1
|
Gadore V, Singh AK, Mishra SR, Ahmaruzzaman M. RSM approach for process optimization of the photodegradation of congo red by a novel NiCo 2S 4/chitosan photocatalyst. Sci Rep 2024; 14:1118. [PMID: 38212420 PMCID: PMC10784554 DOI: 10.1038/s41598-024-51618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The current study reported a facile co-precipitation technique for synthesizing novel NiCo2S4/chitosan nanocomposite. The photocatalytic activity of the prepared nanocomposite was evaluated using congo red (CR) dye as a target pollutant. The central composite design was employed to examine the impact of different reaction conditions on CR dye degradation. This study selected the pH, photocatalyst loading, initial CR concentration and reaction time as reaction parameters, while the degradation efficiency (%) was selected as the response. A desirability factor of 1 suggested the adequacy of the model. Maximum degradation of 93.46% of 35 ppm dye solution was observed after 60 min of visible light irradiation. The response to surface methodology (RSM) is a helpful technique to predict the optimum reaction conditions of the photodegradation of CR dye. Moreover, NiCo2S4/Ch displayed high recyclability and reusability up to four consecutive cycles. The present study suggests that the prepared NiCo2S4/chitosan nanocomposite could prove to be a viable photocatalyst for the treatment of dye-contaminated wastewater.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
2
|
Jumnong K, Kongseng P, Maijan P, Suwanboon S, Chantarak S. Double-function ZnO/starch biodegradable hydrogel composite for methylene blue adsorption and photocatalytic degradation. Int J Biol Macromol 2023; 253:127533. [PMID: 37858654 DOI: 10.1016/j.ijbiomac.2023.127533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
An eco-friendly material for the removal of dyes from wastewater was developed. Biodegradable polymers (BP), cassava starch and poly(vinyl alcohol), were used to replace polyacrylamide. The hydrogel containing 50 wt% of BP (BP50) could absorb 34 times its dry weight of water. The hydrogel could adsorb Zn2+ and ZnO photocatalyst particles could be formed via a simple precipitation method. The incorporation of ZnO did not affect the adsorption efficiency of the ZnO/BP50 hydrogel composite towards methylene blue (MB). At initial concentrations (Co) below 4500 mg/g, the hydrogel composite removed ∼99 % of MB from solution in 3 h. The highest adsorption capacity of 1170 mg/g was obtained when Co was 6000 mg/g and at a dose of 0.10 g/20 mL. The hydrogel composite degraded 95 %-98 % of adsorbed MB at rates of 0.19 h-1 and 1.77 h-1 under UV irradiation and sunlight, respectively, with exposure times of 16 h for UV but only 2 h for sunlight. The material remained effective for at least 10 cycles of photodegradation under sunlight and removed 86 % of MB in solution on the 10th cycle. The composite also showed antibacterial activities and biodegradability in soil. These results indicated this material would not generate after-process toxic waste.
Collapse
Affiliation(s)
- Kanita Jumnong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pattarawadee Maijan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sumetha Suwanboon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Zeng Y, Tang X, Qin Y, Maimaiti A, Zhou X, Guo Y, Liu X, Zhang W, Gao J, Zhang L. Enhanced removal of methylene blue from wastewater by alginate/carboxymethyl cellulose-melamine sponge composite. Int J Biol Macromol 2023:125280. [PMID: 37301350 DOI: 10.1016/j.ijbiomac.2023.125280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Industrial dye wastewater poses a threat to human health due to its harmful effects, and the treatment of related wastewater is receiving increasing attention. In this paper, the melamine sponge with high porosity and convenient separation was selected as matrix material, and alginate/carboxymethyl cellulose-melamine sponge composite (SA/CMC-MeS) was prepared through crosslinking strategy. Not only does the composite cleverly combined the merits of alginate and carboxymethyl cellulose, it also enhanced the adsorption performance for methylene blue (MB). The adsorption data manifested that the adsorption process of SA/CMC-MeS agreed with the Langmuir model and pseudo-second-order kinetic model, and theoretical maximum adsorption capacity was 230 mg/g (pH 8). The characterization results demonstrated that the adsorption mechanism was attributed to the electrostatic attraction between the carboxyl anions on the composite and the dye cations in solution. Importantly, SA/CMC-MeS could selectively separate MB from binary dye system and had positive anti-interference ability in the face of coexisting cations. After 5 times of cycles, the adsorption efficiency remained above 75 %. Based on these outstanding practical properties, this material has a potential to solve dye contamination.
Collapse
Affiliation(s)
- Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Adila Maimaiti
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xudong Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yujie Guo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Gao
- BioLink Pharmaceutical Application System (Jiangsu) Co., Ltd, NanTong 226503, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Qian R, Xu Z, Hu X, Liu S, Mai Y, Tan X, Su X, Jiang M, Tang W, Tian W, Xie L. Ag/Ag 2O with NIR-Triggered Antibacterial Activities: Photocatalytic Sterilization Enhanced by Low-Temperature Photothermal Effect. Int J Nanomedicine 2023; 18:1507-1520. [PMID: 36998603 PMCID: PMC10046159 DOI: 10.2147/ijn.s400511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose A synergistic antibacterial system employing photocatalytic performance and low-temperature photothermal effect (LT-PTT) with the potential for infectious skin wound healing promotion was developed. Methods Ag/Ag2O was synthesized with a two-step method, and its physicochemical properties were characterized. After its photocatalytic performance and photothermal effect were evaluated under 0.5 W/cm2 808 nm NIR laser irradiation, its antibacterial activities in both planktonic and biofilm forms were then studied in vitro targeting Staphylococcus Aureus (S. aureus), and the biocompatibility was tested with L-929 cell lines afterward. Finally, the animal model of dorsal skin wound infection was established on Sprague-Dawley rats and was used to assess infectious wound healing promotion of Ag/Ag2O in vivo. Results Ag/Ag2O showed boosted photocatalytic performance and local temperature accumulation compared with Ag2O when exposed to 0.5 W/cm2 808 nm NIR irradiation, which therefore endowed Ag/Ag2O with the ability to kill pathogens rapidly and cleavage bacterial biofilm in vitro. Furthermore, after treatment with Ag/Ag2O and 0.5 W/cm2 808 nm NIR irradiation, infectious wounds of rats realized skin tissue regeneration from a histochemical level. Conclusion By exhibiting excellent NIR-triggered photocatalytic sterilization ability enhanced by low-temperature photothermal effect, Ag/Ag2O was promising to be a novel, photo-responsive antibacterial agent.
Collapse
Affiliation(s)
- Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Zhaoyu Xu
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yao Mai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Mingyan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Weidong Tian; Li Xie, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86-28-85502156; +86-28-85503499, Email ;
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Mirdarvatan V, Bahramian B, Khalaji AD, Vaclavu T, Kucerakova M. Nanoarchitectonics of Octahedral Co3O4/Chitosan Composite for Photo-Catalytic Degradation of Methylene Blue and Anti-Bacterial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Khan AD, Ikram M, Haider A, Ul-Hamid A, Nabgan W, Haider J. Polyvinylpyrrolidone and chitosan-doped lanthanum oxide nanostructures used as anti-bacterial agents and nano-catalyst. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02471-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Subramanian H, Krishnan M, Mahalingam A. Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Adv 2021; 12:985-997. [PMID: 35425145 PMCID: PMC8978881 DOI: 10.1039/d1ra08196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant superbugs (DRS) were isolated from hospital sewage waste and confirmed by a 16S rDNA molecular technique as B. filamentosus, B. flexus, P. stutzeri, and A. baumannii. Green nanotechnologies provide a new promising alternative pathway that was found to be much safer, eco-friendly, and has economic benefits over physical/chemical methods. Sargassum muticum (SM) mediated zinc oxide nanoparticles (ZnO-NPs) were proved to be photocatalytic and anti-microbial agents. Anti-microbial action was demonstrated by a maximal growth inhibition activity of 18 mm against A. baumannii and a minimal of 12 mm against B. flexus at 80 μg mL-1 concentrations. The anti-microbial mechanism of SMZnO-NPs employed a biphasic phenomenon persuaded by an osmotic shock that can attack the DRS bacterial cells directly and lead to death. In addition, photocatalytic activity was investigated by SMZnO-NPs for the degradation of methylene blue (MB) dye under different light conditions. Natural sunlight irradiation shows effective enhancement with the highest efficiencies of 96% being achieved within 60 min compared to UV-light and visible-light. The reusability of SMZnO-NPs provides up to 6 consecutive cycles towards MB decolorization for environmental water cleansing.
Collapse
Affiliation(s)
- Harinee Subramanian
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| | - Muthukumar Krishnan
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| | - Ashok Mahalingam
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| |
Collapse
|
11
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
12
|
Aseervatham G SB, Devanesan AA, Ali DJ. Nanobiocatalysts and photocatalyst in dye degradation. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the modern era, the world today is in a mission for a new method of environmental bioremediation in faltering the damage, especially in polluted water. Recently, the global direction is regulated toward an alteration from the usual chemical-based methods to a supplementary ecofriendly green alternative. In this perspective, biocatalysts are appreciated as an economical and clean substitute which was meant to catalyze degradation of unmanageable chemicals in a rapid, green and ecologically stable manner. Among the various sources of water pollution, the textile manufacturing industries were thought to be a major dispute due to release of effluents in natural water bodies such as rivers. Other industries like paper, pulp and tannery pharmaceutical industries were also responsible in contaminating the water bodies. Photocatalysis was considered as an auspicious method for the removal of dyes from the natural bodies, specifically those with hard organic compounds; using enzymes. The present chapter briefly emphasizes on the effective methods used for degradation of dye effluents; their importance of photocatalytic and biocatalytic solution to the current environmental difficulties and future opportunities are discussed.
Collapse
Affiliation(s)
- Smilin Bell Aseervatham G
- PG and Research Department of Biotechnology & Bioinformatics , Holy Cross College (Autonomous) , Tiruchirappalli 620002 , Tamil Nadu , India
| | - Arul Ananth Devanesan
- Department of Biotechnology , Karpagam Academy of Higher Education , Pollachi Main Road, Eachanari Post , Coimbatore 641021 , Tamil Nadu , India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing , Jiangsu , 210096 , China
| |
Collapse
|
13
|
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Sivamani S, Sivakumar N, Maran JP, Hosseini-Bandegharaei A. Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnol Adv 2021; 52:107815. [PMID: 34400260 DOI: 10.1016/j.biotechadv.2021.107815] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
Over the past few decades, the term polymer has been repeatedly used in several industries for their immense characteristics in different applications. Polymers and their composites which were prepared from chemical monomer sources turned out to be potentially harmful to the environment due to their tedious degradation process. Biopolymers are natural substitutes for synthetic polymers which can be efficiently extricated from natural sources. They are predominantly available as polymeric units as well as monomeric units that are linked covalently. These environment-friendly biopolymers and their composites can be categorized based on their numerous sources, different methods of preparation and their potential form of usage. They were found to be biocompatible and biodegradable which make them exceptionally useful in environment based applications, mainly in the process of water treatment, both potable and wastewater. Further, the biopolymer and biopolymer composites easily fit into different parts of the treatment process by acting as filtration media, adsorbents, coagulants and as flocculants. The primary focus of this review is to provide a comprehensive information of biopolymers and biopolymer composites from synthesis to their usefulness for their productive application in water treatment processes. On the whole, it can be substantiated that the biopolymers were identified to play a notable adversary to the synthetic polymers in treating waters with an indispensable need for an elaborative study in the production of the biopolymers.
Collapse
Affiliation(s)
- Gowthama Prabu Udayakumar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Subbulakshmi Muthusamy
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Bharathi Selvaganesh
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - N Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | | | - Selvaraju Sivamani
- Chemical Engineering Section, Engineering Department, Salalah College of Technology, Salalah, Oman.
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem. India.
| | | |
Collapse
|
14
|
Vigneshwaran S, Sirajudheen P, Nabeena CP, Sajna VP, Meenakshi S. Photocatalytic performance of chitosan tethered magnetic Fe 2O 3-like (3D/2D) hybrid for the dynamic removal of anionic dyes: Degradation and mechanistic pathways. Int J Biol Macromol 2021; 183:2088-2099. [PMID: 34097963 DOI: 10.1016/j.ijbiomac.2021.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Efficient photocatalysis methods with a production of less number of toxic intermediates are extremely advantageous for water decontamination. The degradation efficiency, specific surface area, stability and porosity will be improving by wrapping of Fe2O3 using appropriate biopolymers. In this work, Fe2O3 reinforced chitosan (Fe2O3@CS) nanocomposite was fabricated using co-precipitation method. The chitosan makes available its surface for the useful generation of the nanocomposite. These wrapping of Fe2O3 on chitosan provides synergistically improved properties that could be attributed to the elevated partition efficiency and faster transfer of the photo-generated charge carriers, which was substantiated by the experimental outcomes from photoluminescence and ESR spectroscopy. The results obtained from DRS analysis entail the reduction in band gap of Fe2O3@CS (2.52 eV) as compared with 3.52 eV of Fe2O3. The results indicated that 89.2% and 94.6% were the maximum degradations correspondingly for MO and OG. The trapping investigation emphasized the involvement of OH radicals in the degradation of dyes over Fe2O3@CS composites. The five cycles of regeneration experiment recommended the superior photostability of the fabricated Fe2O3@CS composite. This work proposed a practical arrangement and subsequent influence of an advanced photocatalyst for the useful remediation dyes from contaminated water without causing any secondary pollution.
Collapse
Affiliation(s)
- Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302 Dindigul, Tamil Nadu, India
| | - Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302 Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, 676 306 Malappuram, Kerala, India
| | | | - Valiya Peedikakkal Sajna
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, 676 306 Malappuram, Kerala, India
| | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute, Deemed to be University, Gandhigram, 624 302 Dindigul, Tamil Nadu, India.
| |
Collapse
|
15
|
Balakrishnan A, Gopalram K, Appunni S. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO 2 modified catalyst: kinetics and operating cost analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12928-4. [PMID: 33641092 DOI: 10.1007/s11356-021-12928-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Effective pesticide remediation technology demands amendments in the advanced oxidation process for its continuous treatment and catalyst recovery. The evidence of 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide in water bodies, poses a major environmental threat to both humans and aquatic organisms. In the present study, a recirculation type photocatalytic reactor was developed to treat 2,4-dichlorophenoxyacetic acid using chitosan-TiO2 beads prepared via impregnation method under UV light. At optimized conditions, chitosan-TiO2 beads showed a maximum photocatalytic degradation of 86% than commercial TiO2 (65%) and followed pseudo first-order reaction. The 2,4-D degradation follows pseudo first-order kinetics under UV irradiation with a rate constant of 0.12 h-1, and the intermediates were identified using LCMS analysis. The total operational cost of the chitosan-TiO2 catalyst was found to be profitable (Rs. 1323 for 2 L) than that of TiO2 (Rs. 1679) at optimized conditions. The beads were reusable up to 4 consecutive cycles without loss in efficiency. This study briefs photocatalytic removal of 2,4-dichlorophenoxyacetic acid in a recirculation-type reactor for its reliability, low cost, efficiency, reusability, and commercialization.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Keerthiga Gopalram
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Sowmya Appunni
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Vigneshwaran S, Sirajudheen P, Nabeena C, Meenakshi S. In situ fabrication of ternary TiO2 doped grafted chitosan/hydroxyapatite nanocomposite with improved catalytic performance for the removal of organic dyes: Experimental and systemic studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Waheed IF, Al-Janabi OYT, Ibrahim AK, Foot PJS, Alkarawi MAS, Ali BM, Al-Abady FM. MgFe2O4/CNTs nanocomposite: synthesis, characterization, and photocatalytic activity. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2021. [DOI: 10.1007/s40090-020-00223-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Dhanalekshmi K, Umapathy MJ, Magesan P, Zhang X. Biomaterial (Garlic and Chitosan)-Doped WO 3-TiO 2 Hybrid Nanocomposites: Their Solar Light Photocatalytic and Antibacterial Activities. ACS OMEGA 2020; 5:31673-31683. [PMID: 33344819 PMCID: PMC7745426 DOI: 10.1021/acsomega.0c04154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In this work, WO3-TiO2, chitosan-blended WO3-TiO2, and garlic-loaded WO3-TiO2 nanocomposites were synthesized by the sol-gel and precipitation technique. The synthesized nanocomposites were characterized by XRD, FE-SEM, HR-TEM, EDX, UV-DRS, FT-IR, and TG-DTA analysis. The photocatalytic efficiency of the three synthesized nanocomposites on the degradation of dyes such as rhodamine B (Rh-B), methylene blue (MB), and methyl orange (MO) as organic pollutants was evaluated under solar light irradiation. The results show that garlic-loaded WO3-TiO2 nanocomposites act as an excellent photocatalyst than chitosan-blended WO3-TiO2 and WO3-TiO2 nanocomposites. Further, the antimicrobial activity of the synthesized nanocomposites was examined against Gram-negative bacteria (Escherichia coli) by the well diffusion method. Garlic-loaded WO3-doped TiO2 nanocomposites have demonstrated good antibacterial activity over chitosan-blended WO3-TiO2 nanocomposites and WO3-TiO2 nanocomposites. The possible reason may be the presence of organic sulfur compounds in garlic.
Collapse
Affiliation(s)
| | | | - Paramanandham Magesan
- Department
of Chemistry, Bharath Institute of Higher Education and Research, Bharath University, Chennai 600 073, Tamil
Nadu, India
| | - Xiang Zhang
- School
of Mechanical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Sirajudheen P, Karthikeyan P, Ramkumar K, Meenakshi S. Environment responsive Al3+ networked chitosan-gelatin spherical beads for the effective removal of organic pollutants from aqueous solutions. Int J Biol Macromol 2020; 164:3055-3064. [DOI: 10.1016/j.ijbiomac.2020.08.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/27/2022]
|
20
|
Ce(III) networked chitosan/β-cyclodextrin beads for the selective removal of toxic dye molecules: Adsorption performance and mechanism. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Balakrishnan A, Appunni S, Gopalram K. Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Int J Biol Macromol 2020; 161:282-291. [DOI: 10.1016/j.ijbiomac.2020.05.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|
22
|
Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, Ur Rehman MS, Faisal A, Rehman F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO 2 composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121623. [PMID: 31753670 DOI: 10.1016/j.jhazmat.2019.121623] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
TiO2 based photocatalysts are extensively used for textile wastewater treatment as they are ecofriendly, inexpensive, easily available, nontoxic and have higher photostabililty. However, their wider band gap, charge carrier's recombination, and utilization of light absorbance limits their performance. In the present work, a hybrid biochar-TiO2 composite (BCT) has been synthesized by a facile synthesis strategy to overcome these problems. These photocatalysts are characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) to evaluate their crystallinity, morphology, functional groups, bandgap energy and charge separation properties, respectively. The photodegradation of simulated textile wastewater is analyzed using hybrid composites. The hybrid biochar-TiO2 composite showed higher charge separation, slow recombination of electron-hole pairs, and enhanced light absorption as compared to control (pure TiO2 and BC alone). 99.20 % photodegradation efficiency of dye-simulated wastewater is achieved employing optimum hybrid composite, while the pure biochar and TiO2 samples exhibits 85.20 % and 42.60 % efficiencies, respectively. The maximum adsorption capacity is obtained for hybrid biochar-TiO2 sample, 74.30 mgg-1 in comparison to biochar (30.40 mgg-1) and pure TiO2 (1.50 mgg-1). The results show that hybrid biochar-TiO2 composites can perform in the target application of organic industrial pollutant removal.
Collapse
Affiliation(s)
- Tahir Fazal
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan; Department of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Abdul Razzaq
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fahed Javed
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ainy Hafeez
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Naim Rashid
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ume Salma Amjad
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Abrar Faisal
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fahad Rehman
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
23
|
Sirajudheen P, Meenakshi S. Encapsulation of Zn–Fe layered double hydroxide on activated carbon and its litheness in tuning anionic and rhoda dyes through adsorption mechanism. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. Sirajudheen
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
- Department of Chemistry Pocker Sahib Memorial Orphanage College Malappuram India
| | - S. Meenakshi
- Department of Chemistry The Gandhigram Rural Institute—Deemed to be University Dindigul India
| |
Collapse
|
24
|
Du H, Shi S, Liu W, Teng H, Piao M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12967-12994. [PMID: 32124301 DOI: 10.1007/s11356-020-08096-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is important to prepare such a hydrogel that possesses appropriate robustness, adsorption capacity, and adsorption efficiency to meet the need of water treatment. In order to improve the property of hydrogels, much effort has been made by researchers to modify hydrogels, among which incorporating inorganic components into the polymeric networks is the most common method, which can reduce the product cost and simplify the preparation procedure. Not only can hydrogel be applied as adsorbent, but it also can be used as matrix for catalyst immobilization. In this review, the key advancement on the preparation and modification of hydrogels is discussed, with special emphasis on the introduction of inorganic materials into polymeric networks and consequential changes in the properties of mechanical strength, swelling, and adsorption. Besides, hydrogels used as adsorbents for removal of dyes and inorganic pollutants have been widely explored, but their use for adsorbing emerging contaminants from aqueous solution has not received much attention. Thus, this review is mainly focused on hydrogels' application in removing emerging contaminants by adsorption. Furthermore, hydrogels can be also applied in immobilizing catalysts, such as enzyme and photocatalyst, to remove pollutants completely and avoid secondary pollution, so their progress as catalyst matrix is overviewed.
Collapse
Affiliation(s)
- Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Shuyun Shi
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Wei Liu
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China.
| |
Collapse
|
25
|
Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 18:1569-1580. [PMID: 32837482 PMCID: PMC7293757 DOI: 10.1007/s10311-020-01021-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Pure and drinkable water will be rarer and more expensive as the result of pollution induced by industrialisation, urbanisation and population growth. Among the numerous sources of water pollution, the textile industry has become a major issue because effluents containing dyes are often released in natural water bodies. For instance, about two years are needed to biodegrade dye-derived, carcinogenic aromatic amines, in sediments. Classical remediation methods based upon physicochemical reactions are costly and still generate sludges that contain amine residues. Nonetheless, recent research shows that nanomaterials containing biopolymers are promising to degrade organic pollutants by photocatalysis. Here, we review the synthesis and applications of biopolymeric nanomaterials for photocatalytic degradation of azo dyes. We focus on conducting biopolymers incorporating metal, metal oxide, metal/metal oxide and metal sulphide for improved biodegradation. Biopolymers can be obtained from microorganisms, plants and animals. Unlike fossil-fuel-derived polymers, biopolymers are carbon neutral and thus sustainable in the context of global warming. Biopolymers are often biodegradable and biocompatible.
Collapse
Affiliation(s)
- Shrabana Sarkar
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal 713104 India
| | - Nidia Torres Ponce
- School of Biotechnology Engineering, Faculty of Agricultural and Forestry Sciences, Universidad Católica del Maule, Talca, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal 713104 India
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapacá, Arica, Chile
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| |
Collapse
|
26
|
Sirajudheen P, Meenakshi S. Lanthanum (III) incorporated chitosan-montmorillonite composite as flexible material for adsorptive removal of azo dyes from water. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|