1
|
Sathiya K, Ganesamoorthi S, Mohan S, Shanmugavadivu A, Selvamurugan N. Natural polymers-based surface engineering of bone scaffolds - A review. Int J Biol Macromol 2024; 282:136840. [PMID: 39461639 DOI: 10.1016/j.ijbiomac.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Collapse
Affiliation(s)
- K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Alizadeh S, Ameri Z, Daemi H, Pezeshki-Modaress M. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities. Carbohydr Polym 2024; 336:122124. [PMID: 38670755 DOI: 10.1016/j.carbpol.2024.122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Sulfated polysaccharides play important roles in tissue engineering applications because of their high growth factor preservation ability and their native-like biological features. There are different sulfated polysaccharides based on different repeating units in the carbohydrate backbone, the position of the sulfate group, and the sulfation degree of the polysaccharide. These led to various sulfated polymers with different negative charge densities and resultant structure-property relationships. Since numerous reports are presented related to sulfated polysaccharide applications in tissue engineering, it is crucial to review the role of effective physicochemical and biological parameters in their usage; as well as their structure-property relationships. Within this review, we focused on the effect of naturally occurring and synthetic sulfated polysaccharides in tissue engineering applications reported in the last years, highlighting the challenges of the scaffold fabrication process, the position, and the degree of sulfate on biomedical activity. Additionally, we discussed their use in numerous in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ameri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Qu X, Zhang Q, Zhang C, Sun J, Du S, Liang C, Chen Y, Zheng Y, Wang L. Effect of chondroitin sulfate modified polyethyleneimine on mediating oligodeoxynucleotide YW002 in the treatment of periodontitis. RSC Adv 2024; 14:20328-20338. [PMID: 38919285 PMCID: PMC11197841 DOI: 10.1039/d4ra00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE In a previous study, we found that oligodeoxynucleotide (ODN) YW002 could induce the activity of alkaline phosphatase of early osteogenesis in human periodontal membrane stem cells, and downregulate the synthesis of nitric oxide in RAW 264.7 cells in the late inflammatory stage, laying the experimental foundation for the subsequent application of ODN YW002 in periodontitis. However, free ODN does not easily adhere to cells and is easily hydrolyzed by nuclease, so the immune effect of ODN is greatly reduced. Therefore, the nano-drug delivery system provides a method for efficient delivery and uptake of ODN. METHODS We synthesized a polyethyleneimine (PEI) modified chondroitin sulfate (CS) derivative (PEI-CS) via Michael addition to deliver ODN YW002. We aimed to evaluate whether PEI-CS could effectively deliver YW002 to RAW 264.7 cells and if it can regulate inflammation in vitro. PEI-CS/YW002 nanocomplexes were locally injected into a mouse periodontitis model, and the therapeutic effects were evaluated by microcomputed tomography (micro-CT) and hematoxylin-eosin (H&E) staining. RESULTS The results indicated that PEI-CS had good biocompatibility and could form a stable nanocomplex with YW002 at a mass ratio of 4 : 1. Moreover, PEI-CS could deliver YW002 into RAW 246.7 cells and markedly decreased the expression levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Histological evaluation and micro-CT scanning showed that PEI-CS/YW002 nanocomplexes effectively inhibited periodontitis and reduced alveolar bone resorption in mice. CONCLUSION Our study has underscored the potential of PEI-CS/YW002 nanocomplexes as promising agents for the prevention and treatment of periodontitis due to their potent anti-inflammatory effects.
Collapse
Affiliation(s)
- Xingyuan Qu
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Qian Zhang
- Second Affiliated Hospital, Jinzhou Medical University 49 Shanghai Road, Guta District Jinzhou 121000 China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University 5 Jilin Street Jilin 132013 China
| | - Jichao Sun
- Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Siyu Du
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Chen Liang
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Yabing Chen
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University 763 Heguang Road, Chaoyang District Changchun 130021 China
| | - Yi Zheng
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
| | - Lei Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University 1500 Tsinghua Road, Chaoyang District Changchun 130021 China +86-0431-8879-6039 +86-139-4400-1891 +86-186-4498-6173
| |
Collapse
|
4
|
Babu S, Shanmugavadivu A, Selvamurugan N. Tunable mechanical properties of chitosan-based biocomposite scaffolds for bone tissue engineering applications: A review. Int J Biol Macromol 2024; 272:132820. [PMID: 38825286 DOI: 10.1016/j.ijbiomac.2024.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bone tissue engineering (BTE) aims to develop implantable bone replacements for severe skeletal abnormalities that do not heal. In the field of BTE, chitosan (CS) has become a leading polysaccharide in the development of bone scaffolds. Although CS has several excellent properties, such as biodegradability, biocompatibility, and antibacterial properties, it has limitations for use in BTE because of its poor mechanical properties, increased degradation, and minimal bioactivity. To address these issues, researchers have explored other biomaterials, such as synthetic polymers, ceramics, and CS coatings on metals, to produce CS-based biocomposite scaffolds for BTE applications. These CS-based biocomposite scaffolds demonstrate superior properties, including mechanical characteristics, such as compressive strength, Young's modulus, and tensile strength. In addition, they are compatible with neighboring tissues, exhibit a controlled rate of degradation, and promote cell adhesion, proliferation, and osteoblast differentiation. This review provides a brief outline of the recent progress in making different CS-based biocomposite scaffolds and how to characterize them so that their mechanical properties can be tuned using crosslinkers for bone regeneration.
Collapse
Affiliation(s)
- Sushma Babu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhang X, Xia Y, Xu J, Kang J, Li X, Li Y, Yan W, Tian F, Zhao B, Li B, Wang C, Wang L. Cell-free chitosan/silk fibroin/bioactive glass scaffolds with radial pore for in situ inductive regeneration of critical-size bone defects. Carbohydr Polym 2024; 332:121945. [PMID: 38431423 DOI: 10.1016/j.carbpol.2024.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Tissue-engineered is an effective method for repairing critical-size bone defects. The application of bioactive scaffold provides artificial matrix and suitable microenvironment for cell recruitment and extracellular matrix deposition, which can effectively accelerate the process of tissue regeneration. Among various scaffold properties, appropriate pore structure and distribution have been proven to play a crucial role in inducing cell infiltration differentiation and in-situ tissue regeneration. In this study, a chitosan (CS) /silk fibroin (SF) /bioactive glass (BG) composite scaffold with distinctive radially oriented pore structure was constructed. The composite scaffolds had stable physical and chemical properties, a unique pore structure of radial arrangement from the center to the periphery and excellent mechanical properties. In vitro biological studies indicated that the CS/SF/BG scaffold could promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the expression of related genes due to the wide range of connected pore structures and released active elements. Furthermore, in vivo study showed CS/SF/BG scaffold with radial pores was more conducive to the repair of skull defects in rats with accelerated healing speed during the bone tissue remodeling process. These results demonstrated the developed CS/SF/BG scaffold would be a promising therapeutic strategy for the repair of bone defects regeneration.
Collapse
Affiliation(s)
- Xinsong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yijing Xia
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Xu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Kang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiujuan Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yuanjiao Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Wenpeng Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - ChunFang Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
6
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
7
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
8
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Kumar S, Lahiri C, Chaaudhary S, Paul P, Verma YK. Design, development and characterisation of an optimised scaffold to enhance cell proliferation for tissue repair. J Microencapsul 2023; 40:82-97. [PMID: 36719352 DOI: 10.1080/02652048.2023.2175922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with p value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (p value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell and Tissue Engineering Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Chanakya Lahiri
- Stem Cell and Tissue Engineering Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Somya Chaaudhary
- Stem Cell and Tissue Engineering Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Prateek Paul
- Stem Cell and Tissue Engineering Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Yogesh Kumar Verma
- Stem Cell and Tissue Engineering Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
10
|
Kumari S, Mishra A, Singh D, Li C, Srivastava P. In-vitro Studies on Copper Nanoparticles and Nano-hydroxyapatite Infused Biopolymeric Composite Scaffolds for Bone Bioengineering Applications. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
11
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
12
|
Ganjoo R, Sharma S, Verma C, Quraishi MA, Kumar A. Heteropolysaccharides in sustainable corrosion inhibition: 4E (Energy, Economy, Ecology, and Effectivity) dimensions. Int J Biol Macromol 2023; 235:123571. [PMID: 36750168 DOI: 10.1016/j.ijbiomac.2023.123571] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Carbohydrate polymers (polysaccharides) and their derivatives are widely utilized in sustainable corrosion inhibition (SCI) because of their various fascinating properties including multiple adsorption sites, high solubility and high efficiency. Contrary to traditional synthetic polymer-based corrosion inhibitors, polysaccharides are related to the 4E dimension, which stands for Energy, Economy, Ecology, and Effectivity. Furthermore, they are relatively more environmentally benign, biodegradable, and non-bioaccumulative. The current review describes the SCI features of various heteropolysaccharides, including gum Arabic (GA), glycosaminoglycans (chondroitin-4-sulfate (CS), hyaluronic acid (HA), heparin, etc.), pectin, alginates, and agar for the first time. They demonstrate impressive anticorrosive activity for different metals and alloys in a variety of corrosive electrolytes. Through their adsorption at the metal/electrolyte interface, heteropolysaccharides function by producing a corrosion-protective film. In general, their adsorption follows the Langmuir isotherm model. In their molecular structures, heteropolysaccharides contain several polar functional groups like -OH, -NH2, -COCH3, -CH2OH, cyclic and bridging O, -CH2SO3H, -SO3OH, -COOH, -NHCOCH3, -OHOR, etc. that serve as adsorption centers when they bind to metallic surfaces.
Collapse
Affiliation(s)
- Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Chandrabhan Verma
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - M A Quraishi
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ashish Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
13
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
14
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
15
|
Effects of Neutralization on the Physicochemical, Mechanical, and Biological Properties of Ammonium-Hydroxide-Crosslinked Chitosan Scaffolds. Int J Mol Sci 2022; 23:ijms232314822. [PMID: 36499146 PMCID: PMC9735449 DOI: 10.3390/ijms232314822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
It has been reported that chitosan scaffolds, due to their physicochemical properties, stimulate cell proliferation in different tissues of the human body. This study aimed to determine the physicochemical, mechanical, and biological properties of chitosan scaffolds crosslinked with ammonium hydroxide, with different pH values, to better understand cell behavior depending on the pH of the biomaterial. Scaffolds were either neutralized with sodium hydroxide solution, washed with distilled water until reaching a neutral pH, or kept at alkaline pH. Physicochemical characterization included scanning electron microscopy (SEM), elemental composition (EDX), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and mechanical testing. In vitro cytotoxicity was assessed via dental-pulp stem cells' (DPSCs') biocompatibility. The results revealed that the neutralized scaffolds exhibited better cell proliferation and morphology. It was concluded that the chitosan scaffolds' high pH (due to residual ammonium hydroxide) decreases DPSCs' cell viability.
Collapse
|
16
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
17
|
Chraniuk M, Panasiuk M, Hovhannisyan L, Żołędowska S, Nidzworski D, Ciołek L, Woźniak A, Jaegermann Z, Biernat M, Gromadzka B. The Preliminary Assessment of New Biomaterials Necessitates a Comparison of Direct and Indirect Cytotoxicity Methodological Approaches. Polymers (Basel) 2022; 14:4522. [PMID: 36365516 PMCID: PMC9657594 DOI: 10.3390/polym14214522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Cytotoxicity testing is a primary method to establish the safety of biomaterials, e.g., biocomposites. Biomaterials involve a wide range of medical materials, which are usually solid materials and are used in bone regeneration, cardiology, or dermatology. Current advancements in science and technology provide several standard cytotoxicity testing methods that are sufficiently sensitive to detect various levels of cellular toxicity, i.e., from low to high. The aim was to compare the direct and indirect methodology described in the ISO guidelines UNE-EN ISO 10993-5:2009 Part 5. METHODS Cell proliferation was measured using WST-1 assay, and cytotoxicity was measured using LDH test kit. RESULTS The results indicate that the molecular surface of biomaterials have impact on the cytotoxicity and proliferation profile. Based on these results, we confirm that the indirect method does not provide a clear picture of the cell condition after the exposure to the surface, and moreover, cannot provide complete results about the effects of the material. CONCLUSIONS Comparison of both methods shows that it is pivotal to investigate biomaterials at the very early stages using both indirect and direct methods to access the influence of the released toxins and surface of the material on the cell condition.
Collapse
Affiliation(s)
- Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Sabina Żołędowska
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Dawid Nidzworski
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Lidia Ciołek
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Anna Woźniak
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Zbigniew Jaegermann
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Monika Biernat
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| |
Collapse
|
18
|
Peng Y, Wang J, Dai X, Chen M, Bao Z, Yang X, Xie J, Wang C, Shao J, Han H, Yao K, Gou Z, Ye J. Precisely Tuning the Pore-Wall Surface Composition of Bioceramic Scaffolds Facilitates Angiogenesis and Orbital Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43987-44001. [PMID: 36102779 DOI: 10.1021/acsami.2c14909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orbital bone damage (OBD) may result in severe post-traumatic enophthalmos, craniomaxillofacial deformities, vision loss, and intracranial infections. However, it is still a challenge to fabricate advanced biomaterials that can match the individual anatomical structure and enhance OBD repair in situ. Herein, we aimed to develop a selective surface modification strategy on bioceramic scaffolds and evaluated the effects of inorganic or organic functional coating on angiogenesis and osteogenesis, ectopically and orthotopically in OBD models. It was shown that the low thermal bioactive glass (BG) modification or layer-by-layer assembly of a biomimetic hydrogel (Biogel) could readily integrate into the pore wall of the bioceramic scaffolds. The BG and Biogel modification showed appreciable enhancement in the initial compressive strength (∼30-75%) or structural stability in vivo, respectively. BG modification could enhance by nearly 2-fold the vessel ingrowth, and the osteogenic capacity was also accelerated, accompanied with a mild scaffold biodegradation after 3 months. Meanwhile, the Biogel-modified scaffolds showed enhanced osteogenic differentiation and mineralization through calcium and phosphorus retention. The potential mechanism of the enhanced bone repair was elucidated via vascular and osteogenic cell responses in vitro, and the cell tests indicated that the Biogel and BG functional layers were both beneficial for in vitro osteoblastic differentiation and mineralization on bioceramics. Totally, these findings demonstrated that the bioactive ions or biomolecules could significantly improve the angiogenic and osteogenic capabilities of conventional bioceramics, and the integration of inorganic or organic functional coating in the pore wall is a highly flexible material toolbox that can be tailored directly to improve orbital bone defect repair.
Collapse
Affiliation(s)
- Yiyu Peng
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jingyi Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xizhe Dai
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Menglu Chen
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Xie
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changjun Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji Shao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijie Han
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Juan Ye
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
19
|
Fabrication and Characterization of Chicken- and Bovine-Derived Chondroitin Sulfate/Sodium Alginate Hybrid Hydrogels. Gels 2022; 8:gels8100620. [PMID: 36286121 PMCID: PMC9601352 DOI: 10.3390/gels8100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The physicochemical properties and microstructure of hybrid hydrogels prepared using sodium alginate (SA) and chondroitin sulfate (CS) extracted from two animal sources were investigated. SA-based hybrid hydrogels were prepared by mixing chicken- and bovine-derived CS (CCS and BCS, respectively) with SA at 1/3 and 2/3 (w/w) ratios. The results indicated that the evaporation water loss rate of the hybrid hydrogels increased significantly upon the addition of CS, whereas CCS/SA (2/3) easily absorbed moisture from the environment. The thermal stability of the BCS/SA (1/3) hybrid hydrogel was higher than that of CCS/SA (1/3) hybrid hydrogel, whereas the hardness and adhesiveness of the CCS/SA (1/3) hybrid hydrogel were lower and higher, respectively, than those of the BCS/SA (1/3) hybrid hydrogel. Low-field nuclear magnetic resonance experiments demonstrated that the immobilized water content of the CCS/SA (1/3) hybrid hydrogel was higher than that of the BCS/SA (1/3) hybrid hydrogel. FTIR showed that S=O characteristic absorption peak intensity of BCS/SA (2/3) was obviously higher, suggesting that BCS possessed more sulfuric acid groups than CCS. SEM showed that the hybrid hydrogels containing CCS have more compact porous microstructure and better interfacial compatibility compared to BCS.
Collapse
|
20
|
Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, Rakhshan R, Hassan S, Fonte P. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196521. [PMID: 36233864 PMCID: PMC9570720 DOI: 10.3390/ma15196521] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.
Collapse
Affiliation(s)
- Showkeen Muzamil Bashir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai 600119, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Ana Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Zulfiqar Haq
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Amir Amin Sheikh
- International Institute of Veterinary Education and Research (IIVER), Bahu Akbarpur, Rohtak 124001, India
| | - Mohd Zahoor ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Bhopal 462026, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Azmat Alam Khan
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Sofi Imtiyaz
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Showket Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Rabia Rakhshan
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| |
Collapse
|
21
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
22
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
23
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, Feng Z, Jin P, Zhang J, Wu Z, Wu H, Xu X, Ye X, Zhang Y. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:874931. [PMID: 35814012 PMCID: PMC9260230 DOI: 10.3389/fbioe.2022.874931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic glycolic acid copolymer (PLGA) has been widely used in tissue engineering due to its good biocompatibility and degradation properties. However, the mismatched mechanical and unsatisfactory biological properties of PLGA limit further application in bone tissue engineering. Calcium sulfate (CaSO4) is one of the most promising bone repair materials due to its non-immunogenicity, well biocompatibility, and excellent bone conductivity. In this study, aiming at the shortcomings of activity-lack and low mechanical of PLGA in bone tissue engineering, customized-designed 3D porous PLGA/CaSO4 scaffolds were prepared by 3D printing. We first studied the physical properties of PLGA/CaSO4 scaffolds and the results showed that CaSO4 improved the mechanical properties of PLGA scaffolds. In vitro experiments showed that PLGA/CaSO4 scaffold exhibited good biocompatibility. Moreover, the addition of CaSO4 could significantly improve the migration and osteogenic differentiation of MC3T3-E1 cells in the PLGA/CaSO4 scaffolds, and the PLGA/CaSO4 scaffolds made with 20 wt.% CaSO4 exhibited the best osteogenesis properties. Therefore, calcium sulfate was added to PLGA could lead to customized 3D printed scaffolds for enhanced mechanical properties and biological properties. The customized 3D-printed PLGA/CaSO4 scaffold shows great potential for precisely repairing irregular load-bearing bone defects.
Collapse
Affiliation(s)
- Tao Liu
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhan Li
- General Hospital of Southern Theatre Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhao
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Binglin Li
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhibin Feng
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Panshi Jin
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinwei Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zugui Wu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huai Wu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Xiangling Ye
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Ying Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| |
Collapse
|
25
|
Silva SK, Plepis AMG, Martins VDCA, Horn MM, Buchaim DV, Buchaim RL, Pelegrine AA, Silva VR, Kudo MHM, Fernandes JFR, Nazari FM, da Cunha MR. Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation. Int J Mol Sci 2022; 23:ijms23126503. [PMID: 35742948 PMCID: PMC9223695 DOI: 10.3390/ijms23126503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT. For this, a defect (3 mm) was created in the femur of thirty rats, which were divided into 6 groups: Control (G1/Control), LLLT (G2/Laser), Chitosan/Carbon Nanotubes (G3/C+CNTs), Chitosan/Carbon Nanotubes with LLLT (G4/C+CNTs+L), Mineralized Chitosan/Carbon Nanotubes (G5/C+CNTsM) and Mineralized Chitosan/Carbon Nanotubes with LLLT (G6/C+CNTsM+L). After 5 weeks, the biocompatibility of the chitosan/carbon nanotubes scaffolds was observed, with the absence of inflammatory infiltrates and fibrotic tissue. Bone neoformation was denser, thicker and voluminous in G6/C+CNTsM+L. Histomorphometric analyses showed that the relative percentage and standard deviations (mean ± SD) of new bone formation in groups G1 to G6 were 59.93 ± 3.04a (G1/Control), 70.83 ± 1.21b (G2/Laser), 70.09 ± 4.31b (G3/C+CNTs), 81.6 ± 5.74c (G4/C+CNTs+L), 81.4 ± 4.57c (G5/C+CNTsM) and 91.3 ± 4.81d (G6/C+CNTsM+L), respectively, with G6 showing a significant difference in relation to the other groups (a ≠ b ≠ c ≠ d; p < 0.05). Immunohistochemistry also revealed good expression of osteocalcin (OC), osteopontin (OP) and vascular endothelial growth factor (VEGF). It was concluded that chitosan-based carbon nanotube materials combined with LLLT effectively stimulated the bone healing process.
Collapse
Affiliation(s)
- Samantha Ketelyn Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| | | | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary and Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Vinícius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Mateus Hissashi Matsumoto Kudo
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - José Francisco Rebello Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Fabricio Montenegro Nazari
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Correspondence: ; Tel.: +55-11-3395-2100
| |
Collapse
|
26
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
27
|
Abdollahi S, Raoufi Z. Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Chamansara A, Behnamghader A, Zamanian A. Preparation and characterization of injectable gelatin/alginate/chondroitin sulfate/α-calcium sulfate hemihydrate composite paste for bone repair application. J Biomater Appl 2022; 36:1758-1774. [PMID: 35199572 DOI: 10.1177/08853282211073231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a group of injectable composite pastes with a novel formulation consisting of two inorganic components: α-calcium sulfate hemihydrate (α-CSH, P/L = 1.8-2.1 g/ml) and calcium-deficient hydroxyapatite (CDHA, P/L = 0.1 g/ml) nanoparticles; and three biopolymers: gelatin (2, 4 wt. %), alginate (1, 1.5 wt. %), and chondroitin sulfate (0.5 wt. %) were carefully prepared and thoroughly characterized with commensurate characterizations. The composite sample composed of gelatin (2 wt. %), alginate (1.5 wt. %), chondroitin sulfate (0.5 wt. %), and also CDHA nanoparticles and α-CSH with P/L ratios of 0.1 and 2.1 g/ml, respectively, exhibited optimal properties in terms of injectability, anti-washout performance, and rheological characteristics. After 14 days of immersion of the chosen sample in the simulated body fluid medium, a dense layer of apatite was formed on the surface of the composite paste. The cellular in vitro tests, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT), alkaline phosphatase assay, 4',6-diamidino-2-phenylindole staining, and cellular attachment, revealed the desirable response of MG-63 cells to the composite paste. The chondroitin sulfate significantly improved the injectability, anti-washout performance, and cellular response of the samples. Considering the promising features of the composite paste prepared in this research work, it could be considered as an alternative injectable bioactive material for bone repair applications.[Formula: see text].
Collapse
Affiliation(s)
- Alireza Chamansara
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Aliasghar Behnamghader
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Nanotechnology and Advanced Materials Department, 48472Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
29
|
Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int J Biol Macromol 2022; 203:389-405. [PMID: 35063489 DOI: 10.1016/j.ijbiomac.2022.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022]
Abstract
Over the past decades, various attempts have been made to develop suitable tissue-engineered constructs to repair or regenerate the damaged or diseased articular cartilage. In the present study, we embedded Platelet rich plasma (PRP)/Sodium Alginate (SA) based hydrogel in porous 3D scaffold of chitosan (CH)/chondroitin sulfate (CS)/silk fibroin (SF) to develop hybrid scaffold for cartilage tissue construct generation with abilities to support shape recovery potential, facilitate uniform cells distribution and mimic gel like cartilage tissue extracellular matrix.The developed hybrid matrix shows suitable pore size (55-261 μm), porosity (77 ± 4.3%) and compressive strength (0.13 ± 0.04 MPa) for cartilage tissue construct generation and its applications. The developed SA/PRP-based cartilage construct exhibits higher metabolic activity, glycosaminoglycan deposition, expression of collagen type II, and aggrecan in comparison to SA based cell-scaffold construct. In-vivo animal study was also performed to investigate the biocompatibility and cartilage tissue regeneration potential of the developed construct. The obtained gross analysis of knee sample, micro-computed tomography, and histological analysis suggest that implanted tissue construct possess the superior potential to regenerate hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with surrounding tissue at the defect site. Thus, the proposed strategy for the development of cartilage tissue constructs might be beneficial for the repair of full-thickness knee articular cartilage defects.
Collapse
|
30
|
Chraniuk M, Panasiuk M, Hovhannisyan L, Żołędowska S, Nidzworski D, Ciołek L, Woźniak A, Kubiś A, Karska N, Jaegermann Z, Rodziewicz-Motowidło S, Biernat M, Gromadzka B. Assessment of the Toxicity of Biocompatible Materials Supporting Bone Regeneration: Impact of the Type of Assay and Used Controls. TOXICS 2022; 10:toxics10010020. [PMID: 35051062 PMCID: PMC8778995 DOI: 10.3390/toxics10010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Assessing the toxicity of new biomaterials dedicated to bone regeneration can be difficult. Many reports focus only on a single toxicity parameter, which may be insufficient for a detailed evaluation of the new material. Moreover, published data frequently do not include control cells exposed to the environment without composite or its extract. Here we present the results of two assays used in the toxicological assessment of materials’ extracts (the integrity of the cellular membrane and the mitochondrial activity/proliferation), and the influence of different types of controls used on the obtained results. Results obtained in the cellular membrane integrity assay showed a lack of toxic effects of all tested extracts, and no statistical differences between them were present. Control cells, cells incubated with chitosan extract or chitosan-bioglass extract were used as a reference in proliferation calculations to highlight the impact of controls used on the result of the experiment. The use of different baseline controls caused variability between obtained proliferation results, and influenced the outcome of statistical analysis. Our findings confirm the thesis that the type of control used in an experiment can change the final results, and it may affect the toxicological assessment of biomaterial.
Collapse
Affiliation(s)
- Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
- Correspondence: (M.C.); (B.G.)
| | - Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
| | - Lilit Hovhannisyan
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
| | - Sabina Żołędowska
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
| | - Dawid Nidzworski
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
| | - Lidia Ciołek
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (L.C.); (A.W.); (Z.J.); (M.B.)
| | - Anna Woźniak
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (L.C.); (A.W.); (Z.J.); (M.B.)
| | - Agnieszka Kubiś
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (A.K.); (N.K.); (S.R.-M.)
| | - Natalia Karska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (A.K.); (N.K.); (S.R.-M.)
| | - Zbigniew Jaegermann
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (L.C.); (A.W.); (Z.J.); (M.B.)
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (A.K.); (N.K.); (S.R.-M.)
| | - Monika Biernat
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (L.C.); (A.W.); (Z.J.); (M.B.)
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland; (M.P.); (L.H.); (S.Ż.); (D.N.)
- Correspondence: (M.C.); (B.G.)
| |
Collapse
|
31
|
Shuai H, Xiaoni Z, Yan L, Yanle L, Yan D, Lu M, Yingliang S, Wei M. Fabrication method for a magnetically induced highly oriented nanohydroxyapatite/collagen composite. J Appl Biomater Funct Mater 2022; 20:22808000221105727. [PMID: 35787019 DOI: 10.1177/22808000221105727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Both collagen fibres and nanohydroxyapatite crystals have anisotropic magnetisation, which allows them to be oriented by a high magnetic field. Highly oriented nanohydroxyapatite/collagen composites were prepared using a high magnetic field combined with in situ synthesis. These highly oriented composites were investigated and compared with conventional composites. The results showed that the collagen fibres in the magnetically induced highly oriented nanohydroxyapatite/collagen composites had a preferred orientation and smaller molecular spacing, while the nanohydroxyapatite crystals were tightly adhered along the collagen fibre surface. The magnetically induced composites exhibited superior resistance to swelling and degradation along with high compressive strength. This artificial composite, with a structure and composition similar to natural bone, represents a new idea for improving materials for vertical or horizontal bone augmentation.
Collapse
Affiliation(s)
- Huang Shuai
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Zhou Xiaoni
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Liu Yan
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Liu Yanle
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Duan Yan
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Meng Lu
- Sannie Bioengineering Technology Co., Ltd., Tianjin, China
| | - Song Yingliang
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| | - Ma Wei
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, The Fourth Military Medical University, Xi' an, China
| |
Collapse
|
32
|
Wang M, Li B, Liu Y, Tang L, Zhang Y, Xie Q. A Novel Bionic Extracellular Matrix Polymer Scaffold Enhanced by Calcium Silicate for Bone Tissue Engineering. ACS OMEGA 2021; 6:35727-35737. [PMID: 34984303 PMCID: PMC8717537 DOI: 10.1021/acsomega.1c05623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
A novel porous calcium silicate (CS)-enhanced small intestinal submucosa (SIS) scaffold was prepared by freeze-drying to mimic the natural extracellular matrix environment for bone tissue engineering. The micro-morphology, physicochemical properties, biological characteristics, and effects on osteogenic differentiation in vitro were explored; the effects on promoting bone formation in vivo were evaluated. The composite scaffold had an ideal three-dimensional porous structure. The amount of calcium silicate played a significant role in improving mechanical properties and promoting osteogenic differentiation. The SIS/2CS scaffold promoted proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells; it also significantly increased osteogenesis in vivo. This novel composite polymer scaffold has potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mei Wang
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Bowen Li
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yuhua Liu
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Lin Tang
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yi Zhang
- Department
of General Dentistry II, Peking University
School and Hospital of Stomatology & National Center of Stomatology
&National Clinical Research Center for Oral Diseases & National
Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Qiufei Xie
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| |
Collapse
|
33
|
3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior. Polymers (Basel) 2021; 13:polym13244442. [PMID: 34960993 PMCID: PMC8707254 DOI: 10.3390/polym13244442] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, two structurally different scaffolds, a polycaprolactone (PCL)/45S5 Bioglass (BG) composite and PCL/hyaluronic acid (HyA) were fabricated by 3D printing technology and were evaluated for the regeneration of dentin and pulp tissues, respectively. Their physicochemical characterization was performed by field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, and compressive strength tests. The results indicated that the presence of BG in the PCL/BG scaffolds promoted the mechanical properties, surface roughness, and bioactivity. Besides, a surface treatment of the PCL scaffold with HyA considerably increased the hydrophilicity of the scaffolds which led to an enhancement in cell adhesion. Furthermore, the gene expression results showed a significant increase in expression of odontogenic markers, e.g., dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and dentin matrix protein 1 (DMP-1) in the presence of both PCL/BG and PCL/HyA scaffolds. Moreover, to examine the feasibility of the idea for pulp-dentin complex regeneration, a bilayer PCL/BG-PCL/HyA scaffold was successfully fabricated and characterized by FESEM. Based on these results, it can be concluded that PCL/BG and PCL/HyA scaffolds have great potential for promoting hDPSC adhesion and odontogenic differentiation.
Collapse
|
34
|
Xu L, Ma F, Leung FKL, Qin C, Lu WW, Tang B. Chitosan-strontium chondroitin sulfate scaffolds for reconstruction of bone defects in aged rats. Carbohydr Polym 2021; 273:118532. [PMID: 34560945 DOI: 10.1016/j.carbpol.2021.118532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Bone defects caused by trauma have become increasingly common in aged populations. Clinically, because of the relatively decreased bone healing capacity compared with the youth adults, bone defect repair in the elderly remains challenging. The development of effective biomaterials targeted at bone defects in the elderly is a key component of bone-tissue engineering strategies. However, little attention has been paid to bone regeneration in the elderly. Here, we developed a new scaffold chitosan-Strontium chondroitin sulfate (CH-SrCS) and evaluated its effect on improving bone regeneration. We find that the CH-SrCS scaffold displayed positive effects on downregulation of inflammation and osteoclastogenesis related mRNA expressions while demonstrating a significant increase in the expression level of BMP2. Finally, we show that the bone defects healing effects as assessed using an aged rats' bone defects model. Ultimately, this work also provides insights into the design of effective biomaterials targeted at bone defects in the elderly.
Collapse
Affiliation(s)
- Lei Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China; Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Frankie K L Leung
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China
| | - Chenghe Qin
- Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| | - William W Lu
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, HK SAR, PR China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China; Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| |
Collapse
|
35
|
Sumitha N, Prakash P, Nair BN, Sailaja GS. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS OMEGA 2021; 6:21472-21484. [PMID: 34471750 PMCID: PMC8388080 DOI: 10.1021/acsomega.1c02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Glyoxal cross-linked porous magnetic chitosan microspheres, GMS (∼170 μm size), with a tunable degradation profile were synthesized by a water-in-oil emulsion technique to accomplish controlled delivery of doxorubicin (DOX), a chemotherapeutic drug, to ensure prolonged chemotherapeutic effects. The GMS exhibit superparamagnetism with saturation magnetization, M s = 7.2 emu g-1. The in vitro swelling and degradation results demonstrate that a swelling plateau of GMS is reached at 24 h, while degradation can be modulated to begin at 96-120 h by formulating the cross-linked network using glyoxal. MTT assay, live/dead staining, and F-actin staining (actin/DAPI) validated the cytocompatibility of GMS, which further assured good drug loading capacity (35.8%). The release mechanism has two stages, initiated by diffusion-inspired release of DOX through the swollen polymer network (72 h), which is followed by a disintegration-tuned release profile (>96 h) conferring GMS a potential candidate for DOX delivery.
Collapse
Affiliation(s)
- Nechikkottil
Sivadasan Sumitha
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
| | - Prabha Prakash
- Department
of Biotechnology, Cochin University of Science
and Technology, Kochi 682 022, Kerala, India
| | - Balagopal N. Nair
- School
of Molecular and Life Sciences (MLS), Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth WA6845, Australia
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Inter
University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Centre
for Excellence in Advanced Materials, Cochin
University of Science and Technology, Kochi 682 022, Kerala, India
| |
Collapse
|
36
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. Int J Mol Sci 2021; 22:8038. [PMID: 34360804 PMCID: PMC8348002 DOI: 10.3390/ijms22158038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Intermediate water (IW) in hydrated bioactive glasses remains uninvestigated. We obtained titanium (Ti)-containing bioactive glasses (BGTs) (Ti at 5%, 7.5% and 10% of the glass system) using the sol-gel technique. Their thermal, physicochemical, and morphological properties, before and after Ti-doping, were analysed using DTA, XRD, FTIR, TEM, and SEM accessorised with EDAX, and size distribution and zeta potential surface charges were determined using a NanoZetasizer. The IW in hydrated BGTs was investigated by cooling and heating runs of DSC measurements. Moreover, the mode of death in an osteosarcoma cell line (MG63) was evaluated at different times of exposure to BGT discs. Ti doping had no remarkable effect on the thermal, physicochemical, and morphological properties of BGTs. However, the morphology, size, and charges of BGT nano-powders were slightly changed after inclusion of Ti compared with those of BGT0; for example, the particle size increased with increasing Ti content (from 4-5 to 7-28 nm). The IW content was enhanced in the presence of Ti. The mode of cell death revealed the effect of IW content on the proliferation of cells exposed to BGTs. These findings should help improve the biocompatibility of inorganic biomaterials.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. 12622, Egypt; (M.M.); (H.H.B.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. 12622, Egypt; (M.M.); (H.H.B.)
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8582, Japan;
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
37
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
38
|
Kunrath MF, Gupta S, Lorusso F, Scarano A, Noumbissi S. Oral Tissue Interactions and Cellular Response to Zirconia Implant-Prosthetic Components: A Critical Review. MATERIALS 2021; 14:ma14112825. [PMID: 34070589 PMCID: PMC8198172 DOI: 10.3390/ma14112825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Background: Dental components manufactured with zirconia (ZrO2) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood. Methods: This critical review evaluated the “state of the art” in relation to applications of this biomaterial in dental components and its interactions with oral tissues. Results: The physico-chemical and structural properties as well as the current surface treatment methodologies for ZrO2 were explored. A critical investigation of the cellular response to this biomaterial was completed and the clinical implications discussed. Finally, surface treatments of ZrO2 demonstrate that excellent osseointegration is possible and provide encouraging prospects for rapid bone adhesion. Furthermore, sophisticated surface treatment techniques and technologies are providing impressive oral soft tissue cell responses thus leading to superior biological seal. Conclusions: Dental devices manufactured from ZrO2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Saurabh Gupta
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Master Dental Science, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| | - Antonio Scarano
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
- Correspondence: ; Tel.: +08713554084
| | - Sammy Noumbissi
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| |
Collapse
|
39
|
Monárrez-Cordero BE, Rodríguez-González CA, Valencia-Gómez LE, Hernández-Paz JF, Martel-Estrada SA, Camacho-Montes H, Olivas-Armendáriz I. The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity. J Appl Biomater Funct Mater 2021; 19:2280800021989701. [PMID: 33757368 DOI: 10.1177/2280800021989701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite.
Collapse
Affiliation(s)
| | | | | | | | | | - Héctor Camacho-Montes
- Institute of Engineering and Technology, Autonomous University of Ciudad Juárez, Juárez, Chihuahua, México
| | - Imelda Olivas-Armendáriz
- Institute of Engineering and Technology, Autonomous University of Ciudad Juárez, Juárez, Chihuahua, México
| |
Collapse
|
40
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
41
|
Tripathi S, Singh BN, Divakar S, Kumar G, Mallick SP, Srivastava P. Design and evaluation of ciprofloxacin loaded collagen chitosan oxygenating scaffold for skin tissue engineering. Biomed Mater 2021; 16:025021. [PMID: 33291087 DOI: 10.1088/1748-605x/abd1b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxia and sepsis are key concerns towards modern regenerative medicine. Oxygen generating biomaterials having antibacterial property aims to answer these concerns. Hypoxia promotes reactive oxygen species at the implant site that delays wound healing. Sepsis in wound also contributes to delay in wound healing. Therefore, scaffold with antibacterial property and oxygen-producing capacities have shown ability to promote wound healing. In the present study oxygen releasing, ciprofloxacin loaded collagen chitosan scaffold was fabricated for sustained oxygen delivery. Calcium peroxide (CPO) acted as a chemical oxygen source. Oxygen release pattern exhibited a sustained release of oxygen with uniform deposition of CPO on the scaffold. The drug release study shows a prolonged, continuous, and sustained release of ciprofloxacin. Cell culture studies depict that scaffold has suitable cell attachment and migration properties for fibroblasts. In vivo studies performed in the skin flip model visually shows better wound healing and less necrosis. Histological studies show the maintenance of tissue architecture and the deposition of collagen. The results demonstrate that the proposed CPO coated ciprofloxacin loaded collagen-chitosan scaffold can be a promising candidate for skin tissue engineering.
Collapse
Affiliation(s)
- Satyavrat Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | | | | | | | | | |
Collapse
|
42
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Liang W, Wu X, Dong Y, Shao R, Chen X, Zhou P, Xu F. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomater Sci 2021; 9:1924-1944. [PMID: 33506819 DOI: 10.1039/d0bm01663b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review presents the recent advances and the current state-of-the-art of bioactive glass-based composite biomaterials intended for bone regeneration. Composite materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the reinforcing phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Veeresh V, Sinha S, Manjhi B, Singh BN, Rastogi A, Srivastava P. How is Biodegradable Scaffold Effective in Gap Non-union? Insights from an Experiment. Indian J Orthop 2021; 55:741-748. [PMID: 33995882 PMCID: PMC8081820 DOI: 10.1007/s43465-020-00313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate the role of composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold in the union of critical size bone defect created in the rabbit's ulna. METHODS The composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold was fabricated using the freeze-drying technique under standard laboratory conditions. The scaffold was cut into the appropriate size and transferred into the defect created (critical bone size defect 1 cm) over the right ulna in the rabbit. The scaffold was not implanted on the left side thus the left side ulna served as control. Results were assessed on serial radiological examination. Rabbits were sacrificed at 20 weeks for histopathological examination (Haematoxylin-Eosin staining and Mason's trichrome staining) and scanning electron microscope observation. Radiological scoring was done by Lane and Sandhu's scoring. RESULTS Among 12 rabbits, 10 could complete the follow-up. Among those 10 rabbits, 8 among the test group showed good evidence of bone formation at the gap non-union scaffold implanted site. Histological evidence of new bone formation, collagen synthesis, scaffold resorption, minimal chondrogenesis was evident by 20 weeks in the test group. Two rabbits had poor bone formation. CONCLUSION The chitosan-chondroitin sulphate-gelatin-nano-bioglass composite scaffold is efficient in osteoconduction and osteoinduction in the gap non-union model as it is biocompatible, bioactive, and non-immunogenic as well.
Collapse
Affiliation(s)
- Vivek Veeresh
- grid.413618.90000 0004 1767 6103Department of Orthopaedics, JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India 110029
| | - Shivam Sinha
- grid.411507.60000 0001 2287 8816Department of Orthopaedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Birju Manjhi
- grid.411507.60000 0001 2287 8816Department of Orthopaedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - B. N. Singh
- grid.411507.60000 0001 2287 8816School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| | - Amit Rastogi
- grid.411507.60000 0001 2287 8816Department of Orthopaedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Pradeep Srivastava
- grid.411507.60000 0001 2287 8816School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
45
|
CuO assisted borate 1393B3 glass scaffold with enhanced mechanical performance and cytocompatibility: An In vitro study. J Mech Behav Biomed Mater 2020; 114:104231. [PMID: 33276214 DOI: 10.1016/j.jmbbm.2020.104231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Herein, three dimensional porous 1393B3 borate-based glass (BBG) scaffold along with their CuO derivatives (C1BBG, C2BBG, and C3BBG) tailored with trabecular bones' architecture were prepared by melt-quench route followed by foam replica technique. The properties of 'CuO incorporated' scaffolds, as compared to 'as prepared' scaffold were analyzed by a series of In vitro investigations for enhancement in biological compatibility, bioactivity, and physicomechanical performances. The in vitro study demonstrates superior mechanochemical stability of CBBGs (CuO derived 1393B3) than the pure BBG, while causing no or minimal effect on bioactivity and cytocompatibility post CuO incorporation to the BBG. In fact, the biological compatibility examined through MTT, Live/Dead, and cell adhesion study using the L929 cell lines was enhanced in the CBBGs up to 1% CuO incorporated scaffolds (C1BBG and C2BBG) in most cases. However, the enhanced biological compatibility was observed in C1BBG in comparison to other BBGs. Thus, the CuO incorporation into BBG enhanced mechanochemical and biological performance without affecting the bioactivity of the scaffold; henceforth, CBBGs could be considered neo bone tissue regenerative biomaterials.
Collapse
|
46
|
Application of a polyelectrolyte complex based on biocompatible polysaccharides for colorectal cancer inhibition. Carbohydr Res 2020; 499:108194. [PMID: 33234262 DOI: 10.1016/j.carres.2020.108194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023]
Abstract
Strategies for incorporating water-insoluble photosensitisers (PS) in drug delivery systems have been extensively studied. In this work, we evaluate the formation, characterisation, drug sorption studies, and cytotoxicity of chitosan (CHT)/chondroitin sulphate (CS) polyelectrolyte complexes (PECs) coated with polystyrene-block-poly(acrylic acid) (PS-b-PAA) nanoparticles (NPs) loaded with chloroaluminum phthalocyanine (AlClPc). The PECs were characterised by infrared spectroscopy (FTIR), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PS-b-PAA NPs on the PEC surface was confirmed by scanning electron microscopy (SEM). Additionally, optical images distinguished the PEC structures containing PS-b-PAA or PS-b-PAA/AlClPc from the unloaded PEC. Kinetic and equilibrium studies investigate the sorption capacity of the PEC/PS-b-PAA toward AlClPc. The encapsulation efficiency reached 95% at 190 μg mL-1 AlClPc after only 15 min. The Brunauer-Emmett-Teller (BET) isotherm and pseudo-second-order kinetic fitted well to the experimental data. The PS-b-PAA NPs on the PEC surfaces increase the AlClPc bioavailability and the PEC structure stabilizes the PS-b-PAA/AlClPc nanostructures. The materials were cytocompatible upon healthy VERO (kidney epithelial cells), and cytotoxic against colorectal cancerous cells (HT-29 cells). For the first time, we associate PS-b-PAA/AlClPc with a hydrophilic and cytocompatible polysaccharide matrix. We suggest the use of these materials in strategies to treat cancer by using photodynamic therapy.
Collapse
|
47
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
48
|
Peng W, Peng Z, Tang P, Sun H, Lei H, Li Z, Hui D, Du C, Zhou C, Wang Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. MATERIALS 2020; 13:ma13184108. [PMID: 32947925 PMCID: PMC7560273 DOI: 10.3390/ma13184108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Plastic surgery is a broad field, including maxillofacial surgery, skin flaps and grafts, liposuction and body contouring, breast surgery, and facial cosmetic procedures. Due to the requirements of plastic surgery for the biological safety of materials, biomaterials are widely used because of its superior biocompatibility and biodegradability. Currently, there are many kinds of biomaterials clinically used in plastic surgery and their applications are diverse. Moreover, with the rise of three-dimensional printing technology in recent years, the macroscopically more precise and personalized bio-scaffolding materials with microporous structure have made good progress, which is thought to bring new development to biomaterials. Therefore, in this paper, we reviewed the plastic surgery biomaterials and current progress in their 3D manufacturing technology.
Collapse
Affiliation(s)
- Wei Peng
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Yongwei Wang
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
49
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
50
|
Ou P, Liu J, Hao C, He R, Chang L, Ruan J. Cytocompatibility, stability and osteogenic activity of powder metallurgy Ta-xZr alloys as dental implant materials. J Biomater Appl 2020; 35:790-798. [PMID: 32854569 DOI: 10.1177/0885328220948033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tantalum (Ta) and zirconium (Zr) alloys were found to had low elastic modulus and similar biomechanical characteristics as the human bone. However, the biocompatibility and osteogenic potential of Ta-xZr alloyswith different proportions (20, 30, 40 and 50% Zr by atom) remains to be investigated. In this study, the biocompatibility of Ta-xZr alloys and commercially pure titanium (cpTi) was evaluated in vitro by cell counting kit-8 assay. The adhesion of MG63 osteoblasts to the surface of the alloys was observed by fluorescence microscopy, and their morphology was analyzed by scanning electron microscopy (SEM). The expressions of alkaline phosphatase (ALP), Ki67, osteocalcin (OC), collagen-I (Col-I) and Integrin β1 mRNA in the cultured cells were determined by RT-PCR. As a result, Ta-xZr (x = 20, 30, 40 and 50 at%) alloys were non-toxic and supported proliferation of the MG63 cells. The osteoblasts adhered to the Ta-xZr alloys, and subsequently spread and proliferated rapidly. Furthermore, the cells grown on Ta-20Zr and Ta-30Zr expressed high levels of ALP, Col I and OC, indicating that the Ta-xZr alloys can induce osteogenesis. In conclusion, Ta-xZr alloys promoted the adhesion, proliferation and osteogenic differentiation of MG63 cells. The Ta-xZr composites with a higher proportion of Ta exhibited superior osteogenic activity, and Ta-30Zr is therefore a promising alternative for Ti implants.
Collapse
Affiliation(s)
- Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China.,Department of Stomatology, The Third Xiangya Hospital Central South University, Changsha, PR China
| | - Jue Liu
- Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry and Technology, Changsha, PR China
| | - Cong Hao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, PR China
| | - Rengui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Lin Chang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| |
Collapse
|