1
|
Li H, Zhang Z, Chen J, Sun M, Tang H. Effect of Cu 2+ on the binding of catechins to zein through multi-spectral and in silico analyses. Food Chem 2025; 463:141547. [PMID: 39388877 DOI: 10.1016/j.foodchem.2024.141547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
This study aimed to elucidate how Cu2+ influences the interaction between catechins and zein using multi-spectral and molecular modeling techniques. As a result, UV-vis spectra revealed characteristic changes, indicating chelation between catechins and Cu2+ at a 1:1 M ratio. Fluorescence spectra further confirmed interaction through a static quenching mechanism between catechins/catechin-Cu2+ complexes and zein. Catechins induced changes in the microenvironment and hydrophobicity surrounding the binding site of zein, whereas Cu2+ had minimal impact on these aspects. CD spectra underscored catechins' role in altering zein's secondary structure conformation, alongside Cu2+. Various types of interactions (hydrophobic, hydrogen bonding, electrostatic, and van der Waals) contributed to the binding of catechins/catechin-Cu2+ complexes with zein. Molecular modeling elucidated key residues and binding conformations, highlighting the significance of hydrophobic interactions and hydrogen bonding in their association. These findings not only deepen our understanding of catechin-Cu2+-zein interactions but also underscore their potential applications in the food industry.
Collapse
Affiliation(s)
- Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Mengchu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
2
|
Jan T, Ali Shah SW, Khan N, Ahmad MS, Saleh IA, Okla MK, Abdel-Maksoud MA, AL-ghamdi AA, Alwasel YA, AbdElgawad H. Investigating the optimistic in-vitro and in-vivo therapeutic effects of wild grape: Vitis jacqumantii R. Parker. Heliyon 2024; 10:e40804. [PMID: 39698089 PMCID: PMC11652917 DOI: 10.1016/j.heliyon.2024.e40804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Vitis jacquemontii R. Parker is a wild grape traditionally used by indigenous people as a substitute for cultivated grapes. However, its therapeutic effects have not been extensively studied. In this study, we investigated the antioxidant, anticholinesterase, analgesic, and antidepressant properties of V. jacquemontii. The antioxidant potential of this wild fruit plant was evaluated using two widely recognized assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-asino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In-vitro anticholinesterase effects were determined by assessing butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibition. The analgesic activity was assessed through writhing and tail immersion test models, while the antidepressant effect was evaluated using forced swimming and tail suspension test models. Results revealed the exceptional potential of V. jacquemontii as a valuable natural resource. The fruit extract (VJF-Crd) demonstrated remarkable free radical scavenging abilities, with an impressive IC50 value of 34.96 μg/mL for DPPH and 56.48 μg/mL for ABTS. The leaf extract (VJL-Crd) also exhibited considerable antioxidant properties, with IC50 values of 73.68 μg/mL for DPPH and 86.72 μg/mL for ABTS. Furthermore, VJF-Crd and VJL-Crd extracts displayed potent inhibitory activity against cholinesterase enzymes, with VJF-Crd demonstrating strong inhibition and VJL-Crd showing moderate inhibition. In terms of analgesia, these extracts exhibited dose-dependent responses in various pain models, with significant protection against acetic acid-induced writhing and tail immersion, showcasing their potential as natural pain relievers. Moreover, both VJF-Crd and VJL-Crd extracts displayed a notable decrease in immobility in the forced swimming and tail suspension test models, indicating their potential as natural antidepressants. These findings underscore the untapped potential of V. jacquemontii as a source of valuable chemical constituents. The isolation and identification of phyto-constituents from this plant hold promise for new bioactive compounds, particularly in pain management. This study sheds light on the multifaceted medicinal attributes of V. jacquemontii and opens new avenues for developing natural remedies for different ailments, especially pain management.
Collapse
Affiliation(s)
- Tour Jan
- Department of Botany, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Nasrullah Khan
- Department of Botany, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | | | | | - Mohammad K. Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. AL-ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yasmeen A. Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 16 Antwerp, Belgium
| |
Collapse
|
3
|
Chang XL, Zhang XR, Qiang Y, Cao YH, Shang XY, Wang WF, Yang JL. In Situ Biomineralization and Citric Acid Etching Strategy for Enhancing Activity of Immobilized Acetylcholinesterase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22794-22802. [PMID: 39413434 DOI: 10.1021/acs.langmuir.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enhancing the structural stability of an enzyme and maintaining its catalytic activity are effective ways to improve enzyme utilization and reduce the cost of drug screening. However, immobilized enzyme activity tends to decrease in existing immobilization techniques due to conformational changes and microenvironmental restrictions. In this paper, we present a facile approach to prepare immobilized acetylcholinesterase (AChE) with high activity by a ZIF-8 in situ immobilization and citric acid (CA) etching strategy. CA breaks the coordination bond of ZIF-8 and produces defects, expanding the pore space, improving substrate accessibility, and fully exposing the active site of the enzyme. The enhancement of the catalytic activity of AChE@ZIF-8-CA was about 6.10-fold compared with the free enzyme. In addition, AChE@ZIF-8-CA exhibited an excellent encapsulation efficiency and good tolerance to temperature, pH, and organic solvents. The relative activity remains at the initial 83.77% even in five repeated experiments. The strategy provides a novel and efficient way to quickly construct highly active immobilized enzymes under mild conditions.
Collapse
Affiliation(s)
- Xiang-Lei Chang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Ru Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Hong Cao
- Longnan Academy of Non-wood Forest, Longnan 742500, P. R. China
| | - Xian-Yi Shang
- Longnan Municipal Enrich People Industry Development Corporation, Longnan 742500, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Mateev E, Karatchobanov V, Dedja M, Diamantakos K, Mateeva A, Muhammed MT, Irfan A, Kondeva-Burdina M, Valkova I, Georgieva M, Zlatkov A. Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer's Disease: Microwave-Assisted Synthesis, In Silico Studies and Biological Evaluation. Pharmaceuticals (Basel) 2024; 17:1171. [PMID: 39338334 PMCID: PMC11435393 DOI: 10.3390/ph17091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 μM; IC50eeAChE-4.145 μM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Valentin Karatchobanov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Marjano Dedja
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Konstantinos Diamantakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Türkiye;
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria; (V.K.); (M.D.); (K.D.); (A.M.); (M.G.); (A.Z.)
| |
Collapse
|
5
|
Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct 2024; 15:7452-7467. [PMID: 38910519 DOI: 10.1039/d4fo01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental caries is a chronic and destructive disease and matrix metalloproteinase-2 (MMP-2) plays a major role in caries. The inhibitory mechanisms of theaflavins [theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3)] on MMP-2 were investigated using techniques such as enzyme inhibition kinetics, multi-spectral methods, molecular docking, and molecular dynamics simulations. The results showed that TF1, TF2A, TF2B, and TF3 all competitively and reversibly inhibited MMP-2 activity. Fluorescence spectra and molecular docking indicated that four theaflavins spontaneously bind to MMP-2 through noncovalent interactions, driven by hydrogen bonds and hydrophobic interactions, constituting a static quenching mechanism and resulting in an altered tryptophan residue environment around MMP-2. Molecular dynamic simulations demonstrated that four theaflavins can form stable, compact complexes with MMP-2. In addition, the order of theaflavins' ability to inhibit MMP-2 was found to be TF1 > TF2B > TF2A > TF3. Interestingly, the order of binding capacity between MMP-2 and TF1, TF2A, TF2B, and TF3 was consistent with the order of inhibitory capacity, and was opposite to the order of steric hindrance of theaflavins. This may be due to the narrow space of the active pocket of MMP-2, and the smaller the steric hindrance of theaflavins, the easier it is to enter the active pocket and bind to MMP-2. This study provided novel insights into theaflavins as functional components in the exploration of natural MMP-2 inhibitors.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Mengna Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Huang Cao
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Hongan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jiayu Zhu
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Shuang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
6
|
Luo K, Yu X, Wang J, Liu J, Li X, Pan M, Huang D, Mai K, Zhang W. Ascorbic acid biosynthesis in Pacific abalone Haliotis discus hannai Ino and L-gulonolactone oxidase gene loss as an independent event. Int J Biol Macromol 2024; 268:131733. [PMID: 38649080 DOI: 10.1016/j.ijbiomac.2024.131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Up to now, it has been believed that invertebrates are unable to synthesize ascorbic acid (AA) in vivo. However, in the present study, the full-length CDs (Coding sequence) of L-gulonolactone oxidase (GLO) from Pacific abalone (Haliotis discus hannai Ino) were obtained through molecular cloning. The Pacific abalone GLO contained a FAD-binding domain in the N-termination, and ALO domain and conserved HWAK motif in the C-termination. The GLO gene possesses 12 exons and 11 introns. The Pacific abalone GLO was expressed in various tissues, including the kidney, digestive gland, gill, intestine, muscle and mantle. The GLO activity assay revealed that GLO activity was only detected in the kidney of Pacific abalone. After a 100-day feeding trial, dietary AA levels did not significantly affect the survival, weight gain, daily increment in shell length, and feed conversion ratio of Pacific abalone. The expression of GLO in the kidney was downregulated by dietary AA. These results implied that the ability to synthesize AA in abalone had not been lost. From the evolutionary perspective, the loss of GLO occurred independently as an independent event by matching with the genomes of various species. The positive selection analysis revealed that the GLO gene underwent purifying selective pressure during its evolution. In conclusion, the present study provided direct evidence to prove that the GLO activity and the ability to synthesize AA exist in abalone. The AA synthesis ability in vertebrates might have originated from invertebrates dating back 930.31 million years.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, PR China
| | - Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jia Wang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
7
|
Chen J, Zhang Z, Li R, Li H, Tang H. Investigating the interaction mechanism between gliadin and lysozyme through multispectroscopic analysis and molecular dynamic simulations. Food Res Int 2024; 180:114081. [PMID: 38395578 DOI: 10.1016/j.foodres.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The development of stable nanocomplexes based on gliadin and other biopolymers shows potential applications as delivery vehicles in the food industry. However, there is limited study specifically targeting the gliadin-lysozyme system, and their underlying interaction mechanism remains poorly understood. Therefore, the objective of this study was to investigate the binding mechanism between gliadin and lysozyme using a combination of multispectroscopic methods and molecular dynamic simulations. Stable gliadin-lysozyme complex nanoparticles were prepared using an anti-solvent precipitation method with a gliadin-to-lysozyme mass ratio of 2:1 and pH 4.0. The characteristic changes in the UV-visible spectrum of gliadin induced by lysozyme confirmed the complex formation. The analyses of fluorescence, FT-IR spectra, and dissociation tests demonstrated the indispensability of hydrophobic, electrostatic, and hydrogen bonding interactions in the preparation of the composites. Scanning electron microscopy revealed that the surface morphology of the nanoparticles changed from smooth and spherical to rough and irregular with the addition of lysozyme. Furthermore, molecular dynamic simulations suggested that lysozyme bound to the hydrophobic region of gliadin and hydrogen bonding was crucial for the stability of the complex. These findings contribute to the advancement of gliadin-lysozyme complex nanoparticles as an efficient delivery system for encapsulating bioactive compounds in food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
8
|
Yang Y, Zou J, Li M, Yun Y, Li J, Bai J. Extraction and characterization of polysaccharides from blackcurrant fruits and its inhibitory effects on acetylcholinesterase. Int J Biol Macromol 2024; 262:130047. [PMID: 38336315 DOI: 10.1016/j.ijbiomac.2024.130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Microwave assisted aqueous two-phase system (MA-ATPS) was used to simultaneously extract two polysaccharides from blackcurrant. Under the suitable ATPS (ethanol/(NH4)2SO4, 26.75 %/18.98 %) combining with the optimal MA conditions (liquid-to-material ratio 58.5 mL/g, time 9.5 min, temperature 60.5 °C, power 587 W) predicted by response surface methodology, the yields of the top/bottom phase polysaccharides were 13.08 ± 0.37 % and 42.65 ± 0.89 %, respectively. After purification through column chromatography, the top phase polysaccharide (PRTP) and bottom phase polysaccharide (PRBP) were obtained. FT-IR, methylation and NMR analyses confirmed that the repeating unit in the backbone of PRTP was →2, 5)-α-L-Araf-(1 → 3)-α-D-Manp-(1 → 6)-β-D-Galp-(1 → 6)-α-D-Glcp-(1 → 4)-α-L-Rhap-(1 → 4)-α-D-GalAp-(1→, while the possible unit in PRBP was →4)-α-L-Rhap-(1 → 3)-α-D-Manp-(1 → 6)-β-D-Galp-(1 → 6)-α-D-Glcp-(1 → 2, 5)-α-L-Araf-(1 → 4)-α-D-GalAp-(1→. PRBP with relatively low molecular weight exhibited better stability, rheological property, free radical scavenging and acetylcholinesterase (AChE) inhibitory activities than PRTP. PRTP and PRBP were reversible mixed-type inhibitors for AChE, and the conformation of AChE was changed after binding with the polysaccharides. Molecular docking, fluorescence and isothermal titration calorimetry assays revealed that PRTP and PRBP quenched the fluorescence through static quenching mechanism, and the van der Waals interactions and hydrogen bonding played key roles in the stability of polysaccharide-enzyme complexes. This study provided a theoretical basis for blackcurrant polysaccharides as AChE inhibitors to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaheng Zou
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Miao Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yang Yun
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianqiang Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
9
|
Li YJ, Liang CC, Jin L, Chen J. Inhibition mechanisms of four ellagitannins from terminalia chebula fruits on acetylcholinesterase by inhibition kinetics, spectroscopy and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123115. [PMID: 37453379 DOI: 10.1016/j.saa.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Acetylcholinesterase (AChE) is an important therapeutic target for the treatment of Alzheimer's disease (AD), and the development of natural AChE inhibitors as candidates has played a significant role in drug discovery. In this study, the inhibition mechanisms of four ellagitannins, punicalagin, chebulinic acid, geraniin and corilagin, from Terminalia chebula fruits on AChE were investigated systematically by a combination of inhibition kinetics, multi-spectroscopic methods and molecular docking. The kinetic results showed that punicalagin, chebulinic acid and geraniin exhibited strong reversible inhibitory effects on AChE in an uncompetitive manner with the IC50 values of 0.43, 0.50, and 0.51 mM, respectively, while corilagin inhibited AChE activity in a mixed type with the IC50 value of 0.72 mM. The results of fluorescence and UV-vis spectra and fluorescence resonance energy transfer (FRET) revealed that four ellagitannins could significantly quenched the intrinsic fluorescence of AChE though a static quenching along with non-radiative energy transfer. Thermodynamic analyses showed that values of ΔG, ΔH and ΔS were negative, indicating that all binding processes were spontaneous, and the hydrogen bonding and Van der Waals forces might make a great contribution to the formation of inhibitor-AChE complexes. The synchronous fluorescence, three-dimensional (3D) fluorescence, UV-vis, and FT-IR spectra studies suggested that four ellagitannins could lead to alterations in the micro-environment and secondary structure of AChE, and thus the conformational change of AChE. Moreover, molecular docking demonstrated that four ellagitannins could interacted with main amino acid residues of AChE with affinity energies ranging from -9.9 to -8.7 kJ/mol, and further confirmed the above experimental results. This study provided valuable findings for the potential application of four ellagitannins as promising candidates in the exploration of natural AChE inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Yan-Jun Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Cai-Cai Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Chen J, Zhang Z, Li H, Tang H. Exploring the effect of a series of flavonoids on tyrosinase using integrated enzyme kinetics, multispectroscopic, and molecular modelling analyses. Int J Biol Macromol 2023; 252:126451. [PMID: 37619686 DOI: 10.1016/j.ijbiomac.2023.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The control of food browning can be achieved by inhibiting tyrosinase (TY) activity, but current studies on the interaction of flavonoids as potent inhibitors with TY are inadequate. Herein, the effect of a library of flavonoids on TY was investigated using enzyme kinetics, multispectroscopic methods, and molecular modelling. Some flavonoids including 4, 8, 10, 17, 18, 28, 30, 33, and 34 exhibited potent TY inhibitory activity, with compound 10 demonstrating reversible inhibition in a mixed-competitive manner. Ultraviolet-visible spectral changes confirmed the formation of flavonoid-TY complexes. Fluorescence quenching analysis suggested effective intrinsic fluorescence quenching by flavonoids through static quenching with the ground-state complex formation. Synchronous fluorescence spectra showed the microenvironment change around the fluorophores induced by flavonoids. ANS-binding fluorescence assay indicated TY's surface hydrophobicity change by flavonoids and highlighted the change in secondary structure conformation, which was further confirmed by Fourier-transform infrared spectra. Molecular modelling results helped visualize the preferred binding conformation at the active site of TY, and demonstrated the important role of hydrophobic interaction and hydrogen bonding in stabilizing the flavonoid-TY complexes. These findings prove that diverse flavonoid structures distinctly impact their binding behavior on TY and contribute to understanding flavonoids' potential as TY inhibitors in controlling food browning.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
11
|
Mateev E, Kondeva-Burdina M, Georgieva M, Zlatkov A. Repurposing of FDA-approved drugs as dual-acting MAO-B and AChE inhibitors against Alzheimer's disease: An in silico and in vitro study. J Mol Graph Model 2023; 122:108471. [PMID: 37087882 DOI: 10.1016/j.jmgm.2023.108471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
An in silico consensus molecular docking approach and in vitro evaluations were adopted in the present study to explore a dataset of FDA-approved drugs as novel multitarget MAO-B/AChE agents in the treatment of Alzheimer's disease (AD). GOLD 5.3 and Glide were employed in the virtual assessments and consensus superimpositions of the obtained poses were applied to increase the reliability of the docking protocols. Furthermore, the top ranked molecules were subjected to binding free energy calculations using MM/GBSA, Induced fit docking (IFD) simulations, and a literature review. Consequently, the top four multitarget drugs were examined for their in vitro MAO-B and AChE inhibition effects. The consensus molecular docking identified Dolutegravir, Rebamipide, Loracarbef and Diflunisal as potential multitarget drugs. The biological data demonstrated that most of the docking scores were in good correlation with the in vitro experiments, however the theoretical simulations in the active site of MAO-B identified two false-positives - Rebamipide and Diflunisal. Dolutegravir and Loracarbef were accessed as active MAO-B inhibitors, while Dolutegravir, Rebamapide and Diflunisal as potential AChE inhibitors. The antiretroviral agent Dolutegravir exhibited the most potent multitarget activity - 41% inhibition of MAO-B (1 μM) and 68% inhibition of AChE (10 μM). Visualizations of the intermolecular interactions of Dolutegravir in the active sites of MAO-B and AChE revealed the formation of several stable hydrogen bonds. Overall, Dolutegravir was identified as a potential anti-AD drug, however further in vivo evaluations should be considered.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| |
Collapse
|
12
|
The roles of Salvia miltiorrhiza-derived carbon dots involving in maintaining quality by delaying senescence of postharvest flowering Chinese cabbage. Food Chem 2023; 404:134704. [DOI: 10.1016/j.foodchem.2022.134704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
13
|
Li J, Li F, Wu G, Gui F, Li H, Xu L, Hao X, Zhao Y, Ding X, Qin X. Acetylcholinesterase inhibitory activity of sesquiterpenoids isolated from Laggera pterodonta. FRONTIERS IN PLANT SCIENCE 2023; 14:1074184. [PMID: 36844064 PMCID: PMC9950556 DOI: 10.3389/fpls.2023.1074184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Plant-derived natural products are important resources for pesticide discovery. Acetylcholinesterase (AChE) is a well-validated pesticide target, and inhibiting AChE proves fatal for insects. Recent studies have shown that the potential of various sesquiterpenoids as AChE inhibitors. However, few studies have been conducted with eudesmane-type sesquiterpenes with AChE inhibitory effects. Therefore, in this research, we isolated two new sesquiterpenes, laggeranines A (1) and B (2), along with six known eudesmane-type sesquiterpenes (3-8) from Laggera pterodonta, and characterized their structures and the inhibitory effect they exerted on AChE. The results showed that these compounds had certain inhibitory effects on AChE in a dose-dependent manner, of which compound 5 had the best inhibitory effect with IC50 of 437.33 ± 8.33 mM. As revealed by the Lineweaver-Burk and Dixon plots, compound 5 was observed to suppress AChE activity reversibly and competitively. Furthermore, all compounds exhibited certain toxicity levels on C. elegans. Meanwhile, these compounds had good ADMET properties. These results are significant for the discovery of new AChE targeting compounds, and also enrich the bioactivity activity repertoire of L. pterodonta.
Collapse
Affiliation(s)
- Jinliang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fengchao Li
- College of Water Conservancy, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoping Qin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
14
|
He P, Xu H, Yang C, Yu D, Liu Y, Du J, Li Y. Unveiling the inhibitory mechanism of aureusidin targeting xanthine oxidase by multi-spectroscopic methods and molecular simulations. RSC Adv 2023; 13:1606-1616. [PMID: 36688063 PMCID: PMC9827282 DOI: 10.1039/d2ra06997k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Xanthine oxidase (XO) is a key target for gout treatment. Great efforts have been made towards the discovery and development of new XO inhibitors. Aureusidin (AUR), a natural compound, emerges as the second reported XO inhibitor with an aurone skeleton with an IC50 value of 7.617 ± 0.401 μM in vitro. The inhibitory mechanism of AUR against XO was explored through enzyme kinetic studies, multi-spectroscopic methods, computer simulation techniques, and ADME prediction. The results showed that AUR acts as a rapid reversible and mixed-type XO inhibitor and its binding to XO was driven by hydrogen bonding and hydrophobic interaction. Moreover, AUR presented a strong fluorescence quenching effect through a static quenching process and induced a conformation change of XO. Its binding pattern with XO was revealed through molecular docking, and its affinity toward XO was enhanced through interactions with key amino acid residues in the active pocket of XO. Further, AUR demonstrated good stability and pharmacokinetic behavior properties in molecular dynamics simulation and ADME prediction. In short, the current work clarified in depth the inhibitory mechanism of AUR on XO firstly and then provided fresh insights into its further development as a natural potent XO inhibitor with aurone skeleton.
Collapse
Affiliation(s)
- Pei He
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Haiqi Xu
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Can Yang
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Dehong Yu
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Yi Liu
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Jiana Du
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| | - Yanfang Li
- School of Chemical Engineering, Sichuan UniversityChengdu610065China+86 28 8540 5220
| |
Collapse
|
15
|
Zhao J, Huang L, Li R, Zhang Z, Chen J, Tang H. Multispectroscopic and computational evaluation of the binding of flavonoids with bovine serum albumin in the presence of Cu2+. Food Chem 2022; 385:132656. [DOI: 10.1016/j.foodchem.2022.132656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|
16
|
Wu M, Liu M, Wang F, Cai J, Luo Q, Li S, Zhu J, Tang Z, Fang Z, Wang C, Chen H. The inhibition mechanism of polyphenols from Phyllanthus emblica Linn. fruit on acetylcholinesterase: A interaction, kinetic, spectroscopic, and molecular simulation study. Food Res Int 2022; 158:111497. [DOI: 10.1016/j.foodres.2022.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
|
17
|
Zhao J, Huang L, Li R, Zhang Z, Chen J, Tang H. Insights from multi-spectroscopic analysis and molecular modeling to understand the structure-affinity relationship and the interaction mechanism of flavonoids with gliadin. Food Funct 2022; 13:5061-5074. [PMID: 35404372 DOI: 10.1039/d1fo03816h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gliadin, as a main component of wheat storage protein, is used as a drug encapsulation and delivery system owing to its specific characteristics. Flavonoids are regarded as active natural products with a variety of pharmacological effects. In this study, an integrated method including UV-vis, fluorescence, and FT-IR spectroscopy and molecular modelling was applied to explore the structure-affinity relationship and the interaction nature between a library of flavonoids and gliadin. The characteristic UV-vis spectral changes of gliadin mediated by flavonoids with absorption bands at 218 and 278 nm demonstrated the existence of an interaction depending on generating the ground-state complexes. Fluorescence quenching results showed that the intrinsic fluorescence of gliadin could be effectively quenched by flavonoids coupled with the formation of flavonoid-gliadin complexes through the static quenching mechanism. The structure-affinity relationship revealed the critical structural elements associated with the binding affinity on gliadin and underlined the favorable substituents at the specific positions of flavonoid skeletons leading to a stronger binding potency. From the analysis of synchronous fluorescence spectra, flavonoids could cause the conformation change of gliadin and impact the microenvironment around TYR and TRP residues. Moreover, the ANS fluorescent probe assay suggested that these flavonoids also influenced the surface hydrophobicity of glaidin based on the further exposure or blocking of hydrophobic domains. Molecular modelling was subsequently performed and illustrated the proposed binding conformation of flavonoids on gliadin. Combined with the FT-IR spectra, these results further confirmed the important role of hydrophobic interactions and hydrogen bonds in their binding process.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Lin Huang
- Blood Purification Center, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, P. R. China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| |
Collapse
|
18
|
Feng J, Liao F, Kong D, Ren R, Sun T, Liu W, Yin Y, Ma H, Tang J, Li G. Genetic diversity of the cultivated Salvia miltiorrhiza populations revealed by four intergenic spacers. PLoS One 2022; 17:e0266536. [PMID: 35385538 PMCID: PMC8985983 DOI: 10.1371/journal.pone.0266536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
For better understanding the genetic diversity and phylogeny of the cultivated Salvia miltiorrhiza populations, four intergenic spacer sequences, ETS, psbA-trnH, trnL-trnF, and ycf1-rps15 of the 40 populations collected from China were Polymerase Chain Reaction (PCR) amplified, analyzed both individually and in combination. Haplotype diversity analysis showed that the cultivated S. miltiorrhiza populations had a very rich genetic diversity and an excellent capacity to resist environmental pressure. The best-fit nucleotide substitution models for ETS, psbA-trnH, trnL-trnF, ycf1-rps15, and their combined sequences were HKY+I, T92, T92, T92+G, and T92+G, respectively; the nucleotide conversion frequency in the combined sequences was lower than the transversion, and the relatively high nucleotide substitution frequencies suggests its high genetic variability. Neutral tests showed that the spacer sequences of the populations conform with the neutral evolution model, and there has been no current expansion events occurred. Phylogeny analyses based on both the individual and the combined sequences showed that the 40 populations were clustered in two clades with a very similar topological structure. The discrimination rate of the combined sequence marker is significantly increased to 52.5% (21 populations) over the highest 35% (13 populations) by the single marker of ETS, though still inadequate but a big step forward. Further exploration of more DNA markers is needed. This study for the first time revealed the rich genetic diversity and phylogeny of the currently cultivated S. miltiorrhiza populations in China and provides novel alternative molecular markers for the genetic identification and resources evaluation of the cultivated S. miltiorrhiza populations.
Collapse
Affiliation(s)
- Jie Feng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fang Liao
- Animal, Plant and Foodstuff Inspection Center, Tianjin Customs, Tianjin, China
| | - Deying Kong
- Technology Center, Chongqing Customs, Chongqing, China
| | - Ruihua Ren
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tao Sun
- Technology Center, Chongqing Customs, Chongqing, China
| | - Wei Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanyan Yin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Haoyu Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiahao Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Guanrong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
19
|
Lan M, Gao X, Duan X, Li H, Yu H, Li J, Zhao Y, Hao X, Zhao Y, Ding X, Wu G. Nematicidal activity of tirotundin and parthenolide isolated from Tithonia diversifolia and Chrysanthemum parthenium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:54-61. [PMID: 34983315 DOI: 10.1080/03601234.2021.2022945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acetylcholinesterase (AChE) is an enzyme that catalyzes acetylcholine into choline and acetic acid. Conventional pesticides, including organophosphates and carbamates target and inhibit the activity of AChE. To obtain more pesticide precursors that meet the safety requirements, more than 200 compounds were screened. Tirotundin and parthenolide identified as potential neurotoxins to nematodes were isolated from Tithonia diversifolia and Chrysanthemum parthenium, respectively. Their IC50 values were 6.89 ± 0.30 and 5.51 ± 0.23 μg/mL, respectively against the AChE isolated from Caenorhabditis elegans. AChE was inhibited in a dose-dependent manner using the two compounds. And the Lineweaver-Burk and Dixon plots indicated that tirotundin and parthenolide were reversible inhibitors against AChE, both inhibiting AChE in a mixed-type competitive manner and demonstrating these compounds may possess dual binding site AChE inhibitors. LC50 values of tirotundin and parthenolide against C. elegans were 9.16 ± 0.21 and 7.23 ± 0.48 μg/mL, respectively. These results provide a certain theoretical basis for the development and utilization of novel pesticides.
Collapse
Affiliation(s)
- Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiuan Duan
- Agro-Environmental Monitoring Center of Baoshan City, Green Development Center of Baoshan City, Baoshan, China
| | - Hongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jinliang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Meira Menezes T, Assis C, Lacerda Cintra AJ, Silva dos Santos RC, Martins do Vale WK, Max Gomes Martins R, de Souza Bezerra R, Seabra GDM, Li C, Neves JL. Binding Mechanism between Acetylcholinesterase and Drugs Pazopanib and Lapatinib: Biochemical and Biophysical Studies. ACS Chem Neurosci 2021; 12:4500-4511. [PMID: 34808043 DOI: 10.1021/acschemneuro.1c00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are antitumor compounds that prevent the phosphorylation of proteins in a biological environment. However, the multitarget performance of TKIs promotes them as possible candidates for drug repositioning. In this work, interaction and inhibition studies through spectroscopic and computational techniques to evaluate the binding effectiveness of lapatinib and pazopanib TKIs to acetylcholinesterase (AChE) are reported. The results indicated potent inhibition at the μM level. The types of inhibition were identified, with pazopanib acting through non-competitive inhibition and lapatinib through acompetitive inhibition. The fluorescence suppression studies indicate a static mechanism for lapatinib-AChE and pazopanib-AChE systems, with a binding constant in the order of 105 M-1. The obtained thermodynamic parameters reveal interactions driven by van der Waals forces and hydrogen bonds in the lapatinib-AChE system (ΔH° and ΔS° < 0). In contrast, the pazopanib-AChE system shows positive ΔH° and ΔS°, characteristic of hydrophobic interactions. The Foster resonance energy transfer study supports the fluorescence studies performed. The 3D fluorescence studies suggest changes in the microenvironment of the tryptophan and tyrosine residues of the protein in contact with lapatinib and pazopanib. The results suggest effective inhibition and moderate interaction of the drugs with AChE, making them interesting for conducting more in-depth repositioning studies as AChE inhibitors.
Collapse
Affiliation(s)
- Thaís Meira Menezes
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Caio Assis
- Department of Biochemistry and Physiology, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | | | | | - Regildo Max Gomes Martins
- Post-Graduate in Biotechnology Multi-Institutional Program, PPGBIOTEC, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Ranilson de Souza Bezerra
- Department of Biochemistry and Physiology, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jorge Luiz Neves
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
21
|
Wang H, Kang Y, Li H, Huang S, Li W, Zheng M, Huang R, Lei B, Yang X. Salvia miltiorrhiza Derived Carbon Dots and Their Heat Stress Tolerance of Italian Lettuce by Promoting Growth and Enhancing Antioxidant Enzyme Activity. ACS OMEGA 2021; 6:32262-32269. [PMID: 34870046 PMCID: PMC8638299 DOI: 10.1021/acsomega.1c05074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
With global warming, plants often suffer damage from high temperatures during the growth process, which inhibits their growth. In this work, carbon dots (CDs), synthesized by Salvia miltiorrhiza (S. miltiorrhiza) with a one-step hydrothermal method, were selected as heat-resistant enhancement agents for plants. Inspired by this background, this work studied Italian lettuce grown at 25, 35, and 45 °C and treated with CD and deionized water control (sprayed on leaves). The results showed that the biomass, chlorophyll content, net photosynthetic rate, activities of SOD (superoxide dismutase), POD (peroxidase), CAT (catalase), soluble sugar, and soluble protein contents of lettuce treated by CDs were increased while the contents of malondialdehyde (MDA) and proline (Pro) were decreased at 35 and 45 °C. The application of CDs at 35 and 45 °C could maintain the growth of plants by reducing oxidative damage and lipid peroxidation especially at the temperature of 35 °C, the growth status of lettuce treated by CDs was no different from that of lettuce grown naturally at the optimal temperature of 25 °C, or even better than the latter. This finding verified that the CDs could significantly improve the high-temperature tolerance of lettuce, thus alleviating the heat stress of plants.
Collapse
Affiliation(s)
- Hui Wang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Yunyan Kang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Hui Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
Guangdong Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R.
China
| | - Sirui Huang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
Guangdong Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R.
China
| | - Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
Guangdong Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R.
China
| | - Mingtao Zheng
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
Guangdong Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R.
China
- Maoming
Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, P. R. China
| | - Riming Huang
- College
of Food Science, South China Agricultural
University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
Guangdong Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R.
China
- Maoming
Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, P. R. China
| | - Xian Yang
- College
of Horticulture, South China Agricultural
University, Guangzhou 510642, P. R. China
| |
Collapse
|
22
|
Peng W, Wang T, Liang XR, Yang YS, Wang QZ, Cheng HF, Peng YK, Ding F. Characterizing the potentially neuronal acetylcholinesterase reactivity toward chiral pyraclofos: Enantioselective insights from spectroscopy, in silico docking, molecular dynamics simulation and per-residue energy decomposition studies. J Mol Graph Model 2021; 110:108069. [PMID: 34773872 DOI: 10.1016/j.jmgm.2021.108069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/20/2022]
Abstract
Chiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.31 × 104 M-1) with AChE was larger than that of (S)-pyraclofos (K = 1.86 × 104 M-1), and significant enantioselectivity was existed in the biochemical reaction. The modes of neurobiological action revealed that pyraclofos enantiomers were situated at the substrate binding domain, and the strength of the overall noncovalent bonds between (S)-pyraclofos and the residues was weaker than that of (R)-pyraclofos, resulting in the high inhibitory effect of (R)-pyraclofos toward the activity of AChE. Dynamic enantioselective biointeractions illustrated that the intervention of inherent conformational flexibility in the AChE-(R)-pyraclofos was greater than that of the AChE-(S)-pyraclofos, which arises from the big spatial displacement and the conformational flip of the binding domain composed of the residues Thr-64~Asn-89, Gly-122~Asp-134, and Thr-436~Tyr-449. Energy decomposition exhibited that the Gibbs free energies of the AChE-(R)-/(S)-pyraclofos were ΔG° = -37.4/-30.2 kJ mol-1, respectively, and the disparity comes from the electrostatic energy during the stereoselective neurochemical reactions. Quantitative conformational analysis further confirmed the atomic-scale computational chemistry conclusions, and the perturbation of (S)-pyraclofos on the AChE's ordered conformation was lower than that of (R)-pyraclofos, which is germane to the interaction energies of the crucial residues, e.g. Tyr-124, Tyr-337, Asp-74, Trp-86, and Tyr-119. Evidently, this attempt will contribute mechanistic information to uncovering the neurobiological effects of chiral organophosphates on the body.
Collapse
Affiliation(s)
- Wei Peng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiang-Rong Liang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yu-Sen Yang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hong-Fei Cheng
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Yu-Kui Peng
- Xining Center for Agricultural Product Quality and Safety Testing, Xining, 810016, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
23
|
Zhao Y, Dong Y, Ge Q, Cui P, Sun N, Lin S. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food Funct 2021; 12:7676-7687. [PMID: 34259275 DOI: 10.1039/d1fo00631b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to evaluate the neuroprotective function of sea cucumber ovum peptide-derived NDEELNK and explore the underlying molecular mechanisms. NDEELNK exerted the neuroprotective effect by improving the acetylcholine (ACh) level and reducing the acetylcholinesterase (AChE) activity in PC12 cells. By molecular docking, we confirmed that the NDEELNK backbone and AChE interacted through hydrophobic and hydrogen bonds in contact with the amino acid residues of the cavity wall. NDEELNK increased superoxide dismutase (SOD) activity and decreased reactive oxygen species (ROS) production, thereby reducing mitochondrial dysfunction and enhancing energy metabolism. Our results demonstrated that NDEELNK supplementation alleviated scopolamine-induced PC12 cell damage by improving the cholinergic system, increasing energy metabolism and upregulating the expression of phosphorylated protein kinase A (p-PKA), brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) signaling proteins in in vitro experiments. These results demonstrated that the sea cucumber ovum peptide-derived NDEELNK might play a protective role in PC12 cells.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Tao Y, Fan Y, Liu G, Zhang Y, Wang M, Wang X, Li L. Interaction study of astilbin, isoastilbin and neoastilbin toward CYP2D6 by multi-spectroscopy and molecular docking. LUMINESCENCE 2021; 36:1412-1421. [PMID: 33949102 DOI: 10.1002/bio.4065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Astilbin, isoastilbin and neoastilbin are the three flavonoid isomers prevalent in Rhizoma Smilax glabra. The interactions between human cytochrome P450 2D6 (CYP2D6) and the three isomers were investigated by multiple spectroscopic coupled with molecular docking. As a result, the fluorescence intensity of CYP2D6 was quenched statically by the three isomers. Meanwhile, astilbin had the strongest binding ability to CYP2D6, followed by isoastilbin and neoastilbin under the identical temperature. Synchronous fluorescence, three-dimensional fluorescence, ultraviolet-visible spectroscopy, circular dichroism and Fourier-transform infrared spectra confirmed that the conformation and micro-environment of CYP2D6 protein were changed after binding with the three isomers. As suggested from molecular docking, the three isomers had strong binding affinity to CYP2D6 via the bonding of hydrogen and van der Waals forces, and the results were in agreement with the fluorescence results. The findings here suggested that astilbin, isoastilbin and neoastilbin may cause the herb-drug interactions for their inhibition of CYP2D6 activity.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuhang Zhang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Xiaolin Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
25
|
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in Applying Computer-Aided Drug Design for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4688. [PMID: 33925236 PMCID: PMC8124449 DOI: 10.3390/ijms22094688] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Zaid Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf 54001, Iraq;
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala 56001, Iraq
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Andrea Loreto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Roslyn M. Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
26
|
Nechaev AA, Jagtap PR, BaŽíková E, Neumannová J, Císařová I, Matoušová E. Synthesis of fused 1,2-naphthoquinones with cytotoxic activity using a one-pot three-step reaction. Org Biomol Chem 2021; 19:3434-3440. [PMID: 33899892 DOI: 10.1039/d1ob00205h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A method for the synthesis of fused 1,2-naphthoquinones, as analogues of biologically active natural terpene quinones, is described. The intermediate polycyclic naphthalenes were prepared by a one-pot palladium-catalysed process from simple alkynes, one of which was made from an optically pure biomass-derived levoglucosenone. The prepared methoxy-substituted naphthalenes were subsequently transformed in one step to 1,2-naphthoquinones by a trivalent-iodine-mediated oxidation. The naphthoquinone products were found to have cytotoxic properties.
Collapse
Affiliation(s)
- Anton A Nechaev
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Pratap R Jagtap
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Ema BaŽíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Johana Neumannová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Eliška Matoušová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
27
|
Li M, Gao X, Lan M, Liao X, Su F, Fan L, Zhao Y, Hao X, Wu G, Ding X. Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104701. [PMID: 32980054 DOI: 10.1016/j.pestbp.2020.104701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Fifteen flavonoids isolated from the Eupatorium adenophorum showed inhibitory activities against acetylcholinesterase (AChE) isolated from Caenorhabditis elegans and Spodoptera litura. Their IC50 values ranged from 12.54 to 89.06μg/mL and 12.08 to 86.01μg/mL, respectively against the AChE isolated from the nematode and insect species. AChE was inhibited in a dose-dependent manner by all tested flavonoids, The isolated compound quercetagetin-7-O-(6-O-caffeoyl-β-D-glucopyranoside) displayed the highest inhibitory effect against AChE from C. elegans and S. litura, with IC50 values of 12.54 μg/mL and 12.58 μg/mL, respectively. The structure-activity relationship of flavonoids on the inhibitory activities indicated that additional phenolic hydroxyl groups in the glucose were favorable for their inhibitory effects and the degree of increase in inhibitory activity also depended on the number of phenolic hydroxyl groups. The Lineweaver-Burk and Dixon plots indicated that quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) is a reversible inhibitor against AChE. Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), 5,4'-Dihydroxytlavone and quercetin-3-O-β-d-glucopyranoside inhibited AChE in a mixed-type competitive manner and these compounds might be the dual binding site AChE inhibitors. Further, nine compounds showed poisonous effects against C. elegans and inhibitory effects on the growth and development of S. litura.
Collapse
Affiliation(s)
- Mengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Xianbin Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Fawu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Liming Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650100, China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
28
|
Tang H, Huang L, Zhao D, Sun C, Song P. Interaction mechanism of flavonoids on bovine serum albumin: Insights from molecular property-binding affinity relationship. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118519. [PMID: 32480277 DOI: 10.1016/j.saa.2020.118519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The molecular structure properties-binding affinity relationship of a series of flavonoids and bovine serum albumin (BSA) was investigated in vitro from comparing the binding constants determined through the fluorescence method. As a result, the binding process was greatly influenced by different structural elements or substituents of flavonoids under analysis. The hydroxylation at the positions C3, C6, C4', C5' (for type I) and C5, C3' (for type II) were in favor of forming hydrogen bonds with the amino acids of BSA, which was of great importance in the binding and interaction between flavonoids and the protein. The decreased affinity could be realized by the methoxylation (C8, C3' and C4') and glycosylation (C3 and C7) of flavonoid type I. However, the adverse trend on binding affinity was observed when the methoxylation and glycosylation appeared at the sites C4' and C7, C4' of structure type II, respectively. Meanwhile, glycosylation at C7 mainly induced the decline in the affinity of flavonoids (type III), and the hydrogenation of the C2C3 double bond for type I was beneficial to increase the affinity on BSA. Moreover, part of flavonoids could mediate the conformational alteration of secondary structures of the protein during the interaction process, which was inferred by means of the synchronous fluorescence spectra. The determinations of ANS fluorescence probe suggested that hydrophobic interaction played an important role in the binding of a majority of flavonoids to BSA. Further evidences from the site-specific experiments revealed that the location of flavonoids 19, 29 and 34 binding on BSA mainly belonged to site I, while compound 3 bound to both sites I and II. Additionally, molecular modelling studies further confirmed the indispensable character of hydrophobic interaction and hydrogen bonds, and illustrated the preferred complex binding behaviors.
Collapse
Affiliation(s)
- Hongjin Tang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| | - Lin Huang
- Blood Purification Center, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Chunyong Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ping Song
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
29
|
Mamache W, Amira S, Ben Souici C, Laouer H, Benchikh F. In vitro antioxidant, anticholinesterases, anti-α-amylase, and anti-α-glucosidase effects of Algerian Salvia aegyptiaca and Salvia verbenaca. J Food Biochem 2020; 44:e13472. [PMID: 33000487 DOI: 10.1111/jfbc.13472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022]
Abstract
In this study, Salvia aegyptiaca and Salvia verbenaca aerial part decoction and methanol extracts (SAE DE, SAE ME, SVR DE, and SVR ME) were screened for their in vitro antioxidant, anti-Alzheimer, and antidiabetic enzymes inhibition activities. The antioxidant properties of Salvia extracts were determined using DPPH radical scavenging, ABTS radical scavenging, Alkaline DMSO superoxide radical scavenging, β-carotene bleaching, reducing power, and metal chelating activity assays. All extracts showed high antioxidant capacity and the antioxidant properties with the best performance were detected in the SAE ME and SVR ME. The extracts of S. aegyptiaca and S. verbenaca showed a low inhibitory activity of acetylcholinesterase (AChE), whereas, the methanol extract of S. aegyptiaca had the highest inhibitory activity on butyrylcholinesterase (BChE) (71.60 ± 4.33% for 100 µg/ml) compared to the other extracts. In vitro inhibitory effect on diabetic enzymes showed that the ME inhibited α-amylase enzyme with an IC50 86 and 101 µg/ml for SAE and SVR, respectively. Similarly, both extracts inhibited α-glucosidase with (IC50 97 and 150 µg/ml, respectively). The decoction extracts exhibited lower activity on both enzymes. PRACTICAL APPLICATIONS: It is becoming evident that oxidative stress is involved in several acute and chronic diseases. Counteracting free radical generation has become one of the widest fields of research worldwide. This study deals with the in vitro antioxidant activity of two plants from the Salvia genus as well as the assessment of their in vitro inhibitory properties of four key enzymes implicated in diabetes and Alzheimer's disease. Concerning the practical applications of our work, it can be explored in its antioxidant part as a food supplement to prevent the excess of free radicals in the body and also in other industrial practices. Another potential use is in the prevention and amelioration of both diabetes and Alzheimer's disease symptoms for the extracts that had enzyme inhibitory activity, but this deserves further toxicological and in vivo studies.
Collapse
Affiliation(s)
- Walid Mamache
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Biochemistry, Faculty of Nature and Life Sciences, University of Setif 1, Setif, Algeria
| | - Smain Amira
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Animal Biology and Physiology, Faculty of Nature and Life Sciences, University of Setif 1, Setif, Algeria
| | - Chawki Ben Souici
- Centre de Recherche en Biotechnologie (C.R.B.T) Constantine, Constantine, Algeria
| | - Hocine Laouer
- Laboratory of Valorization of Natural Biological Resources, Department of Plant Biology and Ecology, Faculty of Nature and Life Sciences, University of Setif 1, Setif, Algeria
| | - Fatima Benchikh
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Animal Biology and Physiology, Faculty of Nature and Life Sciences, University of Setif 1, Setif, Algeria
| |
Collapse
|
30
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
31
|
In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int J Biol Macromol 2019; 140:1147-1157. [DOI: 10.1016/j.ijbiomac.2019.08.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
|