1
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
3
|
Mancinelli KCB, Dalonso N, Pezzin APT, Sassaki GL, de Oliveira Petkowicz CL, Lima DDD, Moritz AHL, Alberton MD, Erzinger GS. Schizophyllan from Schizophyllum commune BRM 060008: Potential application as an inhibitor of lipase. Int J Biol Macromol 2024; 259:129108. [PMID: 38158055 DOI: 10.1016/j.ijbiomac.2023.129108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
β-D-glucan has significant implications in regulating lipid metabolism and preventing diseases associated with lipid accumulation. Schizophyllan (SPG) from Schizophyllum commune fungus is a commercially important β-glucan with applications in the health food industry, pharmacy, and cosmetics. However, SPG was obtained by submerged culture of the wood-rotting and filamentous fungus S. commune BRM 060008, which may have been isolated from the Cerrado Biome of Brazil. In this study, to confirm that the polysaccharide produced by BRM 060008 strain fermentation was indeed (1→3)(1→6)-β-D-glucan, it was purified and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, high-performance size exclusion chromatography, nuclear magnetic resonance, and methylation analysis. The polysaccharide produced was identified as the β-D-glucan expected with a high molecular weight (1.093 × 106 g/mol) and the thermogravimetric analysis indicated a maximum degradation temperature of ~324 °C and a 60 % residual weight, lower than commercial SPG. The molecular structure and thermal properties of the β-D-glucan were similar to the commercial sample. Additionally, the in vitro pancreatic lipase inhibitory activity was evaluated, investigating anti-obesity and anti-lipidemic properties. The results showed unprecedented lipase inhibition activity to SPG prepared using the S. commune strain BRM 060008, making it promising for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ketlin Cristine Batista Mancinelli
- Post-graduation Program in Health and Environment, University of Joinville Region-UNIVILLE, Paulo Malschitzki Street, 10 North Industrial Zone, Zip Code 89201-972 Joinville, SC, Brazil.
| | - Nicole Dalonso
- Department of Biomedicine, Educational Society of Santa Catarina-UNISOCIESC, Gothard Kaesemodel Street, 833 Anita Garibaldi, Zip Code 89203-400 Joinville, SC, Brazil
| | - Ana Paula Testa Pezzin
- Post-graduation Program in Process Engineering, University of Joinville Region-UNIVILLE, Paulo Malschitzki Street, 10 North Industrial Zone, Zip Code 89201-972 Joinville, SC, Brazil
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Parana, Brazil.
| | | | - Daniela Delwing-de Lima
- Post-graduation Program in Health and Environment, University of Joinville Region-UNIVILLE, Paulo Malschitzki Street, 10 North Industrial Zone, Zip Code 89201-972 Joinville, SC, Brazil; Department of Medicine, University of Joinville Region-UNIVILLE, Paulo Malschitzki Street, 10 North Industrial Zone, Zip Code 89201-972 Joinville, SC, Brazil.
| | - Ana Helena Loos Moritz
- Department of Pharmaceutical Sciences, Center of Health Sciences, Regional University of Blumenau, Antônio da Veiga Street, 140, Zip Code 89012-900 Blumenau, SC, Brazil
| | - Michele Debiasi Alberton
- Department of Pharmaceutical Sciences, Center of Health Sciences, Regional University of Blumenau, Antônio da Veiga Street, 140, Zip Code 89012-900 Blumenau, SC, Brazil.
| | - Gilmar Sidnei Erzinger
- Post-graduation Program in Health and Environment, University of Joinville Region-UNIVILLE, Paulo Malschitzki Street, 10 North Industrial Zone, Zip Code 89201-972 Joinville, SC, Brazil
| |
Collapse
|
4
|
Yang D, Fan B, Sun G, He YC, Ma C. Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose‑silver nanoparticles-ChunJian peel extract composite film. Int J Biol Macromol 2023; 252:126427. [PMID: 37598821 DOI: 10.1016/j.ijbiomac.2023.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In this work, nanocellulose (CNC) from waste water chestnut (WCT) shell was firstly used for preparing nanocomposite films, by using ChunJian peel extract (CJPE) as a green reducing agent to synthesize silver nanoparticles (AgNPs), and then loading them into polyvinyl alcohol-nanocellulose (PVA-CNC) matrix, a multifunctional nanocomposite material that could be used in food packaging was developed. The prepared films were tested for mechanical strength, barrier properties, thermal properties, antibacterial, antioxidant and biocompatibility through various characterizations. The PVA-CNC-AgNPs-CJPE film had good thermostability, mechanical strength, barrier properties, and biocompatibility. Compared with pure PVA film and PVA-CNC film, PVA-CNC-AgNPs-CJPE could shield over 95 % of the UVB (320-275 nm) spectrum and UVC (275-200 nm) spectrum and most of the UVA (400-320 nm). By disk diffusion analysis, the inhibition zones of PVA-CNC-AgNPs-CJPE film against E. coli, P. aeruginosa, S. aureus and E. faecalis were 22.3 mm, 25.0 mm, 22.0 mm and 19.3 mm, respectively. The milk antibacterial simulation test confirmed that PVA-CNC-AgNPs-CJPE film could effectively limit bacterial reproduction and prolong the shelf life of milk. PVA-CNC-AgNPs-CJPE film had excellent UV barrier properties, good antioxidant properties and high-efficiency antibacterial activity, which is expected to be widely used in sustainable nanocomposite food packaging.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Guangting Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Vanin AP, Visentin EZ, Fontana RC, di Medeiros Leal MCB, de Avila E Silva S, Stokke BT, Carbonero ER, Camassola M. β-(1 → 3)(1 → 6)glucan from Schizophyllum commune 227E.32: High yield production via glucose/xylose co-metabolization. Carbohydr Polym 2023; 320:121176. [PMID: 37659785 DOI: 10.1016/j.carbpol.2023.121176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 09/04/2023]
Abstract
A co-metabolization of xylose and glucose by Schizophyllum commune 227E.32 wild mushroom for exopolysaccharide (EPS) production is presented. Cultivations performed with S. commune 227E.32 at different xylose concentrations demonstrated that the concentration of 50 g·L-1 of xylose achieved the highest EPS production, around 4.46 g·L-1. Scale-up in a stirred tank reactor (STR) was performed. 10 % inoculum showed the highest cost/benefit ratio regarding sugar conversion and EPS production (Y P/S = 0.90 g·g-1), achieving 1.82 g·L-1 of EPS. Isolation, purification, and characterization were conducted with EPS produced in flasks and STR. GC-MS analysis showed glucose as main monosaccharide constituents for both isolates. 13C NMR and HSQC-edited showed that both EPS isolated consisted of a β-D-Glcp (1 → 3) main chain, partially substituted at O-6 with nonreducing β-D-Glcp ends on every third residue, similar to β-D-glucan isolated from S. commune basidiomes known as schizophyllan (SPG). The Mw was determined by GPC to 1.5 × 106 Da (flasks) and 1.1 × 106 Da (STR). AFM topographs revealed a semi-flexible appearance of the β-D-glucan, consistent with the triple helical structures adopted by SPG and overall contour length consistent with a high molar mass.
Collapse
Affiliation(s)
- Ana Paula Vanin
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil.
| | - Esther Ziliotto Visentin
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Roselei Claudete Fontana
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Scheila de Avila E Silva
- Computational Biology and Bioinformatics Laboratory, Bioinformatics Research Center, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
6
|
Luo Y, Zheng S, Wang K, Luo H, Shi H, Cui Y, Li B, He H, Wu J. Drug cross-linking electrospun fiber for effective infected wound healing. Bioeng Transl Med 2023; 8:e10540. [PMID: 38023724 PMCID: PMC10658581 DOI: 10.1002/btm2.10540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
The management of infected wounds is still an intractable challenge in clinic. Development of antibacterial wound dressing is of great practical significance for wound management. Herein, a natural-derived antibacterial drug, tannic acid (TA), was incorporated into the electrospun polyvinyl alcohol (PVA) fiber (TA/PVA fiber, 952 ± 40 nm in diameter). TA worked as a cross-linker via hydrogen bonding with PVA to improve the physicochemical properties of the fiber and to reach a sustained drug release (88% release of drug at 48 h). Improved mechanical property (0.8-1.2 MPa) and computational simulation validated the formation of the hydrogen bonds between TA and PVA. Moreover, the antibacterial and anti-inflammatory characteristics of TA laid the foundation for the application of TA/PVA fiber in repairing infected wounds. Meanwhile, in vitro studies proved the high hemocompatibility and cytocompatibility of TA/PVA fiber. Further in vivo animal investigation showed that the TA/PVA fiber promoted the repair of infected wound by inhibiting the bacterial growth, promoting granulation formation, and collagen matrix deposition, accelerating angiogenesis, and inducing M2 macrophage polarization within 14 days. All the data demonstrated that the TA cross-linked fiber would be a potent dressing for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Sen Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Kun Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Huiling Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yanna Cui
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Bingxin Li
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| |
Collapse
|
7
|
Mahmoudi M, Alizadeh P, Soltani M. Wound healing performance of electrospun PVA/70S30C bioactive glass/Ag nanoparticles mats decorated with curcumin: In vitro and in vivo investigations. BIOMATERIALS ADVANCES 2023; 153:213530. [PMID: 37356283 DOI: 10.1016/j.bioadv.2023.213530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Biocompatible fibrous scaffold containing polyvinyl alcohol (PVA), 70S30C bioactive glass (BG), silver (Ag) nanoparticles and curcumin (Cur) was fabricated through electrospinning method. Scanning electron microscope (SEM) and Field emission scanning electron microscopy (FESEM) were employed to investigate the morphological characteristics of the scaffolds. In addition, biodegradability, hydrophilicity, and contact angle were studied as criteria for evaluating physical properties of the scaffolds. Tensile strength was reported to be 0.971 ± 0.093 MPa. Also, the viability of fibroblasts after 7 days of cell culture was 93.58 ± 1.36 %. The antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria was illustrated using inhibition zones of 13.12 ± 0.69 and 14.21 ± 1.37 mm, respectively. Histological results revealed that tissue regeneration after 14 days of surgery was much higher for the dressing group compared to the blank group. According to the obtained results, the authors introduce the PVA-BG-Ag-Cur scaffold as a promising candidate for skin tissue engineering applications.
Collapse
Affiliation(s)
- Masoud Mahmoudi
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Mohammad Soltani
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| |
Collapse
|
8
|
Vetter J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023; 12:1009. [PMID: 36900525 PMCID: PMC10000499 DOI: 10.3390/foods12051009] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Carbohydrates, including polysaccharide macromolecules, are the main constituents of the fungal cell wall. Among these, the homo- or heteropolymeric glucan molecules are decisive, as they not only protect fungal cells but also have broad, positive biological effects on the animal and human bodies. In addition to the beneficial nutritional properties of mushrooms (mineral elements, favorable proteins, low fat and energy content, pleasant aroma, and flavor), they have a high glucan content. Folk medicine (especially in the Far East) used medicinal mushrooms based on previous experience. At the end of the 19th century, but mainly since the middle of the 20th century, progressively more scientific information has been published. Glucans from mushrooms are polysaccharides that contain sugar chains, sometimes of only one kind (glucose), sometimes having several monosaccharide units, and they have two (α and β) anomeric forms (isomers). Their molecular weights range from 104 to 105 Da, and rarely 106 Da. X-ray diffraction studies were the first to determine the triple helix configuration of some glucans. It seems that the existence and integrity of the triple helix structure are criteria for their biological effects. Different glucans can be isolated from different mushroom species, and several glucan fractions can be obtained. The biosynthesis of glucans takes place in the cytoplasm, the processes of initiation and then chain extension take place with the help of the glucan synthase enzyme complex (EC 2.4.1.34), and the sugar units are provided by sugar donor UDPG molecules. The two methods used today for glucan determination are the enzymatic and Congo red methods. True comparisons can only be made using the same method. Congo red dye reacts with the tertiary triple helix structure, and the resulting glucan content better reflects the biological value of glucan molecules. The biological effect of β-glucan molecules is proportional to the integrity of the tertiary structure. The glucan contents of the stipe exceed the values of the caps. The glucan levels of individual fungal taxa (including varieties) differ quantitatively and qualitatively. This review presents in more detail the glucans of lentinan (from Lentinula edodes), pleuran (from Pleurotus ostreatus), grifolan (from Grifola frondose), schizophyllan (from Schizophyllum commune), and krestin (from Trametes versicolor), along with their main biological effects.
Collapse
Affiliation(s)
- János Vetter
- Department of Botany, University of Veterinary Medicine Budapest, Rottenbiller 50, 1077 Budapest, Hungary
| |
Collapse
|
9
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
10
|
Yontar AK, Çevik S. Effects of Plant Extracts and Green-Synthesized Silver Nanoparticles on the Polyvinyl Alcohol (PVA) Nanocomposite Films. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L. Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings. Molecules 2023; 28:molecules28031321. [PMID: 36770985 PMCID: PMC9921521 DOI: 10.3390/molecules28031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material.
Collapse
Affiliation(s)
- Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Hu
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| |
Collapse
|
12
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
13
|
Sharma D, Banerjee A, Bhattacharyya J, Satapathy BK. Structurally stable and surface-textured polylactic acid/copolymer/poly (ε-caprolactone) blend-based electrospun constructs with tunable hydroxyapatite responsiveness. Colloids Surf B Biointerfaces 2023; 221:112969. [DOI: 10.1016/j.colsurfb.2022.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
14
|
Alvandi H, Hatamian-Zarmi A, Mokhtari-Hosseini ZB, Webster TJ, Ebrahimi Hosseinzadeh B. Selective biological effects of natural selenized polysaccharides from Fomes fomentarius mycelia loaded solid lipid nanoparticles on bacteria and gastric cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Xie H, Bai Q, Kong F, Li Y, Zha X, Zhang L, Zhao Y, Gao S, Li P, Jiang Q. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. Int J Biol Macromol 2022; 207:859-872. [PMID: 35358577 DOI: 10.1016/j.ijbiomac.2022.03.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
In clinical application, it's highly desirable for developing bio-functionalized cutaneous scaffold with transparent features for convenient observation, excellent biocompatibility, and high efficiency for promoting wound repair. Herein, allantoin-functionalized composite hydrogel was developed by coupling silk fibroin (SF) and sodium alginate (SA) for treatment of cutaneous wounds. The prepared allantoin-functionalized SF-SA composite scaffolds (AFAS) exhibited excellent mechanical properties, especially featured by similar ultimate tensile strength (UTS) and elongation at breaking to human skin. Besides, the solvent-casting method guaranteed the AFAS to obtain highly transparent properties with sufficient moisture permeability and excellent adhesion in wet state. In vitro cellular experiments demonstrated excellent biocompatibility of the scaffold that attachment and proliferation of NIH-3T3 fibroblast cells was promoted in the presence of AFAS. Furthermore, the scaffolds exhibited efficient hemostatic property, based on rat hepatic hemorrhage model. In a cutaneous excisional mouse wound model, the AFAS significantly improved the wound closure rate, compared with pure SF-SA scaffolds and blank control. Moreover, the histomorphological assessments showed that AFAS facilitated the integrity of skin and wound healing process by enhancing collagen deposition, re-epithelialization and vascularization at wound site. The results demonstrate that the novel allantoin-functionalized SF/SA transparent hydrogel has great potential for clinical treatment of cutaneous wound.
Collapse
Affiliation(s)
- Haojiang Xie
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Qiao Bai
- Department of Pathology, Southwest Hospital, Chongqing 400038, China
| | - Fankai Kong
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoying Zha
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Lingqin Zhang
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Yiming Zhao
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Shasha Gao
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Ping Li
- Medical Information College, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng Jiang
- Medical Information College, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Yukhajon P, Somboon T, Sansuk S. Fabrication of Porous Phosphate/Carbonate Composites: Smart Fertilizer with Bimodal Controlled-Release Kinetics and Glyphosate Adsorption Ability. ACS OMEGA 2022; 7:15625-15636. [PMID: 35571815 PMCID: PMC9096975 DOI: 10.1021/acsomega.2c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A simple method to prepare phosphate/carbonate composites for use as porous sponge-like phosphate fertilizers (ps-PO4Fs) is presented. The composites ps-PO4Fs were prepared by ion-exchange implantation of phosphate onto the surface of vaterite-phase calcium carbonate (CaCO3) microparticles. The ps-PO4Fs obtained under the optimized conditions were found to contain a nanoscale porous network of calcium phosphate covering the CaCO3 support. In addition, ps-PO4Fs exhibited two distinct phosphate release modes having different kinetics: a fast-release step over the initial 24 h period following a parabolic diffusion model, indicating controlled diffusion from external surfaces/edges, and a second slow-release step over the course of a month following the Ritger-Peppas model, indicating the release and diffusion of phosphate adsorbed at specific sites. The ps-PO4Fs also adsorbed glyphosate well because of their porous structure and large surface area. However, glyphosate adsorption prevented phosphate release at concentrations greater than 10 mg L-1. The ps-PO4Fs were tested for their effects on plant growth and showed effects similar to commercial fertilizers. In summary, these smart, eco-friendly, and multifunctional fertilizers having two-stage phosphate release could enable the application of lower amounts of fertilizer and remove excess glyphosate from the environment.
Collapse
Affiliation(s)
- Pratchayaporn Yukhajon
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Titikan Somboon
- Department
of Chemistry, Faculty of Engineering, Rajamangala
University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Sira Sansuk
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Abbas M, Arshad M, Rafique M, Altalhi A, Saleh D, Ayub M, Sharif S, Riaz M, Alshawwa S, Masood N, Nazir A, Iqbal M. Chitosan-polyvinyl alcohol membranes with improved antibacterial properties contained Calotropis procera extract as a robust wound healing agent. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
19
|
Increasing-Aeration Strategy: a Practical Approach to Enhance the Schizophyllan Production and Improve the Operational Conditions of Schizophyllum commune Cultivation in the Stirred Tank and Bubble Column Bioreactors. Appl Biochem Biotechnol 2022; 194:2284-2300. [PMID: 35099723 DOI: 10.1007/s12010-021-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
In the present study, the effect of employing the increasing- aeration strategy (IAS) in the oxygen-limited situation and proportionate to increasing oxygen demand of the fungus Schizophyllum commune (S. commune) has been investigated in both stirred tank (STB) and bubble column (BCB) bioreactors. The purpose was to enhance schizophyllan (SPG) production by preventing oxygen starvation, improve mixing conditions of pseudoplastic culture, and intensify shear stress on fungus pellets to release SPG. At first, a constant-aeration rate of 0.08 vvm was implemented in both bioreactors to evaluate the new strategy compared to the previously studied methods. In the second set of experiments with IAS, along with the increasing oxygen demand of culture, the inlet airflow was increased gradually, while the dissolved oxygen (DO) was maintained higher than zero and below 1%. Using IAS in STB significantly raised productivity by about 100% in 96 h from 0.035 to 0.073 g/L.h. Also, employing this strategy in BCB led to a 30% increase in the maximum SPG production from 3.2 to 4.2 g/L. IAS can effectively help handle the operation of S. commune cultivation on a large scale by improving mixing conditions, mass transfer, and shear stress in both bioreactor types. This method had a significant impact on STB cultivation and its productivity so that it can be a practical approach to SPG's industrial production.
Collapse
|
20
|
Al-Wafi R. Polycaprolactone-based antibacterial nanofibrous containing vanadium/hydroxyapatite with morphology, mechanical properties, and in vitro studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Repairing the damaged wound tissues is a vital demand to keep an adequate clinical care system. In this work, nanofibrous scaffolds of polycaprolactone (PCL) have been encapsulated with hydroxyapatite (HAP)...
Collapse
|
21
|
Ionescu OM, Iacob AT, Mignon A, Van Vlierberghe S, Baican M, Danu M, Ibănescu C, Simionescu N, Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int J Biol Macromol 2021; 193:996-1008. [PMID: 34756969 DOI: 10.1016/j.ijbiomac.2021.10.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Arn Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Mihaela Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Maricel Danu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Constanța Ibănescu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; "Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Lenuța Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania.
| |
Collapse
|
22
|
Cai M, Zhang G, Li C, Chen X, Cui H, Lin L. Pleurotus eryngii polysaccharide nanofiber containing pomegranate peel polyphenol/chitosan nanoparticles for control of E. coli O157:H7. Int J Biol Macromol 2021; 192:939-949. [PMID: 34662654 DOI: 10.1016/j.ijbiomac.2021.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Pomegranate peel polyphenols (PPP), which are natural, safe, and green antibacterial agents, were introduced and embedded in chitosan to form stable nanoparticles. The PPP@chitosan nanoparticles (PPP@CNPs) were further electrospun into nanofibers based on Pleurotus eryngii polysaccharide (PEP). The preferable distribution of particle size, polydispersity index, and zeta potential was realized through the addition of PPP at 3 mg/mL, which achieved the highest encapsulation rate of 23.71 ± 0.51%. The tensile strength and elongation at break of nanofibers reached 15.76 MPa and 0.69% with the addition of 1% PEP through electrospinning. The results of scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated that the addition of nanoparticles increased the diameter of PEP nanofibers from 148 nm to 163 nm, and the surface roughness of the fibers also increased. Meanwhile, the addition of nanoparticles improved the thermal stability of PEP nanofibers. PPP@CNPs/PEP nanofibers can inhibit the growth of E. coli O157:H7 on pork and cucumber surfaces during the five-days storage, and the inhibition rates were all above 95%. Besides, the nanofibers did not have any impact on the color and texture of foods.
Collapse
Affiliation(s)
- Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
23
|
Ji X, Guo J, Guan F, Liu Y, Yang Q, Zhang X, Xu Y. Preparation of Electrospun Polyvinyl Alcohol/Nanocellulose Composite Film and Evaluation of Its Biomedical Performance. Gels 2021; 7:gels7040223. [PMID: 34842695 PMCID: PMC8628797 DOI: 10.3390/gels7040223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Using polyvinyl alcohol (PVA) and nanocellulose (NC) as raw materials, PVA/NC nanofiber membranes were prepared by electrospinning. The hydrogen bonding, crystalline properties and microscopic appearance of PVA/NC membranes with different NC contents were characterized. The mechanical properties, liquid absorption and cytotoxicity of the nanofiber membrane were evaluated. The results show that the free hydroxyl group of the PVA/NC nanofiber membranes have a maximum value of 9% at a mass fraction of 6% NC. The crystallinity of the PVA/NC nanofiber membranes and the average diameter of the nanofibers decreased and then increased as the NC content increased, with a minimum value of 38.23% and 272.03 nm, respectively, at 6% NC content. At this time, the contact angle was the smallest. The maximum strength of the PVA/NC nanofiber membranes is 75.8% higher than that of the PVA membrane at 2% NC content. With increasing NC content, the absorption of water, PBS sustained-release suspensions and artificial blood by PVA/NC nanofiber membranes increases. Cytotoxicity tests have shown that PVA/NC nanofiber membranes are non-toxic, have good cytocompatibility and are expected to be used in the field of medical dressings.
Collapse
|
24
|
Liu S, Li D, Chen X, Jiang L. Biomimetic cuttlebone polyvinyl alcohol/carbon nanotubes/hydroxyapatite aerogel scaffolds enhanced bone regeneration. Colloids Surf B Biointerfaces 2021; 210:112221. [PMID: 34838414 DOI: 10.1016/j.colsurfb.2021.112221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Inspired by the ordered porous nanostructure of bone, biomimetic functionalization porous biomaterial could be considered as promising substitutes for bone regeneration. To realize the relevant biomimetic porous structure, polyvinyl alcohol (PVA)-based biomimetic cuttlebone aerogel scaffold which simultaneously contained modified carbon nanotubes (MCNTs) and hydroxyapatite (HAP) was first prepared using a one-step rapid freeze-drying method. By adjusting the MCNTs contents, both the surface hydrophilicity and the mechanical properties of the scaffold could be improved concurrently. Besides, the PVA/MCNTs/HAP enhanced the adhesion, differentiation and gene expression of osteogenic markers performances of MC3T3-E1 cells. Furthermore, the aerogel scaffolds were implanted into the calvarial defect model of SD IGS Rat to evaluate osteogenic performance in vivo. The Micro-CT characterization and bone content theoretical analysis after 8 weeks together indicated that the PVA/MCNTs/HAP aerogel scaffolds could accelerate bone regeneration without the contribution of endogenous cytokines. The unique biomimetic porous structure, superior mechanical properties and excellent bone regeneration capacity of PVA/MCNTs/HAP aerogel scaffolds made them potential materials for bone regeneration.
Collapse
Affiliation(s)
- Sudan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191,China.
| | - Xiangmei Chen
- Centre Infect Disease, School Basic Medicine Science, Health Science Centre, Peking University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| |
Collapse
|
25
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
26
|
Al-Mogbel MS, Elabbasy MT, Menazea AA, Sadek AW, Ahmed MK, Abd El-Kader MFH. Conditions adjustment of polycaprolactone nanofibers scaffolds encapsulated with core shells of Au@Se via laser ablation for wound healing applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119899. [PMID: 33992892 DOI: 10.1016/j.saa.2021.119899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 05/24/2023]
Abstract
Au@Se core-shell nanoparticles were obtained via laser ablation technique to be incorporated into polycaprolactone (PCL) nanofibrous scaffolds for wound healing applications at different contributions of Se nanoparticles (SeNPs). The synthesized layers were inspected via X-ray diffraction (XRD) and Fourier transformed infrared (FTIR). Additionally, microstructural and surface morphology were followed with different SeNPs contributions before and after fibroblast culturing. Moreover, Selenium dopant is affected Maximum roughness valley depth while it starts from 0.31 µm at Au@0.0Se@PCL reaching 0.457 µm at Au@12Se@PCL; however, after culturing starts from 0.3833 µm reaching 0.41 µm. Besides, the antibacterial activity was screened, showing the absence of inhibition zones in free selenium composition; however, it grows up reaching 8.3 ± 0.8, and 8.0 ± 0.8 for E. coli and S. aureus, respectively at the maximum contribution of selenium. SeNPs contributed composites show higher cell viability than Selenium free composite that it reaches its max in Au@8.0Se@PCL, recording 95.3 ± 2.3%. Composites show an excellent Wound dressing capability that its performance is directly proportional to selenium content. This significant enrichment of antibacterial activity and cell viability could recommend these composites for additional research in medical applications.
Collapse
Affiliation(s)
- Mohammed S Al-Mogbel
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, Ha'il University, Ha'il, Saudi Arabia
| | - M T Elabbasy
- Public Health Department, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A Menazea
- Laser Technology Unit, Physics Division, National Research Centre, Dokki, Giza, Egypt; Spectroscopy Department, National Research Centre, Dokki, Giza, Egypt.
| | - A W Sadek
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - M K Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt; Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt.
| | - M F H Abd El-Kader
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt; Basic Sciences Department, Deanship of Preparatory Year, Ha'il University, Ha'il, Saudi Arabia
| |
Collapse
|
27
|
In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Cai M, Zhang G, Wang J, Li C, Cui H, Lin L. Application of glycyrrhiza polysaccharide nanofibers loaded with tea tree essential oil/ gliadin nanoparticles in meat preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
30
|
Ahmed MK, Mansour SF, Al-Wafi R. Nanofibrous scaffolds of ϵ-polycaprolactone containing Sr/Se-hydroxyapatite/graphene oxide for tissue engineering applications. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/ab7ff5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
|
31
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
32
|
Qureshi D, Sahoo A, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Ray SS, Maji S, Pal K. Fabrication and Characterization of Poly (vinyl alcohol) and Chitosan Oligosaccharide-Based Blend Films. Gels 2021; 7:55. [PMID: 34066326 PMCID: PMC8162339 DOI: 10.3390/gels7020055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
In the present study, we report the development of poly (vinyl alcohol) (PVA) and chitosan oligosaccharide (COS)-based novel blend films. The concentration of COS was varied between 2.5-10.0 wt% within the films. The inclusion of COS added a brown hue to the films. FTIR spectroscopy revealed that the extent of intermolecular hydrogen bonding was most prominent in the film that contained 5.0 wt% of COS. The diffractograms showed that COS altered the degree of crystallinity of the films in a composition-dependent manner. As evident from the thermal analysis, COS content profoundly impacted the evaporation of water molecules from the composite films. Stress relaxation studies demonstrated that the blend films exhibited more mechanical stability as compared to the control film. The impedance profiles indicated the capacitive-dominant behavior of the prepared films. Ciprofloxacin HCl-loaded films showed excellent antimicrobial activity against Escherichia coli and Bacillus cereus. The prepared films were observed to be biocompatible. Hence, the prepared PVA/COS-based blend films may be explored for drug delivery applications.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | - Ayasharani Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | | | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Viktoryia Kulikouskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Kseniya Hileuskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Vladimir Agabekov
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.K.); (K.H.); (V.A.)
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Sirsendu Sekhar Ray
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| | - Samarendra Maji
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India; (D.Q.); (A.S.); (S.S.R.)
| |
Collapse
|
33
|
Hemmatgir F, Koupaei N, Poorazizi E. Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns 2021; 48:146-155. [PMID: 34686391 DOI: 10.1016/j.burns.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
In this research, a novel semi-interpenetrating hydrogel network comprised of polyethylene glycol diacrylate (PEGDA)/polyvinyl alcohol (PVA)/tragacanth gum (TG) with adaptable mechanical, biological, and physical characteristics was fabricated for wound healing purposes. The chemical structure of the films and the surface morphology were examined by FTIR and SEM, respectively. In addition, swelling ratio, mechanical characteristics, water vapor transmission rate (WVTR), gel fraction, and degradability of the hydrogels were assessed. To evaluate their cytocompatibility, MTT assay and cell attachment studies were performed. The FTIR results showed that the vinyl peaks were eliminated during crosslinking between PEGDA chains. The results also showed that incorporating PVA into the networks increases the swelling ration and decreases the porosity. Furthermore, as the ratio of PEGDA to PVA increased, WVTR ratio, cell adhesion, and elongation of the networks increased. It was also found that, when the amount of PEGDA reduced, degradation rate of the networks decreased. The results verified the non-toxic nature of PEGDA/PVA/TG hydrogel networks. Finally, the antibacterial results demonstrated that the highest antibacterial activities against bacterial pathogens is related to the TG-containing film. Therefore, PEGDA/PVA/TG hydrogel networks can be favorable wound dressings.
Collapse
Affiliation(s)
- Forough Hemmatgir
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Elahe Poorazizi
- Department of Biochemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
34
|
El-Hamshary H, El-Naggar ME, El-Faham A, Abu-Saied MA, Ahmed MK, Al-Sahly M. Preparation and Characterization of Nanofibrous Scaffolds of Ag/Vanadate Hydroxyapatite Encapsulated into Polycaprolactone: Morphology, Mechanical, and In Vitro Cells Adhesion. Polymers (Basel) 2021; 13:1327. [PMID: 33919554 PMCID: PMC8073657 DOI: 10.3390/polym13081327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Series of nanofibrous composites of polycaprolactone (PCL) were fabricated in different compositions of modified hydroxyapatite (HAP). The encapsulated HAP was co-doped with Ag/vanadate ions at different Ag contributions. XRD and FTIR techniques confirmed the powder and fibrous phase formation. Further, the morphological and mechanical behaviors of the electrospun nanofibrous scaffolds containing hydroxyapatite were investigated. The nanofibrous phases were biologically evaluated via studying contact angle, antibacterial, cell viability, and in vitro growth of human fibroblasts cell line (HFB4). It is obvious that silver ions cause gradual deviation in powder grains from wafer-like to cloudy grains. The maximum height of the roughness (Rt) ranged from 902.0 to 956.9 nm, while the valley depth of the roughness (Rv) ranged from 308.3 to 442.8 nm, for the lowest and the highest additional Ag ions for powdered phases. Moreover, the highest contribution of silver through the nanofibrous phases leads to the formation of lowest filaments size ranged from 0.07 to 0.53 µm. Further, the fracture strength was increased exponentially from 2.51 ± 0.35 MPa at zero concentration of silver ions up to 4.23 ± 0.64 MPa at 0.6 Ag/V-HAP@PCL. The fibrous phases were biologically evaluated in terms of antibacterial, cell viability, and in vitro growth of human fibroblasts cell line (HFB4). The nanofibrous composition of 0.8 Ag/V-HAP@PCL reached the maximum potential against E. coli and S. aureus and recorded 20.3 ± 1.1 and 19.8 ± 1.2 mm, respectively. This significant performance of the antibacterial activity and cell viability of co-doped HAP distributed through PCL could recommend these compositions for more research in biological applications, including wound healing.
Collapse
Affiliation(s)
- Hany El-Hamshary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.E.-F.); (M.A.-S.)
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ayman El-Faham
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.E.-F.); (M.A.-S.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - M. A. Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt;
| | - M. K. Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt;
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt
| | - Mosaed Al-Sahly
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.E.-F.); (M.A.-S.)
| |
Collapse
|
35
|
Sharma D, Satapathy BK. Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1182-1202. [PMID: 33765899 DOI: 10.1080/09205063.2021.1909414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrophilic polyvinyl alcohol (PVA) based electrospun nanofibrous mats (ENMs) are recently being used for the designing and fabrication of active wound dressing materials. Thus, in this study an inclusion complex (IC) of curcumin (CUR) and β-cyclodextrin (β-CD) was optimally incorporated in electrospun PVA nanofibers, to obtain uniform bead-free nanofibers with minimum average diameter and variation using Taguchi's design of experiments (DOE). The optimum level parameters were ascertained using Taguchi's methodology, to obtain IC loaded PVA based bead-free ENMs, by varying IC (∼20, ∼40, and ∼60 wt.%) loading, applied voltage, solution concentration, and N, N-dimethylformamide (DMF) content in the electrospinning solution mixture. Validation experiments revealed a good agreement between the predicted and experimental values of fiber diameter, diameter-variation, and bead-numbers. Analysis of variance (ANOVA) showed a major influence of IC loading on the average fiber diameter and the number of bead defects, for IC-loaded PVA based ENMs. However, the DMF content of the solvent mixture significantly influenced the diameter variations of ENMs. The surface morphologies of ENMs were analyzed using Scanning Electron Microscopy (SEM) whereas the microstructural aspects were studied by Wide-Angle X-ray Diffraction (WAXD) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) whereas the mechanical properties were measured by using uniaxial tensile testing and dynamic mechanical analysis (DMA). The variation in properties of IC loaded PVA based ENMs were correlated with neat PVA based ENMs fabricated using a similar set of optimized electrospinning process parameters. The study conceptually demonstrated the optimal designing of structurally-engineered hydrophilic IC loaded PVA based ENMs by using the Taguchi approach based on orthogonal DOE as potential drug release substrates.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
36
|
Anti-atherosclerotic activity of Betulinic acid loaded polyvinyl alcohol/methylacrylate grafted Lignin polymer in high fat diet induced atherosclerosis model rats. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
38
|
Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S. Bio-Based Electrospun Fibers for Wound Healing. J Funct Biomater 2020; 11:E67. [PMID: 32971968 PMCID: PMC7563280 DOI: 10.3390/jfb11030067] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices.
Collapse
Affiliation(s)
- Bahareh Azimi
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Homa Maleki
- Department of Carpet, University of Birjand, Birjand 9717434765, Iran
| | - Lorenzo Zavagna
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
| | | | | | - Andrea Lazzeri
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
39
|
Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, Kamali A, Rahaie M. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater 2020; 113:144-163. [PMID: 32590170 DOI: 10.1016/j.actbio.2020.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Abnormal wound healing caused by the over-expression of collagen and fibronectin leads to fibrosis, the major complication of all treatment modalities. A three-layer nanofiber scaffold was designed, optimized, and fabricated. This scaffold comprised two supportive polycaprolactone (PCL)-chitosan layers on the sides and a polyvinyl alcohol (PVA)-metformin hydrochloride (metformin-HCl) in the middle. The physico-chemical properties of scaffold, such as mechanical characteristics, degradation, swelling, and in-vitro drug release, were evaluated. The biological tests, including cell viability in response to metformin-HCl and Tween 80, scaffold biocompatibility, cell attachment, and antibacterial activity, were further conducted. The wound healing effect of scaffold loaded with metformin-HCl (MSc+Met) was assessed in donut-shaped silicone splints in rats. Histopathological and immunohistochemical evaluation as well as mRNA expression levels of fibrosis markers were also studied. SEM images indicated a uniform, bead-less morphology and high porosity. Surface modification of scaffold by Tween 80 improved the surface hydrophilicity and enhanced the adhesion and proliferation of fibroblasts. The scar area on day 15 in MSc+Met was significantly lower than that of other groups. Histopathological and immunohistochemical evaluation revealed that group MSc+Met was the best, having significantly lower inflammation, higher angiogenesis, the smallest scar width and depth, maximum epitheliogenesis score, and the most optimal modulation of collagen density. Local administration of metformin-HCl substantially down-regulated the expression of fibrosis-involved genes: transforming growth factor (TGF-β1), collagen type 1 (Col-I), fibronectin, collagen type 3 (Col-III), and alpha-smooth muscle actin (α-SMA). Inhibiting these genes alleviates scar formation but delays wound healing; thus, an engineered scaffold was used to prevent delay in wound healing. These results provided evidence for the first time to introduce an anti-fibrogenic slow-releasing scaffold, which acts in a dual role, both alleviating fibrosis and accelerating wound healing.
Collapse
|
40
|
Afifi M, Ahmed MK, Fathi AM, Uskoković V. Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Int J Pharm 2020; 585:119502. [PMID: 32505577 DOI: 10.1016/j.ijpharm.2020.119502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Composite structures are at the frontier of materials science and engineering and polymeric/ceramic composites present one of their most prospective subsets. Prior studies have shown both improvements and deteriorations of properties of polymers upon the addition of ceramic phases to them, but not many studies have dealt with the direct comparison of chemically distinct inorganic additives. The goal of this study was to compare the properties of ε-polycaprolactone (PCL) thin films supplemented with alumina, graphene, carbonated hydroxyapatite or titania particles, individually, in identical amounts (12 wt%). The composite films were analyzed for their phase composition, grain size, morphology, surface roughness, porosity, cell response, mechanical properties and electrochemical performance. Each additive imparted one or more physical or biological properties onto PCL better than others. Thus, alumina increased the microhardness of the films better than any other additive, with the resulting values exceeding 10 MPa. It also led to the formation of a composite with the least porosity and the greatest stability to degradation in simulated body fluid based on open circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS). Titania made the surface of PCL roughest, which in combination with its high porosity explained why it was the most conducive to the growth of human fibroblasts, alongside being most prone to degradation in wet, corrosive environments and having the highest Poisson's ratio. Graphene, in contrast, made the surface of PCL smoothest and the bulk structure most porous, but also most conductive, with the OCP of -37 mV. The OCP of PCL supplemented with carbonated hydroxyapatite had the highest OCP of -134 mV and also the highest mechanical moduli, including the longitudinal (781 MPa), the shear (106 MPa), the bulk (639 MPa), and the elastic (300 MPa). The only benefit of the deposition of multilayered PCL films supplemented with all four inorganic additives was to enable a relatively high resistance to degradation. This study demonstrates that the properties of thin PCL films could be effectively optimized through the simple choice of appropriate inorganic additives dispersed in them. There is no single additive that proves ideal for improving all the properties of interest in PCL thin films, but their choice should be adjusted to the actual application. One such method of compositional optimization could prove crucial in the effort to develop biocomposites for superior performance in tissue engineering applications.
Collapse
Affiliation(s)
- M Afifi
- Ultrasonic Laboratory, National Institute of Standards, Giza, Egypt.
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt.
| | - A M Fathi
- Physical Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, USA
| |
Collapse
|
41
|
Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M, Sheikhmoradi V, Rafienia M, Salehi H. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol 2020; 149:467-476. [DOI: 10.1016/j.ijbiomac.2020.01.255] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
|
42
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
43
|
Erichev VP, Petrov SY, Volzhanin AV, Ghazaryan SA. [Continuous anti-glaucoma drug therapy as a risk factor of dry eye]. Vestn Oftalmol 2020; 135:117-123. [PMID: 32015316 DOI: 10.17116/oftalma2019135061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A preservative is a mandatory component of the eye drops designed to prevent microbial contamination in an opened bottle. Most of the preservative agents are either detergents, or oxidants; the most widely used and well-studied preservative - benzalkonium chloride - is a detergent. Due to regular usage of glaucoma eye drops, cytotoxic impact of the preservatives on anterior eye surface is considered the principal cause of its pathology, which leads to a decrease in quality of life. The high cost of preservative-free pharmacological forms and the complicated process of developing new preservatives make the usage of eye drops with minimal required concentration of preservative agent and a moistening component a good compromise. The most commonly utilized moistening component is polyvinyl alcohol - synthetic polymeric hydrogel, which is also used in artificial tears and bioengineering.
Collapse
Affiliation(s)
- V P Erichev
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - S Yu Petrov
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - A V Volzhanin
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - S A Ghazaryan
- Yerevan State Medical University after Mkhitar Heratsi, 2 Koryuna St., Erevan, Republic of Armenia, 0025
| |
Collapse
|
44
|
He L, Lan W, Ahmed S, Qin W, Liu Y. Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. Int J Biol Macromol 2019; 154:1285-1294. [PMID: 31733251 DOI: 10.1016/j.ijbiomac.2019.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Natupolymer-based scaffolds can increase cell affinity to biomaterials and improve cell responses. Silk fibroin, chitosan and gelatin that mimic the properties of natural extra-cellular matrix (ECM) were chosen due to their biocompatibility, biodegradability and less immunogenic reactions. We prepared composite scaffolds with different blending ratios of silk fibroin-chitosan-gelatin by freeze-drying technique. Silk fibroin was extracted from the Bombyx mori silkworm. The scaffolds were characterized by scanning electron microscopy (SEM), surface wettability, swelling measurements, In Vitro enzymatic degradation measurements and tensile test. The composite scaffolds showed pore sizes from 125 μm to 175 μm, good interconnectivity between pores and suitable porosity which are desirable for cell growth. The addition of chitosan-gelatin to silk fibroin increased water uptake and degradation rate and reduced mechanical strength but silk fibroin affect reversely on the degradation and mechanical strength of composite scaffolds. Biocompatibility of scaffolds was demonstrated by MTT-assay and hematoxylin-eosin (H&E) staining which lead to the growth and adhesion of endothelial cells. In this study, the fabricated composite scaffolds have the potential for tissue engineering applications.
Collapse
|
46
|
Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J Colloid Interface Sci 2019; 554:48-58. [DOI: 10.1016/j.jcis.2019.06.099] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
|
47
|
Dhingra GA, Kaur M, Singh M, Aggarwal G, Nagpal M. Lock Stock and Barrel of Wound Healing. Curr Pharm Des 2019; 25:4090-4107. [PMID: 31556852 DOI: 10.2174/1381612825666190926163431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Any kind of injury may lead to wound formation. As per World Health Organization Report, "more than 5 million people die each year due to injuries. This accounts for 9% of the world's population death, nearly 1.7 times the number of fatalities that result from HIV/AIDS, tuberculosis and malaria combined. In addition, ten million people suffer from non-fatal injuries which require treatment". This scenario leads to increased health and economic burden worldwide. Rapid wound healing is exigent subject-field in the health care system. It is imperative to be updated on wound care strategies as impaired wound healing may lead to chronic, non-healing wounds and thus further contributes to the national burden. This article is a comprehensive review of wound care strategies. The first and second part of this review article focuses on the understanding of wound, its types and human body's healing mechanism. Wound healing is natural, highly coordinated process that starts on its own, immediately after the injury. However, individual health condition influences the healing process. Discussion of factors affecting wound healing has also been included. Next part includes the detailed review of diverse wound healing strategies that have already been developed for different types of wound. A detailed description of various polymers that may be used has been discussed. Amongst drug delivery systems, oligomers, dendrimers, films, gels, different nano-formulations, like nanocomposites, nanofibers, nanoemulsions and nanoparticles are discussed. Emphasis on bandages has been made in this article.
Collapse
Affiliation(s)
- Gitika A Dhingra
- NCRD's Sterling Institute of Pharmacy, Nerul, Navi Mumbai-400706, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
48
|
Solis-Arevalo KK, Garza-Gonzalez MT, Lopez-Calderon HD, Solis-Rojas C, Arevalo-Nino K. Electrospun Membranes Based on Schizophyllan-PVOH and Hamamelis Virginiana Extract: Antimicrobial Activity Against Microorganisms of Medical Importance. IEEE Trans Nanobioscience 2019; 18:522-527. [PMID: 31226081 DOI: 10.1109/tnb.2019.2924166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrospinning is a micrometric or nanometric scale fiber manufacturing technique with structural factors such as greater contact surface and pore size that allows the incorporation of biological agents in its structure, increasing their potential for medical applications. Due to the conditions required for the electrospinning process, such as high voltage, in the present work, the evaluation of the antimicrobial activity of schizophyllan-based membranes elaborated by electrospinning at 20 kV incorporated with Hamamelis virginiana was carried out against Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. The schizophyllan production was 1.97 gL-1 from strain Schizophyllum commune ScIBL1. The conditions for the process were standardized for voltage, feed flow, and the distance from the injector to the collector. Membranes with smooth-edged fibers, diameter of 819 nm without the presence of beads were obtained. However, it was found that the membranes lost antimicrobial activity against all the microorganisms evaluated, whereas, bioassays showed that null toxicity was presented.
Collapse
|