1
|
Bai T, Bao S, Li Y, Hou X, Pan S, Wang H, Zhao Y, Liddle M, Li H, Bai L, Xiao X. The structural discrepancy between the ability of fructan and arabinogalactan to cure acute pharyngitis in Hosta plantaginea (Lam.) Aschers flowers. Carbohydr Polym 2025; 350:123059. [PMID: 39647959 DOI: 10.1016/j.carbpol.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
The flowers of Hosta plantaginea (Lam.), a traditional Chinese medicine, is utilized for the treatment of sore throat, aphonia, and cough alleviation. The polysaccharides HPFP-1 and HPFP-2 were separated from these plants through water-soluble alcohol precipitation and column chromatography. After structural analysis (monosaccharide composition, methylation and NMR), The →1)-β-D-Fruf-(2→ and →1,6)-β-D-Fruf-(2→, →6)-α-D-Glcp were interconnected to form the main chain of HPFP-1. The →3,6)-β-D-Galp-(1→, →5)-α-L-Araf-(1→, and →3)-β-D-Galp-6-OMe(1→, →6)-β-D-Galp-(1→, →4)-α-D-Galp-(1→ were interconnected to form the main chain of HPFP-2. In acute pharyngitis rats, HPFP effectively increased the level of NO, decreased the levels of TNF-α, IL-1β, and IL-6, and reduced macrophage and neutrophil infiltration. In the LPS-induced RAW 264.7 cell model, HPFP-1 and HPFP-2 decreased the levels of NO, TNF-α, IL-6, p-p65, and p-IκB, which demonstrated the anti-inflammatory mechanism of these two polysaccharides through the inhibition of the NF-κB signaling pathway. Therefore, they have the potential to be highly effective drugs for combating acute pharyngitis.
Collapse
Affiliation(s)
- Tiankai Bai
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuguang Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuhui Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Hou
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sirigunqiqige Pan
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Huan Wang
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuping Zhao
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Matthew Liddle
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Huifang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 10071, China.
| |
Collapse
|
2
|
Liu H, He H, Wei L, Lei Y, Liu M, Ding Y, Su X, Wang J, Yang J, Li S. Fed-batch fermentation strategy for efficient welan gum production by Sphingomonas sp. FM01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:926-936. [PMID: 39311036 DOI: 10.1002/jsfa.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND As a novel type of extracellular polysaccharide produced by Sphingomonas sp., welan gum has been widely applied in various fields because of its excellent properties. The study has improved the fermentation process. RESULTS The initial sucrose concentration, temperature and stirring speed were set to 20 g L-1, 33 °C and 400 rpm, respectively, and 13.3 g L-1 sucrose was added at 24, 40 and 56 h. The temperature and stirring speed were then set at 28 °C and 600 rpm from 24 to 48 h and 28 °C and 600 rpm from 48 to 72 h, respectively. As a result, welan gum production, dry cell weight, sucrose conversion rate and viscosity were correspondingly increased to 38.60 g L-1, 5.47 g L-1, 0.64 g g-1 and 3779 mPa·s, respectively. In addition, the mechanism by which fermentation strategy promotes welan gum synthesis was investigated by transcriptome analysis. CONCLUSION Improving respiration and ATP supply, reducing unnecessary protein synthesis, and alleviating competition between cell growth and welan gum synthesis contribute to promoting the fermentation performance of Sphingomonas sp., thus providing a practical strategy for efficient welan gum production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Liu
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Hailin He
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Yinfeng Lei
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Mengyu Liu
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Yifei Ding
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Xiaochun Su
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Jinxuan Wang
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Jian Yang
- A CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shubo Li
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| |
Collapse
|
3
|
Peng X, Wang JY, Gao KX, Wang ZK, Deng QL, Wang Y, Hu MB, Liu YJ. Utilizing ultrasound for the extraction of polysaccharides from the tuber of Typhonium giganteum Engl.: Extraction conditions, structural characterization and bioactivities. ULTRASONICS SONOCHEMISTRY 2025; 113:107243. [PMID: 39864322 DOI: 10.1016/j.ultsonch.2025.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Polysaccharides from the dried tuber of Typhonium giganteum Engl. (TGEPs) were obtained by utilizing ultrasonic-assisted extraction (UAE) as the extraction method. The determination of optimal process parameters for the UAE of TGEPs (TGEP-U) was accomplished through the application of response surface methodology (RSM). The structural characteristics, antioxidant and hypoglycemic effects of TGEP-U and TGEPs obtained by hot water extraction (TGEP-H) were then compared. Consequently, the optimum extraction conditions predicted by RSM for TGEP-U were obtained as adding water at a ratio of 31 mL/g and extracted for 32 min under an ultrasound power of 440 W. In the verification experiment, the actual yield of TGEP-U was 7.32 ± 0.18 %. It was found that UAE could increase the yield and the total sugar content of TGEPs. Meanwhile, chemical composition analysis showed that both TGEP-U and TGEP-H were mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose, but the monosaccharide molar ratios were changed by UAE. Analysis of molecular weight (Mw) revealed the presence of three primary constituents within TGEP-U, and four main components in TGEP-H, and UAE reduced the average Mw of TGEPs. No obvious difference was found in the Fourier transform infrared spectroscopy analysis of TGEP-U and TGEP-H. The Congo red and Circular dichroism tests demonstrated that TGEP-U and TGEP-H had non-three helical structure. Scanning electron microscope observation further revealed that the aggregation of functional groups within TGEPs may be influenced by ultrasound, thereby affecting their powder morphology. TGEP-U has slightly poorer thermal stability than TGEP-H, which may be affected by ultrasonic cavitation effects. The results also indicated that TGEP-U had better antioxidant and hypoglycemic activity than TGEP-H. In summary, UAE is an effective method to extract and enhance the activity of TGEPs with enormous research value and potentials.
Collapse
Affiliation(s)
- Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Zhi-Kun Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Qiao-Ling Deng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| | - Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
4
|
Cao W, Lv Q, Yu J, He S, Hou X, Zhou L, Wang C, Gu Y, Wang G, Wu J, Han J. Structural analysis and anti-hepatic fibrosis effects of a homogeneous polysaccharide from Radix Puerariae lobatae (Willd.) Ohwi roots. Int J Biol Macromol 2025; 298:140028. [PMID: 39828154 DOI: 10.1016/j.ijbiomac.2025.140028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Radix Pueraria lobata (Willd.) Ohwi, renowned for its medicinal properties, has garnered significant research interest, particularly in its polysaccharide components. In this study, a novel water-soluble polysaccharide (50PLP) was isolated and characterized from P. lobata. Structural analysis revealed 50PLP (Mw = 341.2 kDa) consists of Gal and Glc monosaccharides, with predominant linkages of (1 → 4)-α-d-glucose, (1 → 3,4)-α-d-glucose, and (1 → 4,6)-α-d-glucose. In vivo experiments demonstrated the therapeutic potential of 50PLP in hepatic fibrosis, as evidenced by enhanced antioxidant capacity, reduced oxidative stress, and alleviated inflammatory damage in liver tissues of mice. Moreover, 50PLP improved colon permeability and modulated intestinal microbiota, promoting microbial balance and positively influencing bacterial composition. Mechanistic studies demonstrated that 50PLP supports intestinal homeostasis by increasing short-chain fatty acid levels and regulating gut microbiota composition. These findings suggest 50PLP as a promising therapeutic agent for treating hepatic fibrosis, providing a scientific basis for the clinical application of P. lobata in medical interventions.
Collapse
Affiliation(s)
- Wen Cao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Qiuyue Lv
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Jie Yu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Shihan He
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Xuefeng Hou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Lutan Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Chunfei Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Guodong Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China
| | - Jiangping Wu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China; Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu 241002, China; Wuhu Modern Technology Research and Development Center of Chinese herbal Medicines and Functional Foods, Anhui College of Traditional Chinese Medicine, Wuhu 241002, China.
| |
Collapse
|
5
|
Lu M, Lu X, Tao W, Lin J, Li C, Li S. A Novel Exopolysaccharide Produced by Sphingomonas sp. MT01 and Its Potential Application in Enhanced Oil Recovery. Polymers (Basel) 2025; 17:186. [PMID: 39861258 PMCID: PMC11768204 DOI: 10.3390/polym17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingan is a crucial exopolysaccharide (EPS) produced by Sphingomonas genus bacteria with wide-ranging applications in fields such as food, medicine, and petroleum. In this study, a novel sphingan, named MT gum, was overproduced from the wild-type strain Sphingomonas sp. MT01 at a yield of 25.6 g/L in a 5 L fermenter for 52 h at 35 °C. The MT gum was mainly composed of D-glucose (65.91%) and L-guluronic acid (30.69%), as confirmed by RP-HPLC, with Mw 7.24 × 105 Da. The MT gum exhibited excellent rheology and pseudoplasticity characteristics while maintaining function in high-temperature and high-salinity environments. The viscosity retention rates of MT gum (0.1%, w/v) were 54.06% (80 °C, 50,000 mg/L salinity) and 34.78% (90 °C, 50,000 mg/L salinity), respectively. The apparent viscosity of MT solutions (0.1%, w/v) was much higher than that of welan solutions under the same conditions. The MT gum also had the property of instant dissolution and completely swelled in 40 min. Meanwhile, the MT gum was resistant to 3-10 mg/L Fe2+ in the reservoir conditions, ensuring its application in offshore oil fields. These findings suggested that the biopolymer MT gum produced by the strain MT01 had significant potential in enhanced oil recovery (EOR) of high-temperature and high-salinity oil reservoirs.
Collapse
Affiliation(s)
- Mengting Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211810, China; (M.L.); (X.L.)
| | - Xiaoxiao Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211810, China; (M.L.); (X.L.)
| | - Weiyi Tao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211810, China;
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (C.L.)
| | - Caifeng Li
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (C.L.)
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211810, China; (M.L.); (X.L.)
| |
Collapse
|
6
|
Guo R, Fan R, Hu J, Zhang X, Han L, Wang M, He C. Valorization of apple pomace: Structural and rheological characterization of low-Methoxyl Pectins extracted with green agents of citric acid/sodium citrate. Food Chem X 2024; 24:102010. [PMID: 39634523 PMCID: PMC11615925 DOI: 10.1016/j.fochx.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Traditional production of low-methoxyl pectin (LMP) is labor-intensive and environmentally harmful. This study explores using citric acid/sodium citrate as a green extractant for valorizing LMPs from apple pomace. Two types of pectin, AP-5 and AP-8, were extracted at pH 5.0 and 8.0, resulting in LMPs with methoxylation degrees of 42.33 % and 34.68 %, respectively. Monosaccharide composition and SEC-MALLS analysis revealed that APs are rich in arabinose side chains and contain heterogeneous fractions, while FTIR spectra confirmed their low-methoxyl structure. Compared to the commercial low-methoxyl pectin, APs exhibited higher critical pH but lower critical Ca2+ levels for acid- and Ca2+-induced gels, where hydrogen bonding and electrostatic interactions were the dominant intermolecular forces. Notably, AP-8 and AP-5 demonstrated superior stability in acid- and Ca2+-induced gels. Additionally, combined acidic and Ca2+ conditions enhanced the gel strength and stability of APs. These findings highlight the potential of APs in developing novel, particularly low-calorie, food products.
Collapse
Affiliation(s)
| | | | - Jiaxuan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinyue Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Wang Y, Zhang H, Li Y, Yu H, Sun D, Yang Y, Zhang R, Yu L, Ma F, Aftab MN, Peng L, Wang Y. Effective xylan integration for remodeling biochar uniformity and porosity to enhance chemical elimination and CO 2 adsorption. Int J Biol Macromol 2024; 291:138865. [PMID: 39694357 DOI: 10.1016/j.ijbiomac.2024.138865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Although plant evolution has offered diverse biomass resources, the production of high-quality biochar from desirable lignocelluloses remains unexplored. In this study, distinct lignocellulose substrates derived from eight representative plant species were employed to prepare biochar samples under three different temperature treatments. Correlation analysis showed that only hemicellulose was a consistently positive factor of lignocellulose substrates to account for the dye-adsorption capacities of diverse biochar samples. Furthermore, we integrated exo-xylan, a major hemicellulose in higher plants, into lignin-disassociated lignocelluloses to produce the desirable biochar with a uniform and symmetrical structure, resulting in a 5.2-fold increase in surface area (51 to 317 m2/g) and a 5.0-fold increase in total pore volume (0.02 to 0.11 cm3/g micropore, 0.02 to 0.12 cm3/g mesopore). This consequently improved the adsorption capacities of the remodeled biochar, with an increase of 26 % for dual-industry dyes, 90 % for 1579 organic compounds, and 14 % for CO2. Based on the fluorescence observation of xylan-cellulose co-localization and physical-chemical characterization of the remodeled biochar, a novel hypothetical model was proposed to explain how xylan plays an integral role in desired biochar production, providing insights into effective lignocellulose reconstruction and efficient thermochemical catalysis as an integrative strategy to maximize biochar adsorption capacity.
Collapse
Affiliation(s)
- Yongtai Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dan Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Ran Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College University, Lahore 54000, Pakistan
| | - Liangcai Peng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life & Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
8
|
Wang L, Zeng Z, Lin Y, Zheng B, Zhang Y, Pan L. In vitro dynamic digestion properties and fecal fermentation of Dictyophora indusiata polysaccharide: Structural characterization and gut microbiota. Int J Biol Macromol 2024; 282:136713. [PMID: 39427788 DOI: 10.1016/j.ijbiomac.2024.136713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The in vitro dynamic digestive model more realistically simulates the human digestive system compared to static digestive model. In this study, the dynamic in vitro stomach-intestine digestive system and fecal fermentation was used to investigate the dynamic digestion properties and fermentation properties of Dictyophora indusiata polysaccharide. The results showed that there were no significant changes in molecular weight, functional groups and surface morphology after the in vitro dynamic simulated digestion, indicating that D. indusiata polysaccharide maintained a relatively stable structure during the dynamic in vitro salivary-gastrointestinal digestion. In addition, D. indusiata polysaccharide improved the abundance of beneficial bacteria, including Blautia, Coprobacter and Fusicatenibacter. It is remarkable that D. indusiata polysaccharide significantly increased the level of acetic acid and propionic acid. In conclusion, these results suggested that D. indusiata polysaccharide was a potential source of prebiotics, which provides a basis for the development of D. indusiata polysaccharide in the food or medical field.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
9
|
Abubakar AS, Ahmad B, Ahmad N, Liu L, Liu B, Qu Y, Chen J, Chen P, Zhao H, Chen J, Chen K, Gao G, Zhu A. Physicochemical evaluation, structural characterization, in vitro and in vivo bioactivities of water-soluble polysaccharides from Luobuma (Apocynum L.) tea. Food Chem 2024; 460:140453. [PMID: 39067428 DOI: 10.1016/j.foodchem.2024.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University Kano, PMB, 3011, Kano, Nigeria
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
| | - Nabi Ahmad
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Yatong Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
10
|
Yang X, Gao Y, Reyimu M, Zhang G, Wang C, Yang D, Han X. Structural analysis of Pleurotus ferulae polysaccharide and its effects on plant fungal disease and plant growth. Int J Biol Macromol 2024; 282:137396. [PMID: 39521216 DOI: 10.1016/j.ijbiomac.2024.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A novel polysaccharide, named as PFP1-1 (23 kDa), was isolated from the fruiting body of Pleurotus ferulae. Structural analysis revealed that PFP1-1 is primarily composed of mannose, galactose, glucose and fucose, with a molar ratio of 41.50:41.92:4.65:1.93. Infrared spectroscopy analysis showed the presence of characteristic absorption peaks associated with polysaccharides. Further analysis using gas chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR) indicated that the polysaccharide mainly composed of → 6) -α-D-Galp- (1 →, → 2,6) -α-D-Galp- (1 → and a small amount of → 4) -α-D-Glcp- (1 →. The branched chain is mainly composed of β-D-Manp- (1 → and α-D-Glcp- (1 → connected at the O-2 position of the sugar residue → 2,6) -α-D-Galp- (1 →. PFP1-1 exhibited significant antifungal activity against Rhizoctonia solani and promoted cucumber plant growth. The mycelial growth inhibition rate of PFP1-1 against R. solani reached 70 %. In pot experiments, cucumber seedlings treated with PFP1-1 demonstrated resistance to R. solani infection and the incidence rate was significantly reduced to 22.92 %. PFP1-1 increased the root length and fresh weight of cucumber seedlings and enhanced the stress and disease resistance of plants by increasing the activities of superoxide dismutase, peroxidase and polyphenol oxidase. In conclusion, the present study provides a theoretical and experimental basis for the application of P. ferulae polysaccharide in promoting plant growth and controlling plant diseases.
Collapse
Affiliation(s)
- Xiaoyue Yang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuchao Gao
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Muyesaier Reyimu
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guoqiang Zhang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Chunjuan Wang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Desong Yang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaoqiang Han
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
11
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
12
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
13
|
Ma X, Wu Y, Gao P, Zheng Q, Lu Y, Yuan F, Jing W. Optimization of the Deproteinization Process via Response Surface Methodology, Preliminary Characterization, and the Determination of the Antioxidant Activities of Polysaccharides from Vitis vinifera L. SuoSuo. Molecules 2024; 29:4734. [PMID: 39407662 PMCID: PMC11478254 DOI: 10.3390/molecules29194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the response surface method (RSM) was used to optimize the deproteinization process of polysaccharides from Vitis vinifera L. SuoSuo (VTP). The antioxidant capacities of polysaccharides before and after deproteinization were evaluated. The structure of deproteinized VTP (DVTP), which has relatively strong antioxidant activity, was characterized, and the protective effect of DVTP on H2O2-induced HT22 cell damage was evaluated. The results of the RSM experiment revealed that the ideal parameters for deproteinization included a chloroform/n-butanol ratio (v/v) of 4.6:1, a polysaccharide/Sevage reagent (v/v) ratio of 2:1, a shaking time of 25 min, and five rounds of deproteinization. Preliminary characterization revealed that the DVTP was an acidic heteropolysaccharide composed of seven monosaccharides, among which the molar ratio of galacturonic acid was 40.65. FT-IR and the determination of uronic acid content revealed that DVTP contained abundant uronic acid and that the content was greater than that of VTP. In vitro, the antioxidant activity assay revealed that the hydroxyl radical scavenging capacity and total antioxidant capacity of DVTP were greater than those of VTP. In the range of 0.6~0.8 mg/mL, the DPPH scavenging capacities of VTP and DVTP were greater than that of vitamin C. In addition, cell viability was measured via a CCK-8 assay, which revealed that DVTP had a strong defense effect on H2O2-induced damage to HT22 cells. These findings suggest that DVTP has high antioxidant activity and could be used as a natural antioxidant in functional foods and medicines.
Collapse
Affiliation(s)
- Xinnian Ma
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Yan Wu
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Pei Gao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Qingsong Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yibo Lu
- School of Public Health, Xinjiang Medical University, Urumqi 830017, China;
| | - Fang Yuan
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China
| | - Weixin Jing
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
14
|
Guo W, Yun J, Wang B, Xu S, Ye C, Wang X, Qu Y, Zhao F, Yao L. Comparative study on physicochemical properties and hypoglycemic activities of intracellular and extracellular polysaccharides from submerged fermentation of Morchella esculenta. Int J Biol Macromol 2024; 278:134759. [PMID: 39151842 DOI: 10.1016/j.ijbiomac.2024.134759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The structural characteristic, physicochemical properties and structure-hypoglycemic activity relationship of intracellular (IPS) and extracellular (EPS) from submerged fermentation of Morchella esculenta were systematically compared and assessed. Both IPS and EPS were neutral, with a triple-helical conformation, and composed of galactose, glucose and mannose monosaccharides in different molar ratios. The molecular weight and particle size of IPS were higher than those of EPS. FTIR and SEM showed that the main functional group absorption peak intensity, glycosidic bond type and surface morphology of the two polysaccharides differed. Analysis of rheological and thermal properties revealed that the viscosity of IPS was higher than that of EPS, while thermal stability of EPS was greater than that of IPS. Hypoglycemic activity analysis in vitro showed that both IPS and EPS were non-competitive inhibitors of α-amylase and α-glucosidase. EPS showed strong digestive enzyme inhibitory activity due to its higher sulphate content and molar ratio of galactose, lower Mw and particle size. Meanwhile, with its higher Mw and apparent viscosity, IPS showed stronger glucose adsorption capacity and glucose diffusion retardation. These results indicate that IPS and EPS differed considerably in structure and physicochemical properties, which ultimately led to differences in hypoglycemic activity. These results not only suggested that IPS and EPS has the potential to be functional foods or hypoglycemic drugs, but also provided a new target for the prevention and treatment of diabetes with natural polysaccharides.
Collapse
Affiliation(s)
- Weihong Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Biao Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Siya Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Chenguang Ye
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Xuerui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Liang Yao
- Gannong Moli (Qingyang) Agricultural Development Co., Ltd, Qingyang 745000, Gansu, People's Republic of China
| |
Collapse
|
15
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
16
|
Zhang N, Han Z, Zhang R, Liu L, Gao Y, Li J, Yan M. Ganoderma lucidum Polysaccharides Ameliorate Acetaminophen-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Apoptosis along the Nrf2 Pathway. Nutrients 2024; 16:1859. [PMID: 38931214 PMCID: PMC11206445 DOI: 10.3390/nu16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Zhongming Han
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Rui Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Linling Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Yanliang Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Jintao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| |
Collapse
|
17
|
Liu H, Huang M, Wei S, Wang X, Zhao Y, Han Z, Ye X, Li Z, Ji Y, Cui Z, Huang Y. Characterization of a multi-domain exo-β-1,3-galactanase from Paenibacillus xylanexedens. Int J Biol Macromol 2024; 266:131413. [PMID: 38582482 DOI: 10.1016/j.ijbiomac.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only β-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 β-1,3-galactanase for the degradation of arabinogalactan.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Min Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaqin Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhengyang Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
18
|
Tang Y, Wei Z, He X, Ling D, Qin M, Yi P, Liu G, Li L, Li C, Sun J. A comparison study on polysaccharides extracted from banana flower using different methods: Physicochemical characterization, and antioxidant and antihyperglycemic activities. Int J Biol Macromol 2024; 264:130459. [PMID: 38423432 DOI: 10.1016/j.ijbiomac.2024.130459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
This work investigated and compared the physicochemical characteristics, and antioxidant and antihyperglycemic properties in vitro of polysaccharides from a single banana flower variety (BFPs) extracted by different methods. BFPs extracted using hot water (HWE), acidic (CAE), alkaline (AAE), enzymatic (EAE), ultrasonic (UAE) and hot water-alkaline (HAE) methods showed different chemical composition, monosaccharide composition, molecular weight, chain conformation and surface morphology, but similar infrared spectra characteristic, main glycosidic residues, crystalline internal and thermal stability, suggesting that six methods have diverse impacts on the degradation of BFPs without changing the main structure. Then, among six BFPs, the stronger antioxidant activity in vitro was found in BFP extracted by HAE, which was attributed to its maximum uronic acid content (21.67 %) and phenolic content (0.73 %), and moderate molecular weight (158.48 kDa). The highest arabinose and guluronic acid contents (18.59 % and 1.31 % in molar ratios, respectively) and the lowest uronic acid content (14.30 %) in BFP extracted by HWE contributed to its better α-glucosidase inhibitory activity in vitro (66.55 %). The data offered theoretical evidence for choosing suitable extraction methods to acquire BFPs with targeted biological activities for applications, in which HAE and HWE could serve as beneficial methods for preparing antioxidant BFP and antihyperglycemic BFP, respectively.
Collapse
Affiliation(s)
- Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Zhen Wei
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China.
| | - Dongning Ling
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Miao Qin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Ping Yi
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Guoming Liu
- Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Banana Preservation and Processing Research Center of Engineering Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China; Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China.
| |
Collapse
|
19
|
Luo HJ, Zhang YK, Wang SZ, Lin SQ, Wang LF, Lin ZX, Lu GD, Lin DM. Structural characterization and anti-oxidative activity for a glycopeptide from Ganoderma lucidum fruiting body. Int J Biol Macromol 2024; 261:129793. [PMID: 38290627 DOI: 10.1016/j.ijbiomac.2024.129793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
A water-soluble glycopeptide (named GL-PWQ3) with a molecular weight (Mw) of 2.40 × 104 g/mol was isolated from Ganoderma lucidum fruiting body by hot water extraction, membrane ultrafiltration, and gel column chromatography, which mainly consisted of glucose and galactose. Based on the methylation, FT-IR, 1D, and 2D NMR analysis, the polysaccharide portion of GL-PWQ3 was identified as a glucogalactan, which was comprised of unsubstituted (1,6-α-Galp, 1,6-β-Glcp, 1,4-β-Glcp) and monosubstituted (1,2,6-α-Galp and 1,3,6-β-Glcp) in the backbone and possible branches that at the O-3 position of 1,3-Glcp and T-Glcp, and the O-2 position of T-Fucp, T-Manp or T-Glcp. The chain conformational study by SEC-MALLS-RI and AFM revealed that GL-PWQ3 was identified as a highly branched polysaccharide with a polydispersity index of 1.25, and might have compact sphere structures caused by stacked multiple chains. Moreover, the GL-PWQ3 shows strong anti-oxidative activity in NRK-52E cells. This study provides a theoretical basis for further elucidating the structure-functionality relationships of GL-PWQ3 and its potential application as a natural antioxidant in pharmacotherapy as well as functional food additives.
Collapse
Affiliation(s)
- Hong-Jian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Life Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Yu-Kun Zhang
- Chongqing Key Laboratory for the Development and Utilization of Genuine Medicinal Materials in the Three Gorges Reservoir Area, Chongqing Three Gorge Medical College, Chongqing 404120, China
| | - Sai-Zhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Shu-Qian Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Lian-Fu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Zhan-Xi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Guo-Dong Lu
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Dong-Mei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China.
| |
Collapse
|
20
|
Xu G, Qin M, Yu M, Liu T, Guo Y, Wang K, Mu L, Wang S, Ma Q. Structural characterization of a polysaccharide derived from Saposhnikovia divaricatee (Turcz.) Schischk with anti-allergic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117425. [PMID: 37984545 DOI: 10.1016/j.jep.2023.117425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikoviae Radix, the dry root of Saposhnikovia divaricatee (Turcz.) Schischk, is a traditional chinese medicine used for the treatment of cold, headache, and skin pruritus. AIM OF THE STUDY This study aimed to identify novel active polysaccharides from Saposhnikovia divaricatee (Turcz.) Schischk and clarify their structures and bioactivities. MATERIALS AND METHODS The structure of polysaccharides was clarified by PMP-HPLC, methylation analysis, particle acid hydrolysis analysis and NMR analysis. The anti-allergic and antioxidant activities of polysaccharides were evaluated on allergic reaction model in RBL-2H3 cells and oxidative damage model of C. elegans. RESULTS We purified a novel homogenous polysaccharide named SP-3 from Saposhnikovia divaricatee (Turcz.) Schischk and its molecular weight was determined as 3.096 × 104 Da. Monosaccharide composition analysis revealed that SP-3 was composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose (1.85: 5.22: 38.06: 2.36: 23.25: 29.26). The main linkage type of SP-3 was a repeat unit of →4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → . The branches of SP-3 contained T-linked-α-L-Araf and 1,3,4-linked-α-L-Rhap. It was observed that SP-3 inhibited β-HEX release and inflammatory factors in RBL-2H3 cells subject to IgE stimulant. Meanwhile, SP-3 increased the mean lifespan of Caenorhabditis elegans under oxidative stress, reduced ROS content and increased antioxidant enzyme activities of C. elegans, potentially through activating the SOD-3. CONCLUSIONS A novel homogenous polysaccharide was identified from Saposhnikovia divaricatee (Turcz.) Schischk, and this polysaccharide SP-3 played key roles for the anti-allergic and antioxidant activities.
Collapse
Affiliation(s)
- Guang Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Ming Qin
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Mengqi Yu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yuying Guo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Kaihe Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Leixin Mu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Shifeng Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Qun Ma
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
21
|
Peng S, Gu P, Mao N, Yu L, Zhu T, He J, Yang Y, Liu Z, Wang D. Structural Characterization and In Vitro Anti-Inflammatory Activity of Polysaccharides Isolated from the Fruits of Rosa laevigata. Int J Mol Sci 2024; 25:2133. [PMID: 38396810 PMCID: PMC10888661 DOI: 10.3390/ijms25042133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, β-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.
Collapse
Affiliation(s)
- Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China;
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (S.P.); (N.M.); (L.Y.); (T.Z.); (J.H.); (Y.Y.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Chen L, Cui C, Wang Z, Che F, Chen Z, Feng S. Structural Characterization and Antioxidant Activity of β-Glucans from Highland Barley Obtained with Ultrasonic-Microwave-Assisted Extraction. Molecules 2024; 29:684. [PMID: 38338428 PMCID: PMC10856557 DOI: 10.3390/molecules29030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In order to efficiently extract β-glucan from highland barley (HBG) and study its structural characterization and antioxidant activity, ultrasonic-microwave-assisted extraction (UME) was optimized by the response surface method (RSM). Under the optimal extraction conditions of 25.05 mL/g liquid-solid ratio, 20 min ultrasonic time, and 480 W microwave intensity, the DPPH radical scavenging activity of HBG reached 25.67%. Two polysaccharide fractions were purified from HBG, namely HBG-1 and HBG-2. Structural characterization indicated that HBG-1 and HBG-2 had similar functional groups, glycosidic linkages, and linear and complex chain conformation. HBG-1 was mainly composed of glucose (98.97%), while HBG-2 primarily consisted of arabinose (38.23%), galactose (22.01%), and xylose (31.60%). The molecular weight of HBG-1 was much smaller than that of HBG-2. Both HBG-1 and HBG-2 exhibited concentration-dependent antioxidant activity, and HBG-1 was more active. This study provided insights into the efficient extraction of HBG and further investigated the structure and antioxidant activities of purified components HBG-1 and HBG-2. Meanwhile, the results of this study imply that HBG has the potential to be an antioxidant in foods and cosmetics.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Chunfeng Cui
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Zhiheng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (C.C.); (Z.W.)
| | - Fuhong Che
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Zhanxiu Chen
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| | - Shengbao Feng
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China; (F.C.); (Z.C.)
| |
Collapse
|
23
|
Cao W, Wu J, Zhao X, Li Z, Yu J, Shao T, Hou X, Zhou L, Wang C, Wang G, Han J. Structural elucidation of an active polysaccharide from Radix Puerariae lobatae and its protection against acute alcoholic liver disease. Carbohydr Polym 2024; 325:121565. [PMID: 38008472 DOI: 10.1016/j.carbpol.2023.121565] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
Radix Pueraria lobata can be used as medicine and food, whose polysaccharide is one of the main bioactive ingredients. To explore the effect and mechanism of Pueraria lobata polysaccharide, a homogeneous and novel water-soluble polysaccharide (PLP1) was successfully isolated and purified from P. lobata by column chromatography in the current study. Structure analysis revealed that PLP1 (Mw = 10.43 kDa) was constituted of the residues including (1 → 4)-α-d-glucose and (1 → 4, 6)-α-d-glucose, which were linked together at a ratio of 5:1 and represented the main glycosidic units. In vitro experiments indicated that PLP1 exhibited a better free radical-scavenging ability than amylose and amylopectin, meanwhile in vivo experiments indicated that PLP1 effectively protected against liver injury in mice with acute ALD through significantly inhibiting oxidative stress to regulate lipid metabolism, increasing short-chain fatty acid production, and maintaining intestinal homeostasis by regulating intestinal flora. Taken together, our results illustrate that PLP1 can regulate intestinal microecology as a feasible therapeutic agent for protecting against ALD on the ground of the gut-liver axis, thus laying a theoretical foundation for the rational exploitation and utilization of P. lobata resources in the clinic.
Collapse
Affiliation(s)
- Wen Cao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Jiangping Wu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Xinya Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Zixu Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Jie Yu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| | - Taili Shao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Xuefeng Hou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Lutan Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
| | - Chunfei Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China.
| | - Guodong Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu 241002, China; Anhui College of Traditional Chinese Medicine, Wuhu 241002, China.
| |
Collapse
|
24
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
25
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
26
|
Ma MH, Gao LL, Chen CB, Gu FL, Wu SQ, Li F, Han BX. Dendrobium huoshanense Polysaccharide Improves High-Fat Diet Induced Liver Injury by Regulating the Gut-Liver Axis. Chem Biodivers 2023; 20:e202300980. [PMID: 37831331 DOI: 10.1002/cbdv.202300980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Dendrobium huoshanense is an important Traditional Chinese medicine that thickens the stomach and intestines. Its active ingredient Dendrobium huoshanense polysaccharide (DHP), was revealed to relieve the symptoms of liver injury. However, its mechanism of action remains poorly understood. This study aimed to investigate the mechanism of DHP in protecting the liver. The effects of DHP on lipid levels, liver function, and intestinal barrier function were investigated in mice with high-fat diet-induced liver damage. Changes in the gut flora and their metabolites were analyzed using 16S rRNA sequencing and metabolomics. The results showed that DHP reduced lipid levels, liver injury, and intestinal permeability. DHP altered the intestinal flora structure and increased the relative abundance of Bifidobacterium animalis and Clostridium disporicum. Furthermore, fecal metabolomics revealed that DHP altered fecal metabolites and significantly increased levels of gut-derived metabolites, spermidine, and indole, which have been reported to inhibit liver injury and improve lipid metabolism and the intestinal barrier. Correlation analysis showed that spermidine and indole levels were significantly negatively correlated with liver injury-related parameters and positively correlated with the intestinal species B. animalis enriched by DHP. Overall, this study confirmed that DHP prevented liver injury by regulating intestinal microbiota dysbiosis and fecal metabolites.
Collapse
Affiliation(s)
- Meng-Hua Ma
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| | - Lei-Lei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Chuang-Bo Chen
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang-Li Gu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
| | - Si-Qi Wu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang Li
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Bang-Xing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| |
Collapse
|
27
|
Arevalo-Gallegos A, Cuellar-Bermudez SP, Melchor-Martinez EM, Iqbal HMN, Parra-Saldivar R. Comparison of Alginate Mixtures as Wall Materials of Schizochytrium Oil Microcapsules Formed by Coaxial Electrospray. Polymers (Basel) 2023; 15:2756. [PMID: 37376402 PMCID: PMC10305133 DOI: 10.3390/polym15122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This work evaluated maltodextrin/alginate and β-glucan/alginate mixtures in the food industry as wall materials for the microencapsulation of Schizochytrium sp. oil, an important source of the omega-3 fatty acid DHA (docosahexaenoic acid). Results showed that both mixtures display a shear-thinning behavior, although the viscosity is higher in β-glucan/alginate mixtures than in maltodextrin/alginate. Scanning electron microscopy was used to assess the morphology of the microcapsules, which appeared more homogeneous for maltodextrin/alginate. In addition, oil-encapsulation efficiency was higher in maltodextrin/alginate mixtures (90%) than in β-glucan/alginate mixtures (80%). Finally, evaluating the microcapsules' stability by FTIR when exposed to high temperature (80 °C) showed that maltodextrin/alginate microcapsules were not degraded contrary to the β-glucan/alginate microcapsules. Thus, although high oil-encapsulation efficiency was obtained with both mixtures, the microcapsules' morphology and prolonged stability suggest that maltodextrin/alginate is a suitable wall material for microencapsulation of Schizochytrium sp. oil.
Collapse
Affiliation(s)
- Alejandra Arevalo-Gallegos
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico (E.M.M.-M.); (H.M.N.I.)
| | - Sara P. Cuellar-Bermudez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Elda M. Melchor-Martinez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Roberto Parra-Saldivar
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| |
Collapse
|
28
|
Wang X, Zhu Q, Li Y. Purification, characterization and bioactivities of a 4-O-methylglucuronoxylan from Aralia echinocaulis. Int J Biol Macromol 2023:125402. [PMID: 37331542 DOI: 10.1016/j.ijbiomac.2023.125402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The discovery of active constituents from food plants is an important area of research in pharmaceutical sciences. Aralia echinocaulis is a medicinal food plant that is mainly used to prevent or treat rheumatoid arthritis in China. This paper reported the isolation, purification and bioactivity of a polysaccharide (HSM-1-1) from A. echinocaulis. Its structural features were analyzed according to the molecular weight distribution, monosaccharide composition, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectra. The results indicated that HSM-1-1 was a new 4-O-methylglucuronoxylan mainly composed of xylan and 4-O-methyl glucuronic acid with the molecular weight of 1.6 × 104 Da. Furthermore, the antitumor and anti-inflammatory activities of HSM-1-1 in vitro were investigated, and the results showed that HSM-1-1 had potent proliferation inhibition activity on colon cancer cell SW480 with an inhibition rate of 17.57 ± 1.03 % at a concentration of 600 μg/mL, as measured via MTS methods. To our knowledge, this is the first report of a polysaccharide structure obtained from A. echinocaulis and its bioactivities, and its potential as an adjuvant natural product with antitumor effects is shown.
Collapse
Affiliation(s)
- Xiaoai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qiannan Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
29
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
30
|
Gao J, Hu D, Shen Y, Zheng Y, Liang Y. Optimization of ultrasonic-assisted polysaccharide extraction from Hyperici Perforati Herba using response surface methodology and assessment of its antioxidant activity. Int J Biol Macromol 2023; 225:255-265. [PMID: 36334636 DOI: 10.1016/j.ijbiomac.2022.10.260] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
This study performed a comprehensive investigation of Hyperici Perforati Herba polysaccharide (HPHP) regarding the development and optimization of extraction methods, elucidation of structure and characteristics, and determination of antioxidant activities. An ultrasonic-assisted extraction method, which offered advantages in terms of the extraction yield and energy efficiency, was developed by response surface analysis. The following optimum conditions were determined: a crushing degree at 65 mesh, ultrasonic time at 50 min and temperature of 43 °C. Through enzyme-mediated deproteination via the Sevag method, activated carbon depigmentation, and DEAE-52 and Sephadex G-100 column elution, three HPHPs were obtained, and their monosaccharides mainly included mannose, galactose, glucose and arabinose. The molar weights were 8.347, 1.199 and 22.426 kDa, respectively. The HPHP structures were an amorphous aggregate of spherical-like shapes with a rough surface of pores and crevices, which presented characteristic Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of polysaccharides. Their main glucosidic linkage is the α-type configuration. Moreover, HPHPs exhibited strong scavenging activity for DPPH·, ABTS·+, OH· and O2·- radicals; good ferric reducing power; and effective protection against oxidative damage in human cells. Overall, the results of this work underpinned a fundamental understanding of HPHPs, thus providing a potential antioxidant for further research and development.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Yang Shen
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yiying Zheng
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
31
|
Zhang ZF, Song TT, Chen JF, Lv GY. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method. Front Nutr 2023; 9:1095556. [PMID: 36712537 PMCID: PMC9880258 DOI: 10.3389/fnut.2022.1095556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, an effective method was developed to extract the polysaccharide from Sanghuangporus vaninii (PFSV) by destroying the cell wall. Box-Behnken design was employed to determine the optimal processing conditions as follows: processing temperature (80°C), processing time (0.81 h) and amount of HCl (1.5 ml). Under these conditions, the yield of PFSV reached 5.94 ± 0.16%. The purified polysaccharide (PFSV-2) was found to be a hetero-polysaccharide with an average molecular weight of 20.377 kDa. The backbone of PFSV-2 was composed of an →6)-α-Galp-(1→ and →2,6)-β-Manp-(1→ and →2)-α-Fucp-(1→ and was branched of t-α-Manp-(1→ at position 2 of residue B. PFSV-2 showed hypolipidemic activity by decreasing lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Furthermore, PFSV-2 downregulated the pparg, fasn, and HMGCRb genes and upregulated the pparab and acaca genes. These findings suggested PFSV-2 may be a promising candidate in lipid regulation therapy.
Collapse
|
32
|
Structural Characterization of Polysaccharide Derived from Gastrodia elata and Its Immunostimulatory Effect on RAW264.7 Cells. Molecules 2022; 27:molecules27228059. [PMID: 36432165 PMCID: PMC9694387 DOI: 10.3390/molecules27228059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A polysaccharide from Gastrodia elata (named GEP-1) was isolated with a DEAE-52 column and Sephadex G-100 column. The structural characteristics showed that GEP-1 was mainly composed of glucose (92.04%), galactose (4.79%) and arabinose (2.19%) with a molecular weight of 76.444 kDa. The polydispersity (Mw/Mn) of GEP-1 was 1.25, indicating that the distribution of molar mass (Mw) was relatively narrow, which suggested that GEP-1 was a homogeneous polysaccharide. Moreover, the molecular conformation plot of the root mean square (RMS) radius (<rg2> 1/2) versus Mw yielded a line with a slope less than 0.33 (0.15 ± 0.02), displaying that GEP-1 is a compact and curly spherical molecule in NaNO3 aqueous solution. NMR and methylation analyses revealed that the main chain structure of GEP-1 was α-(1→4)-glucans. Furthermore, it was proven that GEP-1 possessed cytoproliferative and enhancing phagocytic activities and induced cytokine (TNF-α, IL1-β) and nitric oxide (NO) release in macrophages by upregulating the related gene expression. In addition, the RNA-seq results suggested that the GEP-1-induced immunomodulatory effect was mainly caused by activation of the NF-κB signaling pathway, which was further verified by NF-κB ELISA and pathway inhibition assays. As a result, GEP-1 exhibits the potential to be developed as a novel cheap immunostimulant without obvious toxicity.
Collapse
|
33
|
Mohamed Husien H, Peng W, Su H, Zhou R, Tao Y, Huang J, Liu M, Bo R, Li J. Moringa oleifera leaf polysaccharide alleviates experimental colitis by inhibiting inflammation and maintaining intestinal barrier. Front Nutr 2022; 9:1055791. [PMID: 36438754 PMCID: PMC9686441 DOI: 10.3389/fnut.2022.1055791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 07/24/2023] Open
Abstract
The characteristic of ulcerative colitis (UC) is extensive colonic mucosal inflammation. Moringa oleifera (M. oleifera) is a medicine food homology plant, and the polysaccharide from M. oleifera leaves (MOLP) exhibits antioxidant and anti-inflammatory activity. The aim of this study to investigate the potential effect of MOLP on UC in a mouse model as well as the underlying mechanism. Dextran sulfate sodium (DSS) 4% in drinking water was given for 7 days to mice with UC, at the same time, MOLP (25, 50, and 100 mg/kg/day) was intragastric administered once daily during the experiment. Structural analysis revealed that MOLP had an average molecular weight (Mw) of 182,989 kDa and consisted of fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galactose uronic acid, glucuronic acid, glucose uronic acid and mannose uronic acid, with a percentage ratio of 1.64, 18.81, 12.04, 25.90, 17.57, 12.01, 3.51, 5.28, 0.55, 1.27, and 1.43%, respectively. In addition, the features of MOLP were identified by Fourier-transform infrared (FT-IR) and spectra, X-ray diffraction (XRD). The results showed that MOLP exhibited protective efficacy against UC by alleviating colonic pathological alterations, decreasing goblet cells, crypt destruction, and infiltration of inflammatory cells caused by DSS. Furthermore, MOLP notably repressed the loss of zonula occludens-1 (ZO-1) and occludin proteins in mucosal layer, as well as up-regulating the mRNA expression of interleukin-10 (IL-10) and peroxisome proliferator-activated receptor-γ (PPAR-γ), whereas down-regulating the activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB) signaling pathway and the production of pro-inflammatory cytokines. Therefore, these results will help understand the protective action procedure of MOLP against UC, thereby providing significance for the development of MOLP.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, University of Albutana, Albutana, Sudan
| | - WeiLong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongrui Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - RuiGang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - JunJie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - MingJiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - RuoNan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
34
|
Tang Y, He X, Liu G, Wei Z, Sheng J, Sun J, Li C, Xin M, Li L, Yi P. Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide. Food Chem 2022; 405:134804. [DOI: 10.1016/j.foodchem.2022.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
35
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
36
|
Zhang G, Liu C, Zhang R. A novel acidic polysaccharide from blackened jujube: Structural features and antitumor activity in vitro. Front Nutr 2022; 9:1001334. [PMID: 36185697 PMCID: PMC9521368 DOI: 10.3389/fnut.2022.1001334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is one of the most common cancers, with increasing trends in incidence and mortality. A novel acidic polysaccharide (BJP-2) obtained from blackened jujube was extracted by hot water followed by chromatographic purification employing DEAE-cellulose 52 and Sephadex G-100 column. And then BJP-2 was identified by SEC-MALLS-RI, GC-MS, methylation and NMR for the following characteristics: molecular weight of 6.42 × 104 Da, monosaccharide composition of glucuronic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), xylose (Xyl), glucuronic acid (GlcA), glucose (Glc), fucose (Fuc) and mannose (Man) with the percentage of 39.78, 31.93, 16.86, 6.43, 1.86, 1.28, 1.02, 0.61, and 0.23%, as well as the main chain of → 5)-α-L-Araf (1 → 4)-β-D-Gal(1 → , T-α-L-Araf (1 → 4)-β-D-Gal(1 → , and → 4)-α-L-6MeGalAp(1 → . The effect of BJP-2 on the apoptosis of HepG2 cells and its anti-tumor mechanism were further explored. The analysis by MTT and flow cytometry showed that BJP-2 suppressed cell proliferation by inducing apoptosis in a concentration-dependent manner. Cell scratching and Transwell revealed that BJP-2 was able to block the invasion and metastasis of tumor cells. Western blot results demonstrated that BJP-2 exhibited antitumor activity through a mitochondria-dependent pathway, as evidenced by overexpression of Bax, Cleaved Caspase-3/Caspase-3 and Cleaved Caspase-9/Caspase-9 and downregulation of Bcl-2. Therefore, BJP-2 has broad research prospects as a tumor preventive or therapeutic agent.
Collapse
|
37
|
Qiu M, Li B, Geng D, Xiang Q, Xin Y, Ding Q, Tang S. Aminated β-Glucan with immunostimulating activities and collagen composite sponge for wound repair. Int J Biol Macromol 2022; 221:193-203. [PMID: 36063897 DOI: 10.1016/j.ijbiomac.2022.08.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Immunostimulating activities of yeast β(1 → 3)-D-Glucan (β-Glucan) mainly depended on its structures. However, due to the tight triple helix structure of β-Glucan, its immunostimulating activity is greatly weakened. Therefore, in order to partially unwind the tight triple helix structure of β-glucan and improve its solubility in the medium, we modified it by amination in this study (A-Glu). The results showed that A-Glu could stimulate Raw264.7 macrophages and significantly enhance its TNF-α, IL-6, and IL-10 cytokine expression levels in vitro. A-Glu could also induce a shift of M0 Raw264.7 toward M1, and M2 toward M1. To expand the application of A-Glu in wound repair, the composite sponge consisting of A-Glu and type I collagen via the formation of a stable polyion complex (PIC) was developed. Moreover, the composite sponge could accelerate wound repair significantly. These results reveal that soluble A-Glu as an immunostimulating agent has potential applications in biomedicine.
Collapse
Affiliation(s)
- Minqi Qiu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bing Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dezhi Geng
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Yanjiao Xin
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiang Ding
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Zheng Z, Huang Q. New insight into the structure-dependent two-way immunomodulatory effects of water-soluble yeast β-glucan in macrophages. Carbohydr Polym 2022; 291:119569. [DOI: 10.1016/j.carbpol.2022.119569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/15/2022]
|
39
|
Liang T, Hu J, Song H, Xiong L, Li Y, Zhou Y, Mao L, Tian J, Yan H, Gong E, Fei J, Sun Y, Zhang H, Wang X. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels. J Food Biochem 2022; 46:e14280. [PMID: 35746862 DOI: 10.1111/jfbc.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
This study aimed at comparing the physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges. Results indicated the pectins were high methoxy pectins mainly composed of homogalacturonan and rhamnogalacturonan-I. The pectins exhibited similar functional groups, surface morphology, and particle size, and had no triple-helical conformation in solution. They exerted fat and glucose absorption capacities and were mixed-type noncompetitive α-glucosidase inhibitors with IC50 values of 1.182 and 2.524 mg/ml, respectively. Both N-NOP and H-NOP showed hypoglycemic activity in alloxan-induced diabetic mice. Administration of them could promote the synthesis of hepatic glycogen and/or serum insulin to lower blood glucose levels and enhance antioxidant status to alleviate oxidative stress injury in diabetic mice. Moreover, N-NOP had higher yield, molecular weight, ζ-potential, oil holding capacity, α-glucosidase inhibitory effect and in vivo hypoglycemic activity, whereas H-NOP possessed higher uronic acid, degree of esterification, thermal stability, water holding capacity, swelling capacity, and fat absorption capacity. It could be concluded that some similarities and differences existed between N-NOP and H-NOP in physicochemical characteristics, functional properties, α-glucosidase inhibitory effects, and hypoglycemic activity. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges. PRACTICAL APPLICATIONS: Pectin has been widely used in the food and pharmaceutical industries for several decades due to its health benefit, gelling, thickening, and emulsification performances. Diabetes mellitus is a worldwide concern in recent years. Pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges possessed in vitro and in vivo hypoglycemic activities, indicating they were potential anti-antidiabetic substitutes of chemical drugs. Moreover, comparative understanding on the physicochemical characteristic, α-glucosidase inhibitory effect and hypoglycemic activity of pectins from peels of normal and Huanglongbing-infected Navel oranges was conducive to the recycling and utilization of Navel orange peels. Recently, the biological activity of pectin from peels of normal Navel oranges has been rarely reported, and the information on pectin from peels of Huanglongbing-infected Navel orange is rare. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawei Hu
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - He Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lili Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yang Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lifang Mao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiamin Tian
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Huan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawen Fei
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuan Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Hanyue Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
40
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
41
|
Feng JY, Xie YQ, Zhang P, Zhou Q, Khan A, Zhou ZH, Xia XS, Liu L. Hepatoprotective Polysaccharides from Geranium wilfordii: Purification, Structural Characterization, and Their Mechanism. Molecules 2022; 27:molecules27113602. [PMID: 35684541 PMCID: PMC9182495 DOI: 10.3390/molecules27113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional Chinese Medicine is generally used as a decoction to guard health. Many active ingredients in the decoction are chemical ingredients that are not usually paid attention to in phytochemical research, such as polysaccharides, etc. Based on research interest in Chinese herbal decoction, crude polysaccharides from G. wilfordii (GCP) were purified to obtain two relatively homogeneous polysaccharides, a neutral polysaccharide (GNP), and an acid polysaccharide (GAP) by various chromatographic separation methods, which were initially characterized by GC-MS, NMR, IR, and methylation analysis. Studies on the hepatoprotective activity of GCP in vivo showed that GCP might be a potential agent for the prevention and treatment of acute liver injury by inhibiting the secretion levels of ALT, AST, IL-6, IL-1β, TNF-α, and MDA expression levels, increasing SOD, and the GSH-Px activity value. Further, in vitro assays, GNP and GAP, decrease the inflammatory response by inhibiting the secretion of IL-6 and TNF-α, involved in the STAT1/T-bet signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Feng
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Yan-Qing Xie
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Peng Zhang
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Qian Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Afsar Khan
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Zhi-Hong Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Xian-Song Xia
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| | - Lu Liu
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| |
Collapse
|
42
|
Hussien GM, Shaheen TI, Mekawey AA, Ghalia HH, youssry AA, El Mokadem MT. Facile extraction of nanosized β-glucans from edible mushrooms and their antitumor activities. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Bastos R, Oliveira PG, Gaspar VM, Mano JF, Coimbra MA, Coelho E. Brewer's yeast polysaccharides - A review of their exquisite structural features and biomedical applications. Carbohydr Polym 2022; 277:118826. [PMID: 34893243 DOI: 10.1016/j.carbpol.2021.118826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (β1→3), (β1→6), (α1→4), (β1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of β-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight β-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and β-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (β1→6)-glucans lead to higher receptor affinity.
Collapse
Affiliation(s)
- Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia G Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Xiong G, Ma L, Zhang H, Li Y, Zou W, Wang X, Xu Q, Xiong J, Hu Y, Wang X. Physicochemical properties, antioxidant activities and α-glucosidase inhibitory effects of polysaccharides from Evodiae fructus extracted by different solvents. Int J Biol Macromol 2022; 194:484-498. [PMID: 34822830 DOI: 10.1016/j.ijbiomac.2021.11.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/20/2022]
Abstract
In this study, polysaccharides from Evodiae fructus were extracted by water, 0.5 M HCl, 0.5 M NaOH, water + 0.5 M HCl and water + 0.5 M NaOH, which were named as ERP-W, ERP-AC, ERP-AK, ERP-W-AC and ERP-W-AK, respectively. Their physicochemical properties, antioxidant activities and α-glucosidase inhibitory effects were investigated and compared. Physico-chemical analysis showed that they were acidic heteropolysaccharides, which had α- and β-configurations. ERP-W, ERP-AK and ERP-W-AK were mainly composed of Rha, Ara, Gal, Glc and Gal-UA, while ERP-AC and ERP-W-AC were dominantly made up of Rha, Gal and Gal-UA. ERP-AK had the highest yield (24.5%) and the best thermal stability, ERP-AC and ERP-W-AC showed better homogeneity and lower molecular weight (83.6 and 41.6 kDa), and ERP-W possessed the highest neutral sugar content (50.7%) and molecular weight. Biological evaluation indicated that ERP-W, ERP-AK and ERP-W-AK had relatively stronger antioxidant activities, including ABTS, DPPH, OH and O2- radicals scavenging activities, Fe2+ chelating ability and α-glucosidase inhibitory effects. Moreover, these actions were considerably related to their physicochemical properties especially monosaccharide composition and molecular weight. Therefore, polysaccharides extracted by water and alkaline solvents from Evodiae fructus could be developed as promising natural antioxidants and α-glucosidase inhibitors in the food and medicine industries.
Collapse
Affiliation(s)
- Gaoyin Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Lisha Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Han Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wanshuang Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiaofan Wang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Quansheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jingteng Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yanping Hu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
45
|
Zheng Z, Huang Q, Kang Y, Liu Y, Luo W. Different molecular sizes and chain conformations of water-soluble yeast β-glucan fractions and their interactions with receptor Dectin-1. Carbohydr Polym 2021; 273:118568. [PMID: 34560979 DOI: 10.1016/j.carbpol.2021.118568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 02/09/2023]
Abstract
Although β-glucan could bind to Dectin-1 to exert bioactivity, the influence of molecular size and chain conformation of β-glucan on its interaction with Dectin-1 is still unclear. This work investigated the molecular sizes and chain conformations of five water-soluble yeast β-glucan (WYG1-5) fractions as well as their interactions with Dectin-1 by fluorescence spectroscopy and microscale thermophoresis. Results revealed a spherical conformation for higher molecular weight WYG and a stiff chain conformation for smaller molecular weight WYG. The WYG and Dectin-1 interactions were in the order of WYG-2 > WYG-1 > WYG-3 > WYG-4 > WYG-5. The spherical WYG-2 exhibited the largest binding constant of 7.91 × 105 M1 and the lowest dissociation constant of 22.1 nM to Dectin-1. Additionally, the underlying interaction mechanism showed that it may be easier for spherical WYG with longer side chains to interact with receptor Dectin-1.
Collapse
Affiliation(s)
- Zhaomin Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Cuisine and Nutrition, Hubei University of Economics, Wuhan 430205, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Wei Luo
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
46
|
Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide. Molecules 2021; 26:molecules26195733. [PMID: 34641277 PMCID: PMC8509999 DOI: 10.3390/molecules26195733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of immunomodulatory activity of two types of carboxymethyl pachymaran (CMP-1 and CMP-2) on cyclophosphamide (CTX)-induced mice were investigated. Both CMP-1 and CMP-2 were found to restore the splenomegaly and alleviate the spleen lesions and the mRNA expressions of TLR4, MyD88, p65 and NF-κB in spleen were also increased. CMP-1 and CMP-2 could enhance the immunity by increasing the levels of TNF-α, IL-2, IL-6, IFN-γ, Ig-A and Ig-G in serum. In addition, CMP-1 could increase the relative abundance of Bacteroidetes and reduce the relative richness of Firmicutes at the phylum level. CMP-1 and CMP-2 could reduce the relative abundance Erysipelatoclostridum at the genus level. CMP-1 and CMP-2 might enhance the immune function of immunosuppression mice by regulating the gene expression in the TLR4/NF-κB signaling pathway and changing the composition and abundance of the intestinal microbiota. The results suggested that CMP-1 and CMP-2 would be as potential immunomodulatory agents in functional foods.
Collapse
|
47
|
Cheng Y, Xie Y, Ge JC, Wang L, Peng DY, Yu NJ, Zhang Y, Jiang YH, Luo JP, Chen WD. Structural characterization and hepatoprotective activity of a galactoglucan from Poria cocos. Carbohydr Polym 2021; 263:117979. [DOI: 10.1016/j.carbpol.2021.117979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/21/2021] [Indexed: 02/09/2023]
|
48
|
Structure characterization and in vitro immunomodulatory activities of carboxymethyl pachymaran. Int J Biol Macromol 2021; 178:94-103. [PMID: 33577815 DOI: 10.1016/j.ijbiomac.2021.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
Carboxymethyl pachymaran (CMP) was prepared from Poria cocos polysaccharide by carboxymethylation. Two types of CMP (CMP-1 and CMP-2) were further purified by DEAE-52 anion-exchange chromatography. The structure characteristics and immunomodulatory activities of CMP-1 and CMP-2 were investigated. CMP-1 was determined as β-(1 → 3)-d-glucan. A β-(1 → 3)-d-glucan backbone structure was also found in CMP-2, which was mainly consistent of mannose and glucose, with the mole ratio of 0.03:1. The molecular weight of CMP-1 was 126.1 kDa with a 30.4 nm irregular sphere in distilled water. However, the molecular weight of CMP-2 was 172.6 kDa in a 19.9 nm spherical structure in water solution. Both CMP-1 and CMP-2 had triple helical structure, which can promote the proliferation and the phagocytosis of macrophages. Moreover, CMP-1 and CMP-2 both could improve the secretions of NO, TNF-α and IL-6 by increasing the expression of iNOS, TNF-α and IL-6 mRNA, but CMP-1 exhibited a stronger immunomodulatory ability than that of CMP-2. Our results indicated that CMP-1 and CMP-2 can act as potential immunomodulatory agents.
Collapse
|
49
|
Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. Int J Biol Macromol 2021; 173:445-456. [PMID: 33497691 DOI: 10.1016/j.ijbiomac.2021.01.125] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
In order to solve the antibiotic resistance, the research on antibiotic substitutes has received an extensive attention. Many studies have shown that β-glucan and mannan from yeast cell wall have the potential to replace antibiotics for the prevention and treatment of animal diseases, thereby reducing the development and spread of antibiotic-resistant bacterial pathogens. β-Glucan and mannan had a variety of biological functions, including improving the intestinal environment, stimulating innate and acquired immunity, adsorbing mycotoxins, enhancing antioxidant capacity, and so on. The biological activities of β-glucan and mannan can be improved by chemically modifying its primary structure or reducing molecular weight. In this paper, the structure, preparation, modification, and biological activities of β-glucan and mannan were reviewed, which provided future perspectives of β-glucan and mannan.
Collapse
|
50
|
Ma H, Huang Q, Ren J, Zheng Z, Xiao Y. Structure characteristics, solution properties and morphology of oxidized yeast β-glucans derived from controlled TEMPO-mediated oxidation. Carbohydr Polym 2020; 250:116924. [DOI: 10.1016/j.carbpol.2020.116924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
|