1
|
Qiu H, Wang J, Hu H, Song L, Liu Z, Xu Y, Liu S, Zhu X, Wang H, Bao C, Lin H. Preparation of an injectable and photocurable carboxymethyl cellulose/hydroxyapatite composite and its application in cranial regeneration. Carbohydr Polym 2024; 333:121987. [PMID: 38494238 DOI: 10.1016/j.carbpol.2024.121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Limited bone regeneration, uncontrollable degradation rate, mismatched defect zone and poor operability have plagued the reconstruction of irregular bone defect by tissue-engineered materials. A combination of biomimetic scaffolds with hydroxyapatite has gained great popularity in promoting bone regeneration. Therefore, we designed an injectable, photocurable and in-situ curing hydrogel by methacrylic anhydride -modified carboxymethyl cellulose (CMC-MA) loading with spherical hydroxyapatite (HA) to highly simulate the natural bony matrix and match any shape of damaged tissue. The prepared carboxymethyl cellulose-methacrylate/ hydroxyapatite(CMC-MA/HA) composite presented good rheological behavior, swelling ratio and mechanical property under light illumination. Meanwhile, this composite hydrogel promoted effectively proliferation, supported adhesion and upregulated the osteogenic-related genes expression of MC3T3-E1 cells in vitro, as well as the activity of the osteogenic critical protein, Integrin α1, β1, Myosin 9, Myosin 10, BMP-2 and Smad 1 in Integrin/BMP-2 signal pathway. Together, the composite hydrogels realized promotion of bone regeneration, deformity improvement, and the enhanced new bone strength in skull defect. It also displayed a good histocompatibility and stability of subcutaneous implantation in vivo. Overall, this study laid the groundwork for future research into developing a novel biomaterial and a minimally invasive therapeutic strategies for reconstructing bone defects and contour deficiencies.
Collapse
Affiliation(s)
- He Qiu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hong Hu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Lu Song
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, College Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
2
|
Bradford JP, Hernandez-Moreno G, Pillai RR, Hernandez-Nichols AL, Thomas V. Low-Temperature Plasmas Improving Chemical and Cellular Properties of Poly (Ether Ether Ketone) Biomaterial for Biomineralization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:171. [PMID: 38204023 PMCID: PMC10780010 DOI: 10.3390/ma17010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.
Collapse
Affiliation(s)
- John P. Bradford
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Gerardo Hernandez-Moreno
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Renjith R. Pillai
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Alexandria L. Hernandez-Nichols
- Department of Cellular and Molecular Pathology, Heersink School of Medicine, The University of Alabama, Birmingham, AL 35294, USA;
- Center for Free Radical Biology, The University of Alabama, Birmingham, AL 35294, USA
| | - Vinoy Thomas
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
- Department of Physics, Center for Nanoscale Materials and Bio-Integration (CNMB), The University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Chen J, Gui X, Qiu T, Lv Y, Fan Y, Zhang X, Zhou C, Guo W. DLP 3D printing of high-resolution root scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. BIOMATERIALS ADVANCES 2023; 151:213475. [PMID: 37267749 DOI: 10.1016/j.bioadv.2023.213475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Digital light projection (DLP) printing of hydroxyapatite (HAp) bioceramic provides a promising strategy for fabrication of complex personalized bio-tooth root scaffold with high-resolution. However, it is still a challenge to fabricate bionic bio-tooth root with satisfied bioactivity and biomechanics. This research studied the HAp-based bioceramic scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. Compared to natural decellularized dentine (NDD) scaffolds with unitary shape and restricted mechanical properties, those DLP printing bio-tooth roots with natural size, high precision appearance, excellent structure, and a smooth surface were successfully manufactured, which met various shape and structure requirements for personalized bio-tooth regeneration. Moreover, the bioceramic sintering at 1250 °C enhanced the physicochemical properties of HAp and exhibited good elastic modulus (11.72 ± 0.53 GPa), which was almost twice of early NDD (4.76 ± 0.75 GPa). To further improve the surface activity of sintered biomimetic, the nano-HAw (nano-hydroxyapatite whiskers) coating deposited by hydrothermal treatment increased the mechanical properties and surface hydrophilicity, which indicated positive effects on dental follicle stem cells (DFSCs)' proliferation and enhanced the DFSCs osteoblastic differentiation in vitro. Subcutaneous transplantation in nude mice and in-situ transplantation in rat alveolar fossa proved that the nano-HAw-containing scaffold could promote the DFSCs differentiate into periodontal ligament-like enthesis formation. In conclusion, by combining the optimized sintering temperature and modified nano-HAw interface through hydrothermal treatment, the DLP-printing of HAp-based bioceramic with favorable bioactivity and biomechanics is a promising candidate for personalized bio-root regeneration.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Lv
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydr Polym 2022; 292:119638. [DOI: 10.1016/j.carbpol.2022.119638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
|
6
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
7
|
A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
|
8
|
Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. NANO SELECT 2021. [DOI: 10.1002/nano.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Quinn T. Easter
- Department of Innovation and Technology Research ADA Science & Research Institute Gaithersburg MD USA
| |
Collapse
|
9
|
Abstract
Cellulose acetate (CA)/strontium phosphate (SrP) hybrid coating has been proposed as an effective strategy to build up novel bone-like structures for bone healing since CA is soluble in most organic solvents. Strontium (Sr2+) has been reported as a potential agent to treat degenerative bone diseases due to its osteopromotive and antibacterial effects. Herein, bioactive hybrid composite SrP-based coatings (CASrP) were successfully produced for the first time. CASrP was synthesized via a modified biomimetic method (for 7—CA7dSrP, and 14 days—CA14dSrP), in which the metal ion Sr2+ was used in place of Ca2+ in the simulated body fluid. Energy-dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the SrP incorporation chemically in the CASrP samples. Atomic absorption spectroscopy (AAS) supported EDX data, showing Sr2+ adsorption into CA, and its significant increase with the augmentation of time of treatment (ca. 92%—CA7dSrP and 96%—CA14dSrP). An increment in coating porosity and the formation of SrP crystals were evidenced by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) evidenced a greater crystallinity than CA membranes and a destabilization of CA14dSrP structure compared to CA7dSrP. The composites were extremely biocompatible for fibroblast and osteoblast cells. Cell viability (%) was higher either for CA7dSrP (48 h: ca. 92% and 115%) and CA14dSrP (48 h: ca. 88% and 107%) compared to CA (48 h: ca. 70% and 51%) due to SrP formation and Sr2+ presence in its optimal dose in the culture media (4.6–9 mg·L−1). In conclusion, the findings elucidated here evidence the remarkable potential of CA7dSrP and CA14dSrP as bioactive coatings on the development of implant devices for inducing bone regeneration.
Collapse
|
10
|
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001085. [PMID: 32537860 PMCID: PMC11468645 DOI: 10.1002/adma.202001085] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 05/26/2023]
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Collapse
Affiliation(s)
- Rubina Ajdary
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Long Bai
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
11
|
Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 2021; 182:286-297. [PMID: 33838188 DOI: 10.1016/j.ijbiomac.2021.03.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Composites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need. In this work, an alkali urea system was used to dissolve, regenerate and gelate cellulose and silk fibroin (SF) to prepare composite aerosol. A dual network structure was shaped in the composite aerosol materials interlaced by sheet-like SF and reticular cellulose wrapping n-HA on the surface. Through uniaxial compression, the density of the composite aerogel material was close to the one of natural bone, and mechanical strength and toughness were high. Our work indicates that the composite aerogel has the same mechanical strength range as cancellous bone when the ratio of cellulose, n-HA and SF being 8:1:1. In vitro cell culture showed HEK-293T cells cultured on composite aerogels had high ability of adhesion, proliferation and differentiation. Totally, the presented biodegradable composite aerogel has application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Zong-Ju Chen
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Hong Shi
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Liang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Yu-Ying Cha
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Xian Ruan
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Xiu-Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
12
|
Catori DM, Fragal EH, Messias I, Garcia FP, Nakamura CV, Rubira AF. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. Int J Biol Macromol 2020; 167:726-735. [PMID: 33285200 DOI: 10.1016/j.ijbiomac.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Hydrogels based on pectin and cellulose nanocrystals (CNC) were used in our study to nucleation and growth of hydroxyapatite (HAp) by the biomimetic method. In this study, we evaluated the direct impact of the different percentages of CNC on pectin hydrogel and the influence of HAp obtained through two methods. CNC were obtained from HCl hydrolysis following chemical functionalization through vinyl groups. The percentage of CNC positively induces thermal stability, mechanical properties and HAp mineralization from biomimetic using simulated body fluid (1.5 SBF). Hydrogels with 5% of CNC showed a higher amount of HAp immersed for 14 days, about 28% of HAp. The obtained hydrogels were compared with hydrogels containing 20% of HAp nanoparticles obtained by chemical precipitation. Biocompatibility of the hydrogels was evaluated by cell viability using fibroblasts (L929). In general, the hydrogels obtained through the biomimetic method show slightly larger biocompatibility compared to the hybrid hydrogels obtained from chemical precipitation.
Collapse
Affiliation(s)
- Daniele M Catori
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Elizângela H Fragal
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| | - Igor Messias
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Francielle P Garcia
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Adley F Rubira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
13
|
Wu M, Wu P, Xiao L, Zhao Y, Yan F, Liu X, Xie Y, Zhang C, Chen Y, Cai L. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Int J Biol Macromol 2020; 162:1627-1641. [PMID: 32781127 DOI: 10.1016/j.ijbiomac.2020.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 01/16/2023]
Abstract
Although various strategies have been utilized to accelerate bone regeneration in bone tissue engineering (BTE), the treatment and repair of large bone defects remains a clinical challenge worldwide. Inspired by the natural extracellular matrix of bone tissue, organic-inorganic composite scaffolds with three-dimensional (3D) porous structures, sufficient mechanical properties, excellent cytocompatibility, osteoconductivity, and osteogenic potential have received considerable attention within the field of bone engineering. In this work, a novel epichlorohydrin (ECH)-crosslinked hydroxyethyl cellulose (HEC)/soy protein isolate (SPI) porous bi-component scaffold (EHSS) with hydroxyapatite (HAp) functionalization (EHSS/HAp) was constructed for bone defect repair via the combination of lyophilization and in situ biomimetic mineralization. Systematic characterization experiments were performed to assess the morphology, HAp-forming properties, mechanical properties and degradation rate of the scaffold. The results indicated that the prepared scaffolds exhibited an interconnected porous structure, a biomimetic HAp coating on their surfaces, improved mechanical properties in compression and a controllable degradation rate. In particular, semiquantitative analysis showed that the calcium/phosphorus (Ca/P) ratio of EHSS/HAp with 70% SPI content (1.65) was similar to that of natural bone tissue (1.67) according to energy dispersive X-ray spectroscopy analysis. In vitro cell culture experiments indicated that the EHSS/HAp with 70% SPI content showed improved cytocompatibility and was suitable for MC3T3-E1 cell attachment, proliferation and growth. Consistently, in vitro osteogenic differentiation studies showed that EHSS/HAp with 70% SPI content can significantly accelerate the expression of osteogenesis-related genes (Col-1, Runx2, OPN, and OCN) during osteogenic differentiation of MC3T3-E1 cells. Furthermore, when applied to the repair of critical-sized cranial defects in a rat model, EHSS/HAp with 70% SPI was capable of significantly promoting tissue regeneration and integration with native bone tissue. Microscopic computed tomography (micro-CT) results demonstrated that the bone defect site was nearly occupied with newly formed bone at 12 weeks after implantation of EHSS/HAp with 70% SPI content into the defect. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining of histological sections further confirmed that EHSS/HAp with 70% SPI markedly promoted new bone formation and maturation. Collectively, our results demonstrate the potential of EHSS/HAp scaffolds with 70% SPI for successful bone defect repair and regeneration.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| | - Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| | - Xing Liu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| | - Chong Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071, Hubei, China.
| |
Collapse
|
14
|
Kumar AM, Adesina AY, Hussein M, Umoren SA, Ramakrishna S, Saravanan S. Preparation and characterization of Pectin/Polypyrrole based multifunctional coatings on TiNbZr alloy for orthopaedic applications. Carbohydr Polym 2020; 242:116285. [DOI: 10.1016/j.carbpol.2020.116285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
|
15
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
16
|
Preparation of biomimetic composites of hydroxyapatite and star-shaped poly(2,2-dimethyl trimethylene carbonate)s terminated with carboxyl end-groups. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Wang D, Jang J, Kim K, Kim J, Park CB. "Tree to Bone": Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules 2019; 20:2684-2693. [PMID: 31117353 DOI: 10.1021/acs.biomac.9b00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone contains an organic matrix composed of aligned collagen fibers embedded with nanosized inorganic hydroxyapatite (HAp). Many efforts are being made to mimic the natural mineralization process and create artificial bone scaffolds that show elaborate morphologies, excellent mechanical properties, and vital biological functions. This study reports a newly discovered function of lignin mediating the formation of human bone-like HAp. Lignin is the second most abundant organic material in nature, and it exhibits many attractive properties for medical applications, such as high durability, stability, antioxidant and antibacterial activities, and biocompatibility. Numerous phenolic and aliphatic hydroxyl moieties exist in the side chains of lignin, which donate adequate reactive sites for chelation with Ca2+ and the subsequent nucleation of HAp through coprecipitation of Ca2+ and PO43-. The growth of HAp crystals was facilitated by simple incubation of the electrospun lignin/polycaprolactone (PCL) matrix in a simulated body fluid. Multiple analyses revealed that HAp crystals were structurally and mechanically similar to the native bone. Furthermore, the mineralized lignin/PCL nanofibrous films facilitated efficient adhesion and proliferation of osteoblasts by directing filopodial extension. Our results underpin the expectations for this lignin-based biomaterial in future biointerfaces and hard-tissue engineering.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Kayoung Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| |
Collapse
|