced amount of waste and can fill the gap in the development of tuned bioelectrocatalysts.
Collapse
Affiliation(s)
- N. Apushkinskaya
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Campus B 2.2, Germany
| | - E.V. Zolotukhina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
| | - E.V. Butyrskaya
- Department of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia
| | - Y.E. Silina
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Campus B 2.2, Germany
| |
Collapse
|
45
|
Zhao L, Zhang Y, Yang Y, Yu C. Silica-based Nanoparticles for Enzyme Immobilization and Delivery. Chem Asian J 2022; 17:e202200573. [PMID: 35796745 DOI: 10.1002/asia.202200573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Indexed: 11/06/2022]
Abstract
Enzymes play an indispensable role in biosystems, catalyzing a variety of chemical and biochemical reactions with exceptionally high efficiency and selectivity. These features render them uniquely positioned in developing novel catalytic systems and therapeutics. However, their practical application is largely hindered by the vulnerability, low reusability and the inability to overcome the biological barriers of enzymes. Silica-based nanoparticles (SNPs) are a classic family of nanomaterials with tunable physicochemical properties, making them ideal candidates to address the intrinsic shortcomings of natural enzymes. SNPs not only improve the activity and durability of enzymes, but also provide precise spatiotemporal control over their intracellular as well as systemic biodistributions for boosting the catalytic outcome. Herein, the recent progress in SNPs for enzyme immobilization and delivery is summarized. The therapeutic applications, including cancer therapy and bacterial inhibition, are particularly highlighted. Our perspectives in this field, including current challenges and possible future research directions are also provided.
Collapse
Affiliation(s)
- Liang Zhao
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Yue Zhang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, AUSTRALIA
| | - Yannan Yang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, AUSTRALIA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Building 75,Cnr College Rd & Cooper Rd, 4067, Brisbane, AUSTRALIA
| |
Collapse
|
46
|
Recent Advances in Nattokinase-Enriched Fermented Soybean Foods: A Review. Foods 2022; 11:foods11131867. [PMID: 35804683 PMCID: PMC9265860 DOI: 10.3390/foods11131867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
With the dramatic increase in mortality of cardiovascular diseases (CVDs) caused by thrombus, this has sparked an interest in seeking more effective thrombolytic drugs or dietary nutriments. The dietary consumption of natto, a traditional Bacillus-fermented food (BFF), can reduce the risk of CVDs. Nattokinase (NK), a natural, safe, efficient and cost-effective thrombolytic enzyme, is the most bioactive ingredient in natto. NK has progressively been considered to have potentially beneficial cardiovascular effects. Microbial synthesis is a cost-effective method of producing NK. Bacillus spp. are the main production strains. While microbial synthesis of NK has been thoroughly explored, NK yield, activity and stability are the critical restrictions. Multiple optimization strategies are an attempt to tackle the current problems to meet commercial demands. We focus on the recent advances in NK, including fermented soybean foods, production strains, optimization strategies, extraction and purification, activity maintenance, biological functions, and safety assessment of NK. In addition, this review systematically discussed the challenges and prospects of NK in actual application. Due to the continuous exploration and rapid progress of NK, NK is expected to be a natural future alternative to CVDs.
Collapse
|
47
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
48
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
49
|
Zhang M, Ye J, Xie Z, Wang Y, Ma W, Kang F, Yang W, Wang J, Chen X. Combined Probe Strategy to Increase the Enzymatic Digestion Rate and Accelerate the Renal Radioactivity Clearance of Peptide Radiotracers. Mol Pharm 2022; 19:1548-1556. [PMID: 35357154 DOI: 10.1021/acs.molpharmaceut.2c00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High and sustained renal radioactivity accumulation is a major challenge in peptide-based radionuclide imaging and therapy. However, neutral endopeptidase (NEP)-based enzymatic hydrolysis to release and excrete the radioactive fragments has been proven to be an effective and promising way to reduce renal accumulation. Despite the improvement, the effect is still far from being satisfactory. To further reduce kidney uptake, we studied the relationship between the enzymatic reaction rate and the substrate concentration and came up with a combined probe strategy. Model compounds Boc-MVK-Dde and Boc-MFK-Dde were used for an in vitro enzymatic digestion study. NOTA-Exendin 4 and NOTA-MVK-Exendin 4 were labeled with 64Cu for in vivo dose-dependent micro-positron emission tomography (PET) studies. Groups 1 and 2 were injected with 0.2 and 0.8 nmol of 64Cu-NOTA-Exendin 4, respectively. Groups 3-6 were injected with 0.2, 0.8, 1.0, and 1.4 nmol of 64Cu-NOTA-MVK-Exendin 4, respectively. Groups 7 and 8 were co-injected with 0.2 nmol of 64Cu-NOTA-MVK-Exendin 4 and NOTA-MVK-PEG5K (1.3 and 2.6 nmol). The radioactivity uptakes were determined and compared within and among the groups. The in vitro cleavage study for both Boc-MVK-Dde and Boc-MFK-Dde indicated that within a certain concentration range, the enzyme digestion rate increased with increasing substrate concentration. The microPET images showed that the renal clearance could be accelerated significantly by increasing the injection dose of 64Cu-NOTA-MVK-Exendin 4, with the kidney uptakes being 60.98, 43.01, and 16.10 % ID/g at 1 h for groups 3, 4 and 5, respectively. Unfortunately, the tumor uptakes were also significantly inhibited as the injected dose of the tracer increased. However, with the co-injection of NOTA-MVK-PEG5K, the renal accumulation was significantly decreased without hampering the tumor uptake. As a result, the tumor-to-kidney ratios were significantly improved, which were 1.93, 3.47, 1.74, and 3.38 times that of group 3 at 1, 4, 24, and 48 h, respectively. The enzymatic reaction rate of NEP is dependent on the concentration of the substrates both in vitro and in vivo. The combined probe strategy developed in this study can dramatically reduce the renal accumulation of a peptide radioligand without affecting the tumor uptake, which shows great potential in peptide-based radiotheranostics.
Collapse
Affiliation(s)
- Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhaojuan Xie
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yirong Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
50
|
Zofair SFF, Ahmad S, Hashmi MA, Khan SH, Khan MA, Younus H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114676. [PMID: 35151142 DOI: 10.1016/j.jenvman.2022.114676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We are facing a high risk of exposure to emerging contaminants and increasing environmental pollution with the concomitant growth of industries. Persistence of these pollutants is a major concern to the ecosystem. Laccases, also known as "green catalysts" are multi-copper oxidases which offers an eco-friendly solution for the degradation of these hazardous pollutants to less or non-toxic compounds. Although various other biological methods exist for the treatment of pollutants, the fact that laccases catalyze the oxidation of broad range of substrates in the presence of molecular oxygen without any additional cofactor and releases water as the by-product makes them exceptional. They have a good possibility of utilization in various industries, especially for the purpose of bioremediation. Besides this, they have also been used in medical/health care, food industry, bio-bleaching, wine stabilization, organic synthesis and biosensors. This review covers the catalytic behaviour of laccases, their immobilization strategies, potential applications in bioremediation of recalcitrant environmental pollutants and their engineering. It provides a comprehensive summary of most factors to consider while working with laccases in an industrial setting. It compares the benefits and drawbacks of the current techniques. Immobilization and mediators, two of the most significant aspects in working with laccases, have been meticulously discussed.
Collapse
Affiliation(s)
- Syeda Fauzia Farheen Zofair
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaheer Hasan Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|