1
|
Sajeev D, Rajesh A, Nethish Kumaar R, Aswin D, Jayakumar R, Nair SC. Chemically modified chitosan as a functional biomaterial for drug delivery system. Carbohydr Res 2025; 548:109351. [PMID: 39671874 DOI: 10.1016/j.carres.2024.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity. Modified chitosan is the most effective functional biomaterial that can be used to deliver the drugs to the targeted site. With diverse and versatile characteristics, it can be fabricated into various drug delivery systems such as membranes, beads, fibers, microparticles, composites, and scaffolds, for different drug delivery methods. Integrating nanotechnology with modified chitosan enhanced the delivery attributes of antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, protein/peptides, and nucleic acids for intended use toward desired therapeutic outcomes. The review brings out an overview of the research regarding drug delivery systems utilizing modifying chitosan detailing the properties, functionality, and applications.
Collapse
Affiliation(s)
- Devika Sajeev
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Aparna Rajesh
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - R Nethish Kumaar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - D Aswin
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
2
|
Kapoor DU, Sharma JB, Sahu D, Gautam RK, Trivedi ND, Shah DP. Marine biopolymers in cancer therapeutics. MARINE BIOPOLYMERS 2025:441-468. [DOI: 10.1016/b978-0-443-15606-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Sivasuriyan KS, Namasivayam SKR, Pandian A. Molecular insights into the anti-cancer activity of chitosan-okra mucilage polymeric nanocomposite doped with nano zero-valent iron against multi-drug-resistant oral carcinoma cells. Int J Biol Macromol 2025; 286:138495. [PMID: 39644860 DOI: 10.1016/j.ijbiomac.2024.138495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Recent advances in nanotechnology, particularly those utilizing polymeric nanocomposites, have garnered significant attention for their effectiveness and biocompatibility in cancer diagnosis and treatment. In this study, a chitosan-okra mucilage polymeric nanocomposite doped with nano zero-valent iron (CS-OM-nZVI), synthesized using green chemistry principles, was evaluated for its anti-cancer activity against drug-resistant oral carcinoma cells (KBChR). The nanocomposite was created from chitosan, mucilage derived from okra biomass, and nano zerovalent iron particles synthesized through chemical reduction. The resulting nanocomposite exhibited a highly stable, crystalline nanoscale structure with excellent stability. Anti-cancer activity was assessed by measuring cell viability, apoptosis induction, oxidative stress markers, DNA fragmentation, and performing in silico docking studies between the components of the polymeric nanocomposite (CS-OM-nZVI) and key proteins involved in carcinoma pathogenesis. The nanocomposite demonstrated significant anticancer activity, with an IC50 of 600 μg/mL, indicating notable effects on cell viability. It also induced significant morphological changes associated with apoptosis, such as chromatin condensation and nuclear fragmentation. Additionally, the nanocomposite had a marked effect on oxidative stress markers, particularly catalase and superoxide dismutase activity. In silico docking studies revealed that the polymeric composite modulates and enhances both intrinsic and extrinsic apoptotic pathways, confirmed by chitosan's binding to Caspase-3. This study suggests that the prepared nanocomposite is a promising anti-cancer agent against drug-resistant oral carcinoma cells, demonstrating a significant impact on cancer cell viability.
Collapse
Affiliation(s)
- Krithika Shree Sivasuriyan
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India.
| | - Arjun Pandian
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| |
Collapse
|
4
|
Revathi S, Dey N, Thomas A, Issac PK, Shaik MR, Hussain SA, Guru A. Optimization of Achillea millefolium-Infused Chitosan Nanocarriers for Antibacterial and Dye Degradation Applications. Chem Biodivers 2024:e202402150. [PMID: 39607692 DOI: 10.1002/cbdv.202402150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
The demand for plant-based nanocarriers and nanodrugs is increasing due to their versatile nature and compatibility. This research focuses on the optimization of Achillea millefolium-infused chitosan (CS) nanocarriers for antibacterial and dye degradation applications, emphasizing the novelty of this approach. Different dilutions of A. millefolium were loaded into low-molecular (LM)- and high-molecular-weight-CS nanocarriers using the ionotropic gelation method. The synthesized drug-loaded CS nanocarriers were characterized using ultraviolet (UV)-visible (Vis) spectroscopy, scanning electron microscopy, dynamic light scattering, Fourier-Transform Infrared, and high-performance liquid chromatography. The optimized nanocarriers were further analyzed for encapsulation efficiency (EE), antibacterial activity, and dye degradation capacity. The EE of the drug-loaded CS nanocarriers ranged from 15% to 100%. Notably, the LM-weight-CS-based nanocarriers demonstrated a significant dye degradation capacity, achieving an impressive 83% degradation rate for methylene orange (MO). Moreover, these nanoparticles (NPs) exhibited superior efficacy compared to un-immobilized counterparts. The A. millefolium-CS NPs also significantly enhanced the zone of inhibition against Escherichia coli and Staphylococcus aureus, demonstrating strong antibacterial potential. These results underscore the enhanced ability of the CS NP formulation to inhibit microbial growth and effectively degrade dyes. The combination of A. millefolium and CS NPs showcases potential for innovative therapeutic applications, particularly in wastewater treatment and antimicrobial therapies. This study provides novel insights into the development of effective plant-based nanocarriers, paving the way for future research in this field.
Collapse
Affiliation(s)
- Sorimuthu Revathi
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Nibedita Dey
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ashley Thomas
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Barua N, Buragohain AK. Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review. Antibiotics (Basel) 2024; 13:1106. [PMID: 39596799 PMCID: PMC11591479 DOI: 10.3390/antibiotics13111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The uncontrolled emergence of multidrug-resistant mycobacterial strains presents as the primary determinant of the present crisis in antimycobacterial therapeutics and underscores tuberculosis (TB) as a daunting global health concern. There is an urgent requirement for drug development for the treatment of TB. Numerous novel molecules are presently undergoing clinical investigation as part of TB drug development. However, the complex cell wall and the lifecycle of M. tuberculosis within the host pose a significant challenge to the development of new drugs and, therefore, led to a shift in research focus towards alternative antibacterial compounds, notably nanotechnology. A novel approach to TB therapy utilizing silver nanoparticles (AgNPs) holds the potential to address the medical limitations imposed by drug resistance commonly associated with currently available antibiotics. Their broad-spectrum antimicrobial activity presents the utilization of AgNPs as a promising avenue for the development of therapeutics targeting mycobacterial-induced diseases, which can effectively target Mycobacterium tuberculosis, including drug-resistant strains. AgNPs can enhance the effectiveness of traditional antibiotics, potentially leading to better treatment outcomes and a shorter duration of therapy. However, the successful implementation of this complementary strategy is contingent upon addressing several pivotal therapeutic challenges, including suboptimal delivery, variability in intra-macrophagic antimycobacterial effect, and potential toxicity. Future perspectives may involve developing targeted delivery systems that maximize therapeutic effects and minimize side effects, as well as exploring combinations with existing TB medications to enhance treatment outcomes. We have attempted to provide a comprehensive overview of the antimycobacterial activity of AgNPs, and critically analyze the advantages and limitations of employing silver nanoparticles in the treatment of TB.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Biotechnology, Royal Global University, Guwahati 781035, India
| |
Collapse
|
6
|
Rahman MH, Mondal MIH. Stability, challenges, and prospects of chitosan for the delivery of anticancer drugs and tissue regenerative growth factors. Heliyon 2024; 10:e39879. [PMID: 39583848 PMCID: PMC11582409 DOI: 10.1016/j.heliyon.2024.e39879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Chitosan, a biopolymer derived from chitin, offers significant potential for regulated anticancer drug administration and tissue regeneration growth factors, owing to its biocompatibility, low toxicity, biodegradability, and little immunogenicity. Moreover, its structure can be extensively modified, for example, to create scaffolds, hydrogels, nanoparticles, and membranes, allowing it to be engineered precisely to achieve specific outcomes However, the therapeutic utilisation of chitosan is impeded by significant challenges, such as its inadequate hemocompatibility, durability, and uniformity in commercial manufacturing. Additionally, there is insufficient research offering a thorough examination of the capabilities, limitations, and challenges related to chitosan as carriers for anticancer drugs and growth factors. This article examines the stability, challenges, and advanced application of chitosan as a drug carrier in anti-cancer therapy and growth factor delivery. The problems of unregulated chitosan degradation arising from unsuitable storage conditions are considered and potential solutions, and areas for future research, are proposed to deal with such problems. Consequently, this review is expected to be highly valuable for aspiring scientists studying chitosan-related systems for delivery of anti-cancer drugs and growth factors.
Collapse
Affiliation(s)
- Md Hasinur Rahman
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Ibrahim H. Mondal
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi, 6205, Bangladesh
| |
Collapse
|
7
|
El-Sherbiny MM, El-Hefnawy ME, Tayel AA. Innovative anticancer nanocomposites from Corchorus olitorius mucilage/chitosan/selenium nanoparticles. Int J Biol Macromol 2024; 282:137320. [PMID: 39515688 DOI: 10.1016/j.ijbiomac.2024.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cancers are continuing to threaten human health globally; the achievement of effectual and biosafe anticancerous compounds is a precious goal. The extraction of Corchorus olitorius mucilage (Jm) and its usage for selenium nanoparticles (SeNPs) biosynthesis was projected. The innovative formulation of bioactive nanocomposites (NCs) from Jm/SeNPs and chitosan nanoparticles (Cht) was also proposed to apply these NCs as effectual anticancers against CaCo-2 and HeLa cancerous cells. The Jm/SeNPs biosynthesis (mean diameter = 6.45 nm) was innovatively achieved and confirmed using infrared and ultraviolet-visible analysis. The constructions of different NCs were done (N1: 2Jm/SeNPs:1Cht; N2: 1Jm/SeNPs:1Cht; and N3: 1Jm/SeNPs:2Cht) with mean particles' diameter of 88.41, 46.86 and 69.35 nm, respectively. The cytotoxicity assay of constructed NCs indicated their potentialities to suppress examined cells; N1 (negatively charged; -16.2 mV) was the most forceful with IC50 of 12.36 and 73.15 mg/L against CaCo-2 and HeLa cells, respectively. The scanning microscopy imaging of treated CaCo-2 cells with N1 of Cht/Jm/SeNPs indicated that the NCs led to remarkable apoptotic destructions of treated cells, including cell shrinkage, membrane blebbing, cytoplasmic vacuolization, cell debris and apoptotic indices. The innovative NCs from Cht/Jm/SeNPs are promisingly recommended as effectual, natural and bioactive anticancer formulations against human cancers.
Collapse
Affiliation(s)
| | - Mohamed E El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
8
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Varshan GSA, Namasivayam SKR. A Green Chemistry Principle for the Biotransformation of Fungal Biomass Derived Chitosan Into Versatile Nano Scale Materials with High Biocompatibility and Potential Biological Activities—A Review. BIONANOSCIENCE 2024; 14:4145-4166. [DOI: 10.1007/s12668-024-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
10
|
Wu K, Yan Z, Wu Z, Li J, Zhong W, Ding L, Zhong T, Jiang T. Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan. J Funct Biomater 2024; 15:318. [PMID: 39590522 PMCID: PMC11595984 DOI: 10.3390/jfb15110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.
Collapse
Affiliation(s)
- Kunjian Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Ziyuan Yan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ziyang Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Jiaye Li
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Wendi Zhong
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Linyu Ding
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Tao Jiang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
11
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
12
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
13
|
Amin H, Ibrahim IM, Hassanein EHM. Weaponizing chitosan and its derivatives in the battle against lung cancer. Int J Biol Macromol 2024; 272:132888. [PMID: 38844273 DOI: 10.1016/j.ijbiomac.2024.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer (LC) is a crisis of catastrophic proportions. It is a global problem and urgently requires a solution. The classic chemo drugs are lagging behind as they lack selectivity, where their side effects are spilled all over the body, and these adverse effects would be terribly tragic for LC patients. Therefore, they could make a bad situation worse, inflict damage on normal cells, and inflict pain on patients. Since our confidence in classic drugs is eroding, chitosan can offer a major leap forward in LC therapy. It can provide the backbone and the vehicle that enable chemo drugs to penetrate the hard shell of LC. It could be functionalized in a variety of ways to deliver a deadly payload of toxins to kill the bad guys. It is implemented in formulation of polymeric NPs, lipidic NPs, nanocomposites, multiwalled carbon nanotubes, and phototherapeutic agents. This review is a pretty clear proof of chitosan's utility as a weapon in battling LC. Chitosan-based formulations could work effectively to kill LC cells. If a researcher is looking for a vehicle for medication for LC therapy, chitosan can be an appropriate choice.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
14
|
Zhang K, Zheng J, Xu Y, Liao Z, Huang Y, Lu L. Enhanced fabrication of size-controllable chitosan-genipin nanoparticles using orifice-induced hydrodynamic cavitation: Process optimization and performance evaluation. ULTRASONICS SONOCHEMISTRY 2024; 106:106899. [PMID: 38733852 PMCID: PMC11103574 DOI: 10.1016/j.ultsonch.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Jianbin Zheng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Zicheng Liao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| |
Collapse
|
15
|
Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF, Paiva-Santos AC, Neisiany RE, Makvandi P, Iravani S, Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr Polym 2024; 330:121839. [PMID: 38368115 DOI: 10.1016/j.carbpol.2024.121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | | | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyedeh Farnaz Ziaei
- Department of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
16
|
Soliman B, Wen MM, Kandil E, El-Agamy B, Gamal-Eldeen AM, ElHefnawi M. Preparation and Optimization of MiR-375 Nano-Vector Using Two Novel Chitosan-Coated Nano-Structured Lipid Carriers as Gene Therapy for Hepatocellular Carcinoma. Pharmaceutics 2024; 16:494. [PMID: 38675155 PMCID: PMC11054685 DOI: 10.3390/pharmaceutics16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is still a lack of effective carriers with minimal side effects to deliver therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP- miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically selected, prepared by high-speed homogenization, and optimized by varying nano-formulation factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment. Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied. Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these nano-plexes exhibited physical stability after three months and protected miR-375 from degradation in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation, and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could serve as a novel and promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Bangly Soliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Ming Ming Wen
- Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt
| | - Eman Kandil
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Basma El-Agamy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
17
|
Yang X, Meng D, Jiang N, Wang C, Zhang J, Hu Y, Lun J, Jia R, Zhang X, Sun W. Curcumin-loaded pH-sensitive carboxymethyl chitosan nanoparticles for the treatment of liver cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:628-656. [PMID: 38284334 DOI: 10.1080/09205063.2024.2304949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
In this study, the pH-responsive API-CMCS-SA (ACS) polymeric nanoparticles (NPs) based on 1-(3-amino-propyl) imidazole (API), stearic acid (SA), and carboxymethyl chitosan (CMCS) were fabricated for the effective transport of curcumin (CUR) in liver cancer. CUR-ACS-NPs with various degrees of substitution (DS) were employed to prepare through ultrasonic dispersion method. The effect of different DS on NPs formation was discussed. The obtained CUR-ACS-NPs (DSSA=12.4%) had high encapsulation rate (more than 85%) and uniform particle size (186.2 ± 1.42 nm). The CUR-ACS-NPs showed better stability than the other groups. Drug release from the CUR-ACS-NPs was pH-dependent, and more than 90% or 65% of CUR was released in 48 h in weakly acid medium (pH 5.0 or 6.0, respectively). Additionally, the CUR-ACS-NPs increased the intracellular accumulation of CUR and demonstrated high anticancer effect on HepG2 cells compared with the other groups. CUR-ACS-NPs prolonged the retention time of the drug, and the area under the curve (AUC) increased significantly in vivo. The in vivo antitumor study further revealed that the CUR-ACS-NPs exhibited the capability of inhibiting tumor growth and lower systemic toxicity. Meanwhile, CUR, CUR-CS-NPs, and CUR-ACS-NPs could be detected in the evaluated organs, including tumor, liver, spleen, lung, heart, and kidney in distribution studies. Among them, CUR-ACS-NPs reached the maximum concentration at the tumor site, indicating the tumor-targeting properties. In short, the results suggested that CUR-ACS-NPs could act a prospective drug transport system for effective delivery of CUR in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Dongdong Meng
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ning Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yanqiu Hu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiaming Lun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Rui Jia
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xueyun Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang 154007, PR China
| |
Collapse
|
18
|
Jafari AM, Morsali A, Bozorgmehr MR, Beyramabadi SA, Mohseni S. Modeling and characterization of lenalidomide-loaded tripolyphosphate-crosslinked chitosan nanoparticles for anticancer drug delivery. Int J Biol Macromol 2024; 260:129360. [PMID: 38218265 DOI: 10.1016/j.ijbiomac.2024.129360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Tripolyphosphate-crosslinked chitosan (TPPCS) nanoparticles were employed in the encapsulation of lenalidomide (LND) using a straightforward ionic cross-linking approach. The primary objectives of this technique were to enhance the bioavailability of LND and mitigate inadequate or overloading of hydrophobic and sparingly soluble drug towards cancer cells. In this context, a quantum chemical model was employed to elucidate the characteristics of TPPCS nanoparticles, aiming to assess the efficiency of these nanocarriers for the anticancer drug LND. Fifteen configurations of TPPCS and LND (TPPCS /LND1-15) were optimized using B3LYP density functional level of theory and PCM model (H2O). AIM analysis revealed that the high drug loading capacity of TPPCS can be attributed to hydrogen bonds, as supported by the average binding energy (168 kJ mol-1). The encouraging theoretical results prompted us to fabricate this drug delivery system and characterize it using advanced analytical techniques. The encapsulation efficiency of LND within the TPPCS was remarkably high, reaching approximately 87 %. Cytotoxicity studies showed that TPPCS/LND nanoparticles are more effective than the LND drug. To sum up, TPPCS/LND nanoparticles improved bioavailability of poorly soluble LND through cancerous cell membrane. In light of this accomplishment, the novel drug delivery route enhances efficiency, allowing for lower therapy doses.
Collapse
Affiliation(s)
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | | | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sharareh Mohseni
- Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
19
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
20
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
21
|
Zhang C, Yang K, Yang G. Design strategies for enhancing antitumor efficacy through tumor microenvironment exploitation using albumin-based nanosystems: A review. Int J Biol Macromol 2024; 258:129070. [PMID: 38163506 DOI: 10.1016/j.ijbiomac.2023.129070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic system that plays a crucial role in regulating cancer progression, treatment response, and the emergence of acquired resistance mechanisms. The TME is usually featured by severe hypoxia, low pH values, high hydrogen peroxide (H2O2) concentrations, and overproduction of glutathione (GSH). The current development of intelligent nanosystems that respond to TME has shown great potential to enhance the efficacy of cancer treatment. As one of the functional macromolecules explored in this field, albumin-based nanocarriers, known for their inherent biocompatibility, serves as a cornerstone for constructing diverse therapeutic platforms. In this paper, we present a comprehensive overview of the latest advancements in the design strategies of albumin nanosystems, aiming to enhance cancer therapy by harnessing various features of solid tumors, including tumor hypoxia, acidic pH, the condensed extracellular matrix (ECM) network, excessive GSH, high glucose levels, and tumor immune microenvironment. Furthermore, we highlight representative designs of albumin-based nanoplatforms by exploiting the TME that enhance a broad range of cancer therapies, such as chemotherapy, phototherapy, radiotherapy, immunotherapy, and other tumor therapies. Finally, we discuss the existing challenges and future prospects in direction of albumin-based nanosystems for the practical applications in advancing enhanced cancer treatments.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
23
|
Mohamed SY, Elshoky HA, El-Sayed NM, Fahmy HM, Ali MA. Ameliorative effect of zinc oxide-chitosan conjugates on the anticancer activity of cisplatin: Approach for breast cancer treatment. Int J Biol Macromol 2024; 257:128597. [PMID: 38056740 DOI: 10.1016/j.ijbiomac.2023.128597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is the second most prevalent cancer affecting both males and females, comprising nearly 30 % of all cancer cases. While chemotherapeutic agents, such as cisplatin (Cis), have proven successful in cancer treatment, concerns persist regarding their efficacy and the potentially dangerous side effects. Consequently, there is a crucial and ongoing need to develop approaches that minimize side effects associated with chemotherapy. In the present work, various types of nanoparticles (NPs) were synthesized and loaded with Cis. Cis was conjugated with nanocarriers such as zinc oxide (ZnO), ZnO modified with mandelic acid and graphene oxide (GO), chitosan (CS), and CS modified with ZnO and GO to enhance the selectivity of Cis towards cancer cells. Zeta potentials and particles size were assessed using electrophoretic light scattering and dynamic light scattering. NPs were characterized using transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The impact of standalone Cis as well as its nanoconjugated form on the behavior of MCF-7 cell line was investigated using WST-1 cell proliferation and apoptosis/necrosis assays. Experimental findings revealed that among the various NPs tested, ZnO, and CS NPs exhibited the highest loading percentage of Cis, surpassing the loading percentages achieved with other NPs. Cytotoxicity assay showed the enhanced effect of Cis when conjugated with ZnO and CS NPs. Flow cytometry-based assays and confocal microscopy confirmed that ZnO/Cis and CS/Cis induced apoptosis. The cisplatin-nanocomplex exhibited a descending order of early apoptosis and late apoptosis in the following order: ZnO, Cis, CS, ZnO-M, CS-GO, ZnO-GO, CS-ZnO, and CS-ZnO, Cis, CS, CS-GO, ZnO-M, ZnO, ZnO-GO, respectively. None of the nanoparticle complexes displayed a significant percentage of necrotic cells, with the highest percentage reaching 4.65 % in the case of CS-GO/Cis.
Collapse
Affiliation(s)
- Salma Y Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Hisham A Elshoky
- Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt; Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt.
| | - Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
24
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
25
|
Twal S, Jaber N, Al-Remawi M, Hamad I, Al-Akayleh F, Alshaer W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv 2024; 14:3070-3084. [PMID: 38239437 PMCID: PMC10795518 DOI: 10.1039/d3ra08074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
A dual stimuli-responsive nanocarrier was developed from smart biocompatible chitosan and soluplus graft copolymers. The copolymerization was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared (FTIR). The optimized chitosan-soluplus nanoparticles (CS-SP NPs) were further used for the encapsulation of a poorly water-soluble anticancer drug. Tamoxifen citrate (TC) was used as the model drug and it was loaded in CS-SP NPs. TC CS-SP NPs were characterized in terms of particle size, zeta potential, polydispersity, morphology, encapsulation efficiency, and physical stability. The nanoparticles showed homogenous spherical features with a size around 94 nm, a slightly positive zeta potential, and an encapsulation efficiency around 96.66%. Dynamic light scattering (DLS), in vitro drug release, and cytotoxicity confirmed that the created nano-system is smart and exhibits pH and temperature-responsive behavior. In vitro cellular uptake was evaluated by flow cytometry and confocal microscopy. The nanoparticles revealed a triggered increase in size upon reaching the lower critical solution temperature of SP, with 70% of drug release at acidic pH and 40 °C within the first hour and a 3.5-fold increase in cytotoxicity against MCF7 cells incubated at 40 °C. The cellular uptake study manifested that the prepared nanoparticles succeeded in delivering drug molecules to MCF7 and MDA-MB-231 cells. In summary, the distinctive characteristics provided by these novel CS-SP NPs result in a promising nano-platform for effective drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Shrouq Twal
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan Amman 11733 Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Islam Hamad
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan (+962) 790823678
| |
Collapse
|
26
|
Perelygin VV, Zharikov MV, Zmitrovich IV, Nekrasova TA. Chitin and Its Derivative Chitosan: Distribution in Nature, Applications, and Technology Research (A Review). Int J Med Mushrooms 2024; 26:69-81. [PMID: 39171632 DOI: 10.1615/intjmedmushrooms.2024055012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The present review highlights the chitin/chitosan as biopolymers that are promising for biomedical research development. Our goal was to assess the potential for practical use of these biopolymers and to summarize information on traditional and innovative technologies for their production and purification. The widespread occurrence of chitin and chitosan in nature as well as the unique chemical and biological properties of chitosan are reasons of growing interest in the use of the latter in several pharmaceutical fields. The main stages of chitin extraction and its further modification into chitosan are deproteinization, demineralization, deacetylation, and the main methods of chitosan purification are filtration, dialysis and reprecipitation. The profitability of the production of chitin/chitosan from crustaceans and edible mushrooms is approximately at the same level. The cost of mushroom products can be reduced by using agricultural or forestry waste as nutrient substrates. This makes the use of fungi as sources of chitin/chitosan in forested regions a rather promising issue.
Collapse
Affiliation(s)
- Vladimir V Perelygin
- Saint Petersburg Chemical Pharmaceutical University, St. Petersburg 197376, Russia
| | - Mikhail V Zharikov
- St. Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Ivan V Zmitrovich
- Laboratory of Systematics and Geography of the Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St. 2, St. Petersburg, 197376, Russia
| | - Tatyana A Nekrasova
- St. Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
27
|
Zhao Y, Guo P, Li D, Liu M, Zhang J, Yuan K, Zheng H, Liu L. Preparation and evaluation of oxidized-dextran based on antibacterial hydrogel for synergistic photodynamic therapy. Int J Biol Macromol 2023; 253:127648. [PMID: 37890748 DOI: 10.1016/j.ijbiomac.2023.127648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Skin trauma is a widespread, extremely susceptible health issue that affects people all over the world. In this study, an innovative antibacterial hydrogel (ODAA hydrogel) with photosensitizer and antibiotics was developed. Oxidized dextran (ODEX) was used as a carrier to prepare a pH-responsive hydrogel by loading the antibiotic amikacin (AMK) and the photosensitizer hexyl 5-aminolevulinate (HAL) via imine bonds. The ODAA hydrogel has a uniformly distributed cavity structure. The cumulative release rates of HAL and AMK in a simulated inflammatory environment at pH 5.0 were approximately 62.3 % and 71.9 % during 15 days. These results demonstrate the ODAA hydrogel's ability to deliver antibiotics on demand, where the antibiotic content is reduced within the effective range. Regarding the in vitro antibacterial behavior, the combination of HAL and AMK synergistically destroyed the majority of Gram-positive and Gram-negative bacteria through several pathways with broad-spectrum antibacterial effects. ODAA hydrogel has been shown to be biocompatible, nearly non-cytotoxic, and capable of promoting wound healing. It is anticipated that the simultaneous targeted delivery of multiple drugs to lesions in the same carrier at ideal dose ratios for particular therapeutic combinations will produce the most synergistic effects.
Collapse
Affiliation(s)
- Yuting Zhao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyong Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Mengjie Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Junhao Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Kai Yuan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Liang Liu
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhehot 010010, China.
| |
Collapse
|
28
|
Ostovar S, Pourmadadi M, Zaker MA. Co-biopolymer of chitosan/carboxymethyl cellulose hydrogel improved by zinc oxide and graphene quantum dots nanoparticles as pH-sensitive nanocomposite for quercetin delivery to brain cancer treatment. Int J Biol Macromol 2023; 253:127091. [PMID: 37758113 DOI: 10.1016/j.ijbiomac.2023.127091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Brain cancer is the major reason of cancer-relevant deaths every year, as it is the most challenging cancer to treat and drug delivery. Quercetin (QUR), as a flavonoid substance found in plants and fruits, has good anticancer and medicinal effects on brain tumors, but its low stability and bioavailability as well as the blood-brain barrier (BBB), prevent it from reaching brain tumors. This research has introduced a nanocomposite made of biocompatible polymers, chitosan, and carboxymethyl cellulose. This co- biopolymer's mechanical and chemical properties and drug-loading capacity have been improved by adding zinc oxide nanoparticles (ZnO NPs). In addition, graphene quantum dots (GQDs) were used to improve the chemical properties as well as the ability to penetrate the BBB. The CS/CMC/GQDs/ZnO@QUR nanocomposites have nanoneedle structures with an average size of 219.38 ± 5.21 nm and a zeta potential of -53 mV. The morphology, chemical bonds, and crystallinity of the nanocomposite were examined by FE-SEM, FTIR, and XRD analyses, respectively. By examining the release of QUR, it became apparent that the half-drug release takes about 72 h, which has a much more controlled release than other QUR carriers. Further, the MTT test on U-87 MG and L929 cell lines suggested that this nanocomposite has good anticancer properties and low cytotoxicity compared to the free QUR.
Collapse
Affiliation(s)
- Shima Ostovar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.
| | - Mohammad Amin Zaker
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
29
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
30
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
31
|
Marzini Irranca S, García Schejtman SD, Rosso AP, Coronado EA, Martinelli M. Hybrid nanogels by direct mixing of chitosan, tannic acid and magnetite nanoparticles: processes involved in their formation and potential catalytic properties. SOFT MATTER 2023; 19:8378-8385. [PMID: 37873678 DOI: 10.1039/d3sm00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Magnetite (Fe3O4) nanoparticles (MNPs) as nanocatalysts have drawn considerable attention because of their unique properties such as peroxidase-like activity. However, their biodistribution and availability for specific treatments still need to be improved. In this study, a simple and convenient strategy for the synthesis of hybrid nanogels (NGs) is described, which involves direct mixing of biomaterials such as chitosan (Ch) and tannic acid (TA), with the incorporation of MNPs, under oxidising conditions, using the inverse nanoemulsion method. The different processes involved in the formation of these hybrid nanosystems as well as their morphological and chemical structure are investigated using optical, spectroscopic, and electron microscopic techniques (DLS, UV-VIS, FT-IR, XPS, TEM, and SEM-EDS). It is demonstrated that ∼11 nm synthesized MNPs, post-functionalized with oxidised TA, act as covalent crosslinkers. As a proof of concept, the potential use of these materials in nanocatalytic medicine was evaluated using a colorimetric method based on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in hydrogen peroxide. The results show that these hybrid nanogels have the same peroxidase-like activity as bare MNPs, indicating that the organic nanostructure stabilises the inorganic nanoparticles without any significant change in the catalytic properties. Therefore, this kind of nanomaterial has promising potential for use in nanocatalytic medicine with improved biocompatibility and biodistribution.
Collapse
Affiliation(s)
- Santiago Marzini Irranca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Materiales Poliméricos, Híbridos y Nanoarquitectónicos (LaMaP), Córdoba, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina.
| | - Sergio D García Schejtman
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Materiales Poliméricos, Híbridos y Nanoarquitectónicos (LaMaP), Córdoba, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina.
| | - Anabella P Rosso
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Materiales Poliméricos, Híbridos y Nanoarquitectónicos (LaMaP), Córdoba, Argentina.
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), CONICET, Córdoba, Argentina
| | - Eduardo A Coronado
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Plasmónica Molecular, Bio(nanoplasmónica), Espectroscopías ultrasensibles, Córdoba, Argentina.
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), CONICET, Córdoba, Argentina
| | - Marisa Martinelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Materiales Poliméricos, Híbridos y Nanoarquitectónicos (LaMaP), Córdoba, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina.
| |
Collapse
|
32
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Chiang WH, Neralla VR, Yousefi K, Shokripour M. Ganoderma lucidum methanolic extract as a potent phytoconstituent: characterization, in-vitro antimicrobial and cytotoxic activity. Sci Rep 2023; 13:17326. [PMID: 37833299 PMCID: PMC10576041 DOI: 10.1038/s41598-023-44135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ganoderma lucidum methanolic extract (GLME) has attracted tremendous attention due to its exceptional antimicrobial and anticancer properties that can be delicately tuned by controlling the initial extraction's content and concentration. Herein, we detailed the characterization, antimicrobial, and cytotoxic performance of GLME as a potential multi-functional therapeutic agent. Accordingly, FTIR, XRD, FESEM, EDX, and HPLC analyses were employed to assess the samples, followed by disc diffusion and microdilution broth methods to test its antibacterial effects against four Gram-positive and Gram-negative bacterial strains, viz., Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MTT assay was applied to determine the cytotoxic activity of GLME against PDL and Hek-293 normal cell lines and MCF-7 and K-562 cancer cell lines. The IC50 values of 598 µg mL-1 and 291 µg mL-1 were obtained for MCF-7 and K-562 cancer cell lines, which confirmed the stronger anticancer activity of the GLME against blood cancer cells than breast cancer cells. This is while the IC50 of normal Hek-293 cells is 751 µg mL-1, and the lowest toxicity was observed for normal PDL cells with more than 57% survival at a concentration of 3000 µg mL-1. The results showed that the antibacterial property of this product against E.coli bacteria was higher than streptomycin, so the zone of inhibition was observed as 44 ± 0.09 mm and 30 ± 0.11 mm, respectively. These data provide valuable insights into the therapeutic usage of GLME for treating breast and blood cancers. This work is motivated by research studies looking for pharmacological products to address chronic and acute diseases, where further resources and studies are required to explore such products' adverse effects and toxicity.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medica Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran.
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | | | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
35
|
Li HZ, Zhu J, Weng GJ, Li JJ, Li L, Zhao JW. Application of nanotechnology in bladder cancer diagnosis and therapeutic drug delivery. J Mater Chem B 2023; 11:8368-8386. [PMID: 37580958 DOI: 10.1039/d3tb01323e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system, and its high recurrence rate is a great economic burden to patients. Traditional diagnosis and treatment methods have the disadvantages of insufficient targeting, obvious side effects and low sensitivity, which seriously limit the accurate diagnosis and efficient treatment of BC. Due to their small size, easy surface modification, optical properties such as plasmon resonance, and surface enhanced Raman scattering, good electrical conductivity and photothermal conversion properties, nanomaterials have great potential application value in the realization of specific diagnosis and targeted therapy of BC. At present, the application of nanomaterials in the diagnosis and treatment of BC is attracting great attention and achieving rich research results. Therefore, this paper summarizes the recent research on nanomaterials in the diagnosis and treatment of BC, clarifies the existing advantages and disadvantages, and provides theoretical guidance for promoting the accurate diagnosis and efficient treatment of BC.
Collapse
Affiliation(s)
- Hang-Zhuo Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
36
|
Matczuk M, Ruzik L, Keppler BK, Timerbaev AR. Nanoscale Ion-Exchange Materials: From Analytical Chemistry to Industrial and Biomedical Applications. Molecules 2023; 28:6490. [PMID: 37764266 PMCID: PMC10536074 DOI: 10.3390/molecules28186490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nano-sized ion exchangers (NIEs) combine the properties of common bulk ion-exchange polymers with the unique advantages of downsizing into nanoparticulate matter. In particular, being by nature milti-charged ions exchangers, NIEs possess high reactivity and stability in suspensions. This brief review provides an introduction to the emerging landscape of various NIE materials and summarizes their actual and potential applications. Special attention is paid to the different methods of NIE fabrication and studying their ion-exchange behavior. Critically discussed are different examples of using NIEs in chemical analysis, e.g., as solid-phase extraction materials, ion chromatography separating phases, modifiers for capillary electrophoresis, etc., and in industry (fuel cells, catalysis, water softening). Also brought into focus is the potential of NIEs for controlled drug and contrast agent delivery.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Andrei R. Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
37
|
Cheng J, Armugam A, Yang Y, Jin F, Zhang Y, Yan N. One-Pot Chitin Conversion to High-Activity Antifungal N,N-Dimethyl Chitosan Oligosaccharides. CHEMSUSCHEM 2023; 16:e202300591. [PMID: 37332174 DOI: 10.1002/cssc.202300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chitosan oligosaccharide and its derivatives are known for their diverse biological activities. In this study, we communicate a convenient one-pot synthesis of N,N-dimethyl chitosan oligosaccharide (DMCOS) from chitin via acid-catalyzed tandem depolymerization-deacetylation-N-methylation pathway using formaldehyde as the methylation reagent. The synthesis protocol offers 77 % DMCOS that features a high degree of deacetylation, a high degree of methylation, and a low average molecular weight. Compared to chitosan, DMCOS exhibits superior antifungal activity against Candida species. Mechanism study reveals a previously non-reported hydroxyl group-assisted effect that facilitates the reductive amination reaction under strong acidic conditions. Overall, our findings demonstrate the feasibility of direct synthesis of DMCOS from chitin, highlighting its potential use in anti-fungal applications.
Collapse
Affiliation(s)
- Jiong Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
| | - Yang Yang
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, The Nanos #07-01, Singapore, 138669, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Road Jurong Island, Singapore, 627833, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
38
|
Amin H, Amin MA, Osman SK, Mohammed AM, Zayed G. Chitosan nanoparticles as a smart nanocarrier for gefitinib for tackling lung cancer: Design of experiment and in vitro cytotoxicity study. Int J Biol Macromol 2023; 246:125638. [PMID: 37392910 DOI: 10.1016/j.ijbiomac.2023.125638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Due to its poor solubility and systemic side effects, gefitinib (Gef) has limited application in treatment of lung cancer. In this study, we used design of experiment (DOE) tools to gain the necessary knowledge for the synthesis of high-quality gefitinib loaded chitosan nanoparticles (Gef-CSNPs) capable of delivering and concentrating Gef at A549 cells, thereby increasing therapeutic effectiveness while decreasing adverse effects. The optimized Gef-CSNPs were characterized by SEM, TEM, DSC, XRD, and FTIR analyses. The optimized Gef-CSNPs had a particle size of 158±3.6 nm, an entrapment efficiency of 93±1.2 %, and a release of 97±0.6 % after 8 h. The in vitro cytotoxicity of the optimized Gef-CSNPs was found to be significantly higher than pure Gef (IC50 = 10.08 ± 0.76 μg/mL and IC50 = 21.65 ± 0.32 μg/mL), respectively. In the A549 human cell line, the optimized Gef-CSNPs formula outperformed pure Gef in terms of cellular uptake (3.286 ± 0.12 μg/mL and 1.777 ± 0.1 μg/mL) and apoptotic population (64.82 ± 1.25 % and 29.38 ± 1.11 %), respectively. These findings explain why researchers are so interested in using natural biopolymers to combat lung cancer, and they paint an optimistic picture of their potential as a promising tool in the fight against lung cancer.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohammed A Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| | - Shaaban K Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Ahmed M Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Gamal Zayed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Al-Azhar Centre of Nanosciences and Applications (ACNA), Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
39
|
Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R, Cherneva E, Stoencheva S, Todorova M. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023; 11:2201. [PMID: 37626698 PMCID: PMC10452578 DOI: 10.3390/biomedicines11082201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.
Collapse
Affiliation(s)
- Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., BI 9, 1113 Sofia, Bulgaria
| | - Snezhana Stoencheva
- University Hospital “Sveti Georgi” EAD, 4002 Plovdiv, Bulgaria
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
40
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
41
|
Todorova M, Milusheva M, Kaynarova L, Georgieva D, Delchev V, Simeonova S, Pilicheva B, Nikolova S. Drug-Loaded Silver Nanoparticles-A Tool for Delivery of a Mebeverine Precursor in Inflammatory Bowel Diseases Treatment. Biomedicines 2023; 11:1593. [PMID: 37371688 DOI: 10.3390/biomedicines11061593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic, multifactorial illnesses of the gastrointestinal tract include inflammatory bowel diseases. One of the greatest methods for regulated medicine administration in a particular region of inflammation is the nanoparticle system. Silver nanoparticles (Ag NPs) have been utilized as drug delivery systems in the pharmaceutical industry. The goal of the current study is to synthesize drug-loaded Ag NPs using a previously described 3-methyl-1-phenylbutan-2-amine, as a mebeverine precursor (MP). Methods: A green, galactose-assisted method for the rapid synthesis and stabilization of Ag NPs as a drug-delivery system is presented. Galactose was used as a reducing and capping agent forming a thin layer encasing the nanoparticles. Results: The structure, size distribution, zeta potential, surface charge, and the role of the capping agent of drug-loaded Ag NPs were discussed. The drug release of the MP-loaded Ag NPs was also investigated. The Ag NPs indicated a very good drug release between 80 and 85%. Based on the preliminary results, Ag NPs might be a promising medication delivery system for MP and a useful treatment option for inflammatory bowel disease. Therefore, future research into the potential medical applications of the produced Ag NPs is necessary.
Collapse
Affiliation(s)
- Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
42
|
Lerchbammer-Kreith Y, Sommerfeld NS, Cseh K, Weng-Jiang X, Odunze U, Schätzlein AG, Uchegbu IF, Galanski MS, Jakupec MA, Keppler BK. Platinum(IV)-Loaded Degraded Glycol Chitosan as Efficient Platinum(IV) Drug Delivery Platform. Pharmaceutics 2023; 15:pharmaceutics15041050. [PMID: 37111536 PMCID: PMC10145531 DOI: 10.3390/pharmaceutics15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Xian Weng-Jiang
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Uchechukwu Odunze
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
43
|
Tomar S, Pandey R, Surya P, Verma R, Mathur R, Gangenahalli G, Singh S. Multifunctional, Adhesive, and PDA-Coated Bioactive Glass Reinforced Composite Hydrogel for Regenerative Wound Healing. ACS Biomater Sci Eng 2023; 9:1520-1540. [PMID: 36826450 DOI: 10.1021/acsbiomaterials.2c01223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Effective wound management imposes several challenges in clinical outcomes due to the complexity of the wound microenvironment, bacterial infections, impaired angiogenesis, aggravated inflammation, and enduring pain. In addition, adhesion on wet biological tissue is another extremely challenging task. Addressing all the issues is necessary for an effective wound healing process. Herein, we developed a unique multifunctional, adhesive composite hydrogel composed of gelatin, chitosan, polydopamine-coated bioactive glass (BG), and curcumin-capped silver nanoparticles (Cur-AgNPs) to target the multifaceted complexity of the wound. The PDA-coated BG serves multiple purposes: (1) adhesivity: catechol groups of PDA and Ca ion released from BG chelate the group present in the hydrogel network and surrounding tissues, (2) angiogenesis: promotes vascularization due to the release of Si from BG, and (3) BG also serves as the "reservoir" for the pain-relieving diclofenac sodium drug with a sustained-release behavior. Cur-AgNPs provide excellent bactericidal and anti-inflammatory properties to the composite hydrogel. In situ application of the composite hydrogel could serve the purpose of a "skin biomimetic" and work as a barrier along with bactericidal properties to inhibit the microbial growth. The multifunctional composite hydrogel (MCH) targeted multiple aspects of wound repair including pain alleviation, elimination of microbes (up to 99%), reduced inflammation, high adhesivity, and increased angiogenesis for effective skin regeneration. The MCH showed excellent wound healing potential as significant wound closure was observed at day 7 and also significantly upregulated the expression of crucial genes involved in the skin regeneration process along with increasing vascularization in the wound area.
Collapse
Affiliation(s)
- Sarika Tomar
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rakesh Pandey
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Priyanka Surya
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Ranjan Verma
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rashi Mathur
- Radiological Nuclear Imaging and Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Sweta Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
44
|
Chen H, Wu J, Rahman MSU, Li S, Wang J, Li S, Wu Y, Liu Y, Xu S. Dual drug-loaded PLGA fibrous scaffolds for effective treatment of breast cancer in situ. BIOMATERIALS ADVANCES 2023; 148:213358. [PMID: 36878024 DOI: 10.1016/j.bioadv.2023.213358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Advanced metastatic breast cancer remains nearly an incurable disease. In situ therapy may help patients with worse prognoses have better clinical outcomes by significantly reducing systematic toxicity. Dural-drug fibrous scaffold was created and assessed using an in-situ therapeutic strategy, simulating the preferred regimens advised by the National Comprehensive Cancer Network. DOX, a once-used chemotherapy drug is embedded into scaffolds and produces a fast release for two cycles to kill tumor cells. PTX, a hydrophobic drug is continuously injected and produces a gradual release for up to two cycles to treat long cycles. Chosen drug loading system and the designated fabrication parameter controlled the releasing profile. Drug carrier system complied with the clinical regimen. It demonstrated both in vitro and in vivo anti-proliferative effects on the breast cancer model. The dosage of an intratumoral injection to drug capsules, the local tissue toxicity could be significantly reduced. To optimized intravenous injection with dual drugs, fewer side effects and a higher survival rate were seen even in the large tumor model (450-550 mm3). Drug delivery system makes the precise accumulation of the topical drug concentration possible, simulating clinically successful therapy and possibly offering better clinical treatment options for solid tumors.
Collapse
Affiliation(s)
- Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiaen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafet y & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafet y & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
45
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
46
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
47
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
48
|
Chitosan-Based Nanoparticles with Optimized Parameters for Targeted Delivery of a Specific Anticancer Drug-A Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15020503. [PMID: 36839824 PMCID: PMC9961640 DOI: 10.3390/pharmaceutics15020503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a positively charged polysaccharide obtained through chitin deacetylation. It belongs to a group of biodegradable, bioavailable, and non-toxic materials of natural origin; thus, it is a promising matrix for creating delivery systems of different active agents. Recently, much attention has been paid to nanodelivery systems as carriers to enable better bioavailability, and thus higher efficiency of the loaded drug. The present review is focused on the progress in chitosan-based nanoparticles for the targeted delivery of antitumor drugs. The paper discusses literature reports from the last three years in which chitosan nanoparticles were applied as carriers for active substances used in antitumor therapy and potential new drugs with anticancer properties. Special attention was paid to the different treatments applied to increase the therapeutic effectiveness and minimize the side effects of a specific active substance.
Collapse
|
49
|
G S, S VP, E P, G A. Comparative synthesis and characterization of nanocomposites using chemical and green approaches including a comparison study on in vivo and in vitro biological properties. NANOSCALE ADVANCES 2023; 5:767-785. [PMID: 36756509 PMCID: PMC9890937 DOI: 10.1039/d2na00677d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
In this study, the anti-diabetic, anti-inflammatory, anti-cytotoxic, and antibacterial effects of various substances were studied in vitro. Malachite green's photocatalytic effects were used to determine the optimised sample while it was exposed to visible light. The intended nanocomposites were created without any contaminants, according to XRD data. The overall characterisation results of the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) were superior to those of the chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)). At the five doses examined, the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) and chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) resulted in higher α-glucosidase inhibition percentages in the antidiabetic assay. HaCaT cells and MCF-7 cells were less harmful when treated with chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)), and green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)). From the results of the cytotoxicity tests against MCF-7 cells and HaCaT cells using the nanocomposites, the IC50 values of Salacia reticulata, green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)), and chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) were calculated. This research work shows that the green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) have strong anti-inflammatory, antibacterial and anti-diabetic properties, as well as considerable suppression of high activation in in vivo zebrafish embryo toxicity. The novelty of this study focused on the revelation that green synthesized nanocomposites are more affordable, environmentally friendly and biocompatible than chemically synthesized ones.
Collapse
Affiliation(s)
- Sabeena G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Vainath Praveen S
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Pushpalakshmi E
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Annadurai G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| |
Collapse
|
50
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|