1
|
Moravej R, Azin M, Mohammadjavad S. The importance of acetate, pyruvate, and citrate feeding times in improving xanthan production by Xanthomonas citri. Lett Appl Microbiol 2024; 77:ovae078. [PMID: 39147561 DOI: 10.1093/lambio/ovae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 h by X. citri-386 using Box-Behnken design were 25.7 g/l and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese-whey-based medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.
Collapse
Affiliation(s)
- Roya Moravej
- Department of biology, Snandaj branch, Islamic Azad University, Sanandaj 6616935391, Iran
| | - Mehrdad Azin
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| | - Samaneh Mohammadjavad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| |
Collapse
|
2
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Li ZX, Deng HQ, Jiang J, He ZQ, Li DM, Ye XG, Chen Y, Hu Y, Huang C. Effect of hydrothermal treatment on the rheological properties of xanthan gum. Int J Biol Macromol 2024; 270:132229. [PMID: 38734337 DOI: 10.1016/j.ijbiomac.2024.132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
In this study, the effect of hydrothermal treatment with different temperatures (120-180 °C) on the rheological properties of xanthan gum was evaluated. When the temperature of hydrothermal treatment was relatively low (120 °C), the rheological properties of the hydrothermally treated xanthan gum was similar to the untreated xanthan gum (pseudoplastic and solid-like/gel-like behavior). However, as the temperature of hydrothermal treatment was higher, the rheological properties of the hydrothermally treated xanthan gum changed greatly (e.g., a wider range of Newtonian plateaus in flow curves, existence of a critical frequency between the storage modulus (G') and the loss modulus (G") in the dynamic viscoelasticity measurement, variation of complex viscosity). Although the hydrothermal treatment showed little influence on the functional groups of xanthan gum, it altered the micromorphology of xanthan gum from uneven and rough lump-like to thinner and smoother flake-like. In addition, higher concentration (2 %) of hydrothermally treated xanthan gum made its viscosity close to that of the untreated xanthan gum (1 %). Besides, hydrothermal treatment also affected the effect of temperature and salt (CaCl2) adding on the rheological properties of xanthan gum. Overall, this study can provide some useful information on the rheological properties of xanthan gum after hydrothermal treatment.
Collapse
Affiliation(s)
- Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Hui-Qiong Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jie Jiang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zi-Qing He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
4
|
Asase RV, Glukhareva TV. Production and application of xanthan gum-prospects in the dairy and plant-based milk food industry: a review. Food Sci Biotechnol 2024; 33:749-767. [PMID: 38371690 PMCID: PMC10866857 DOI: 10.1007/s10068-023-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 02/20/2024] Open
Abstract
Xanthan gum (XG) is an important industrial microbial exopolysaccharide. It has found applications in various industries, such as pharmaceuticals, cosmetics, paints and coatings, and wastewater treatment, but especially in the food industry. The thickening and stabilizing properties of XG make it a valuable ingredient in many food products. This review presents a comprehensive overview of the various potential applications of this versatile ingredient in the food industry. Especially in the plant-based food industries due to current interest of consumers in cheaper protein sources and health purposes. However, challenges and opportunities also exist, and this review aims to identify and explore these issues in greater detail. Overall, this article represents a valuable contribution to the scientific understanding of XG and its potential applications in the food industry.
Collapse
Affiliation(s)
- Richard Vincent Asase
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| | - Tatiana Vladimirovna Glukhareva
- Institute of Chemical Engineering, Ural Federal University of the First President of Russia B.N. Yeltsin, Mira St., 19, Yekaterinburg, Russia 620002
| |
Collapse
|
5
|
Wu M, Shi Z, Ming Y, Zhao Y, Gao G, Li G, Ma T. The production of ultrahigh molecular weight xanthan gum from a Sphingomonas chassis capable of co-utilising glucose and xylose from corn straw. Microb Biotechnol 2024; 17:e14394. [PMID: 38226955 PMCID: PMC10884872 DOI: 10.1111/1751-7915.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
6
|
Schilling C, Gansbiller M, Rühmann B, Sieber V, Schmid J. Rheological characterization of artificial paenan compositions produced by Paenibacillus polymyxa DSM 365. Carbohydr Polym 2023; 320:121243. [PMID: 37659800 DOI: 10.1016/j.carbpol.2023.121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 09/04/2023]
Abstract
Microbial exopolysaccharides offer a sustainable alternative to petroleum-based rheological modifiers. Recent studies revealed that the heteroexopolysaccharide produced by Paenibacillus polymyxa is composed of three distinct biopolymers, referred to as paenan I, II and III. Using CRISPR-Cas9 mediated knock-out variants of glycosyltransferases, defined polysaccharide compositions were produced and rheologically characterized in detail. The high viscosity and gel-like character of the wildtype polymer is proposed to originate from the non-covalent interaction between a pyruvate residue of paenan I and the glucuronic acid found in the backbone of paenan III. Paenan II conveys thermostable properties to the exopolysaccharide mixture. In contrast to the wildtype polymer mixture, knock-out variants demonstrated significantly altered rheological behavior. Using the rheological characterization performed in this study, tailor-made paenan variants and mixtures can be generated to be utilized in a wide range of applications including thickening agents, coatings, or high-value biomedical materials.
Collapse
Affiliation(s)
- Christoph Schilling
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Moritz Gansbiller
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany; Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Broder Rühmann
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany; School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia; TUM Catalysis Research Center, Ernst-Otto-Fischer-Straße1, 85748, Garching, Germany
| | - Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany; Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
7
|
Ming Y, Li G, Shi Z, Zhao X, Zhao Y, Gao G, Ma T, Wu M. Co-utilization of glucose and xylose for the production of poly-β-hydroxybutyrate (PHB) by Sphingomonas sanxanigenens NX02. Microb Cell Fact 2023; 22:162. [PMID: 37635215 PMCID: PMC10463938 DOI: 10.1186/s12934-023-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Poly-β-hydroxybutyrate (PHB), produced by a variety of microbial organisms, is a good substitute for petrochemically derived plastics due to its excellent properties such as biocompatibility and biodegradability. The high cost of PHB production is a huge barrier for application and popularization of such bioplastics. Thus, the reduction of the cost is of great interest. Using low-cost substrates for PHB production is an efficient and feasible means to reduce manufacturing costs, and the construction of microbial cell factories is also a potential way to reduce the cost. RESULTS In this study, an engineered Sphingomonas sanxanigenens strain to produce PHB by blocking the biosynthetic pathway of exopolysaccharide was constructed, and the resulting strain was named NXdE. NXdE could produce 9.24 ± 0.11 g/L PHB with a content of 84.0% cell dry weight (CDW) using glucose as a sole carbon source, which was significantly increased by 76.3% compared with the original strain NX02. Subsequently, the PHB yield of NXdE under the co-substrate with different proportions of glucose and xylose was also investigated, and results showed that the addition of xylose would reduce the PHB production. Hence, the Dahms pathway, which directly converted D-xylose into pyruvate in four sequential enzymatic steps, was enhanced by overexpressing the genes xylB, xylC, and kdpgA encoding xylose dehydrogenase, gluconolactonase, and aldolase in different combinations. The final strain NX02 (ΔssB, pBTxylBxylCkdpgA) (named NXdE II) could successfully co-utilize glucose and xylose from corn straw total hydrolysate (CSTH) to produce 21.49 ± 0.67 g/L PHB with a content of 91.2% CDW, representing a 4.10-fold increase compared to the original strain NX02. CONCLUSION The engineered strain NXdE II could co-utilize glucose and xylose from corn straw hydrolysate, and had a significant increase not only in cell growth but also in PHB yield and content. This work provided a new host strain and strategy for utilization of lignocellulosic biomass such as corn straw to produce intracellular products like PHB.
Collapse
Affiliation(s)
- Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| |
Collapse
|
8
|
Kang J, Yue H, Li X, He C, Li Q, Cheng L, Zhang J, Liu Y, Wang S, Guo Q. Structural, rheological and functional properties of ultrasonic treated xanthan gums. Int J Biol Macromol 2023; 246:125650. [PMID: 37399868 DOI: 10.1016/j.ijbiomac.2023.125650] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Xanthan gum can improve the freeze-thaw stability of frozen foods. However, the high viscosity and long hydration time of xanthan gum limits its application. In this study, ultrasound was employed to reduce the viscosity of xanthan gum, and the effect of ultrasound on its physicochemical, structural, and rheological properties was investigated using High-performance size-exclusion chromatography (HPSEC), ion chromatograph, methylation analysis, 1H NMR, rheometer, etc.. The application of ultrasonic-treated xanthan gum was evaluated in frozen dough bread. Results showed that the molecular weight of xanthan gum was reduced significantly by ultrasonication (from 3.0 × 107 Da to 1.4 × 106 Da), and the monosaccharide compositions and linkage patterns of sugar residues were altered. Results revealed that ultrasonication treatment mainly broke the molecular backbone at a lower intensity, then mainly broke the side chains with increasing intensity, which significantly reduced the apparent viscosity and viscoelastic properties of xanthan gum. The results of specific volume and hardness showed that the bread containing low molecular weight xanthan gum was of better quality. Overall, this work offers a theoretical foundation for broadening the application of xanthan gum and improving its performance in frozen dough.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxia Yue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinxue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qin Li
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, 4 Meicheng Road, Huai'an 223003, China
| | - Liting Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
10
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
11
|
Yuan S, Liang J, Zhang Y, Han H, Jiang T, Liu Y, Zhang Y, Wang W, Dong X. Evidence from Thermal Aging Indicating That the Synergistic Effect of Glyoxal and Sodium Sulfite Improved the Thermal Stability of Conformational Modified Xanthan Gum. Polymers (Basel) 2022; 14:polym14020243. [PMID: 35054653 PMCID: PMC8778909 DOI: 10.3390/polym14020243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Xanthan gum is prone to thermal oxidative degradation, which limits its applications. However, conformational changes in xanthan gum and appropriate stabilizers may improve its thermal stability. Therefore, in this study, we aimed to establish a strategy to maintain the viscosity of xanthan gum during long-term storage at high temperatures. We modified the original strain used for xanthan gum production by genetic engineering and added stabilizers during the production process. The structure and thermal stability of the resulting xanthan gum samples were then determined. Pyruvyl deficiency, combined with the addition of sodium sulfite and glyoxal during the production process, was found to significantly improve the maintenance of viscosity. The apparent viscosity of the new xanthan gum solution remained above 100 mPa·s after being stored at 90 °C for 48 days. Fourier-transform infrared spectra and scanning electron microscopy images showed that pyruvate-free xanthan gum with added stabilizers had more extensive cross-linking than natural xanthan gum. In conclusion, these findings may contribute to the use of xanthan gum in applications that require high temperatures for a long period of time.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Jiayuan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
| | - Yanmin Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
| | - Hongyu Han
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China;
| | - Yang Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
| | - Yonggang Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
| | - Wei Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
| | - Xueqian Dong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (J.L.); (Y.Z.); (H.H.); (Y.L.); (Y.Z.); (W.W.)
- Shandong Food Ferment Industry & Design Institute, Jinan 250013, China
- Correspondence:
| |
Collapse
|
12
|
Wang L, Xiang D, Li C, Zhang W, Bai X. Effects of deacetylation on properties and conformation of xanthan gum. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Gao G, Liao Z, Cao Y, Zhang Y, Zhang Y, Wu M, Li G, Ma T. Highly efficient production of bacterial cellulose from corn stover total hydrolysate by Enterobacter sp. FY-07. BIORESOURCE TECHNOLOGY 2021; 341:125781. [PMID: 34454235 DOI: 10.1016/j.biortech.2021.125781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) has a huge global market due to its excellent properties and wide range of applications. However, due to high production costs, low productivity, and unsatisfactory scale-up production, industrialisation has been slow. Herein, stabilization of strain, optimisation of culture conditions, and a cheap carbon source were combined to achieve highly efficient, low-cost, large-scale BC production in 20 L containers. Optimisation of culture conditions increased both BC productivity and sugar conversion ratio significantly, from 2.08 g/L/day and 9.78% to 17.13 g/L/day and 70.31%, respectively. Furthermore, BC productivity and sugar conversion ratio reached 13.96 g/L/day and 85.50% using corn stover total hydrolysate as carbon source. The low-cost, facile, and highly efficient process can generate large quantities of BC, and could promote industrialisation of BC production.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zitong Liao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiyan Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
14
|
Santo KP, Fabijanic KI, Cheng CY, Potanin A, Neimark AV. Modeling of the Effects of Metal Complexation on the Morphology and Rheology of Xanthan Gum Polysaccharide Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kolattukudy P. Santo
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | - Chi-Yuan Cheng
- Colgate-Palmolive, Piscataway, New Jersey 08854, United States
| | - Andrei Potanin
- Colgate-Palmolive, Piscataway, New Jersey 08854, United States
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Riaz T, Iqbal MW, Jiang B, Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 2021; 186:472-489. [PMID: 34217744 DOI: 10.1016/j.ijbiomac.2021.06.196] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Xanthan gum (XG), a bacterial polysaccharide has numerous valuable characteristics in the food, biomedical, pharmaceuticals, and agriculture sector. However, XG has also its particular limitations such as its vulnerability to microbial contamination, inadequate mechanical and thermal stability, unusable viscosity, and poor water solubility. Therefore, XG's structure and conformation need to be modified enzymatically, chemically, or physically to improve its optimistic features and decrease the formation of crystals, increase antioxidant ability, and radical scavenging activity. We have found out different means to modify XG and elaborate the importance and significance of the modified structure of XG. In this review, different enzymes are reviewed for XG degradation, which modifies their structure from different points (main chain or side chain). This article also reviews various physical methods (ultrasound, shear, pressure, sonication, annealing, and heat treatments) based on prevailing publications to alter XG conformation and produce low molecular weight (LMW) and less viscous end-product. Moreover, some chemical means are also discussed that result in modified XG through crosslinking, grafting, acetylation, pyruvation, as well as by applying different chemical agents. Overall, the current progress on XG degradation is very auspicious to develop a new molecule with considerable uses, in various industries with future assessments.
Collapse
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Methacanon P, Gamonpilas C, Kongjaroen A, Buathongjan C. Food polysaccharides and roles of rheology and tribology in rational design of thickened liquids for oropharyngeal dysphagia: A review. Compr Rev Food Sci Food Saf 2021; 20:4101-4119. [PMID: 34146451 DOI: 10.1111/1541-4337.12791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023]
Abstract
In today's market environment, an aging society is recognized as one of the megatrends in the world. The demographic change in the world population age structure has driven a huge demand in healthcare products as well as services that include the technological innovation for the health and wellness of the elderly. Dysphagia or swallowing difficulty is a common problem in the elderly as many changes in swallowing function come with aging. The presence of a strong relationship between swallowing ability, nutritional status, and health outcomes in the elderly leads to the importance of dysphagia management in the population group. Modification of solid food and/or liquid is a mainstay of compensatory intervention for dysphagia patients. In this regard, texture-modified foods are generally provided to reduce risks associated with choking, while thickened liquids are recommended for mitigating risks associated with aspiration. In this review, we discuss thickened liquids and other issues including the importance of their rheological and tribological properties for oropharyngeal dysphagia management in the elderly. The review focuses on both commercial thickeners that are either based on modified starch or xanthan gum and other potential polysaccharide alternatives, which have been documented in the literature in order to help researchers develop or improve the characteristic properties of thickened liquids required for safe swallowing. Furthermore, some research gaps and future perspectives, particularly from the nutrition aspect related to the interaction between thickeners and other food ingredients, are suggested as such interaction may considerably control the rate of nutrient absorption and release within our body.
Collapse
Affiliation(s)
- Pawadee Methacanon
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Chaiwut Gamonpilas
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Akapong Kongjaroen
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| | - Chonchanok Buathongjan
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center (MTEC), NSTDA, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
17
|
Wu M, Shi Z, Ming Y, Wang C, Qiu X, Li G, Ma T. Thermostable and rheological properties of natural and genetically engineered xanthan gums in different solutions at high temperature. Int J Biol Macromol 2021; 182:1208-1217. [PMID: 33989686 DOI: 10.1016/j.ijbiomac.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022]
Abstract
Thermostability is an important indicator to evaluate xanthan applied in the oilfield industry. Besides reductive agents, salts, and pH, the inherent primary structure is also an important determinant of thermostability. In this work, the thermal conformational transition and degradation of natural xanthan XG and variants XG-A0, XG-AA, and XG-0P dissolved in different solvents were compared. Acetylated XG-A0 and XG-AA both showed the highest initial conformational transition temperature (Tm0) in distilled water, NaCl, and CaCl2 brines. Additionally, the variant XG-A0 dissolved in water was more thermostable although its acetyl group was hydrolyzed easily after a hot-rolling test at 110 °C. Thermostability could be reinforced by adding antioxidant Na2SO3 and saturated NaCl through improving Tm0 value or inhibiting degradation of the molecular chain and acyl groups. Furthermore, pyruvyl-rich XG-0P dissolved in saturated NaCl showing multi-stranded helix structure was also stable after a hot-rolling process. Therefore, xanthan variants, as biological products, will have broader application potential in the oilfield industry.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Chunxia Wang
- Research & Service Center of Fracturing & Acidizing Technology, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China.
| | - Xiaohui Qiu
- Research & Service Center of Fracturing & Acidizing Technology, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Acetan and Acetan-Like Polysaccharides: Genetics, Biosynthesis, Structure, and Viscoelasticity. Polymers (Basel) 2021; 13:polym13050815. [PMID: 33799945 PMCID: PMC7961339 DOI: 10.3390/polym13050815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria produce a variety of multifunctional polysaccharides, including structural, intracellular, and extracellular polysaccharides. They are attractive for the industrial sector due to their natural origin, sustainability, biodegradability, low toxicity, stability, unique viscoelastic properties, stable cost, and supply. When incorporated into different matrices, they may control emulsification, stabilization, crystallization, water release, and encapsulation. Acetan is an important extracellular water-soluble polysaccharide produced mainly by bacterial species of the genera Komagataeibacter and Acetobacter. Since its original description in Komagataeibacter xylinus, acetan-like polysaccharides have also been described in other species of acetic acid bacteria. Our knowledge on chemical composition of different acetan-like polysaccharides, their viscoelasticity, and the genetic basis for their production has expanded during the last years. Here, we review data on acetan biosynthesis, its molecular structure, genetic organization, and mechanical properties. In addition, we have performed an extended bioinformatic analysis on acetan-like polysaccharide genetic clusters in the genomes of Komagataeibacter and Acetobacter species. The analysis revealed for the first time a second acetan-like polysaccharide genetic cluster, that is widespread in both genera. All species of the Komagataeibacter possess at least one acetan genetic cluster, while it is present in only one third of the Acetobacter species surveyed.
Collapse
|
19
|
Sun X, Zhang J. Bacterial exopolysaccharides: Chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 2021; 173:481-490. [PMID: 33493567 DOI: 10.1016/j.ijbiomac.2021.01.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
In recent decades, the composition, structure, biosynthesis, and function of bacterial extracellular polysaccharides (EPS) have been extensively studied. EPS are synthesized through different biosynthetic pathways. The genes responsible for EPS synthesis are usually clustered on the genome or large plasmids of bacteria. Generally, different EPS synthesis gene clusters direct the synthesis of EPS with different chemical structures and biological activities. A better understanding of the gene functions involved in EPS biosynthesis is critical for the production of EPS with special biological activities. Genetic engineering methods are usually used to study EPS synthesis related genes. This review organizes the available information on EPS, including their structures, synthesis of related genes, and highlights the research progress of modifying EPS gene clusters through gene-editing methods.
Collapse
Affiliation(s)
- Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
20
|
Rheological and Thickening Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wu M, Zhao X, Shen Y, Shi Z, Li G, Ma T. Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NX02 to produce microbial exopolysaccharide. BIORESOURCE TECHNOLOGY 2021; 319:124126. [PMID: 32971336 DOI: 10.1016/j.biortech.2020.124126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is a cheap and abundant carbon source in the microbial manufacturing industry. The native co-utilization of glucose and xylose from corn straw total hydrolysate (CSTH) by Sphingomonas sanxanigenens NX02 to produce exopolysaccharide Sanxan was investigated. Batch fermentation demonstrated that, compared to single sugar fermentation, co-substrate of glucose and xylose accelerated cell growth and Sanxan production in the initial 24 h with the same consumption rate. Additionally, NX02 converted CSTH into Sanxan with a yield of 13.10 ± 0.35 g/Kg, which is slightly higher than that of glucose fermentation. Coexistence of three xylose metabolic pathways (Xylose isomerase, Weimberg, and Dahms pathway), incomplete phosphoenolpyruvate-dependent phosphotransferase system, and reinforced fructose metabolism were recognized as the co-utilization mechanism through comparative transcriptome analysis. Therefore, strain NX02 has a prospect of becoming an attractive platform organism to produce polysaccharides and other bio-based products derived from agricultural waste hydrolysate rich in both glucose and xylose.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
22
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
23
|
Rheology of sphingans in EPS–surfactant systems. Carbohydr Polym 2020; 248:116778. [DOI: 10.1016/j.carbpol.2020.116778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
|
24
|
Gao G, Cao Y, Zhang Y, Wu M, Ma T, Li G. In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydr Polym 2020; 248:116788. [DOI: 10.1016/j.carbpol.2020.116788] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
|
25
|
Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, Khan SN, Atlas A, Javed F, Minhaz A, Ullah F. Characterization of natural gums via elemental and chemometric analyses, synthesis of silver nanoparticles, and biological and catalytic applications. Int J Biol Macromol 2020; 147:853-866. [DOI: 10.1016/j.ijbiomac.2019.09.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|