1
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
2
|
Xu X, Ding Z, Pu C, Kong C, Chen S, Lu W, Zhang J. The structural characterization and UV-protective properties of an exopolysaccharide from a Paenibacillus isolate. Front Pharmacol 2024; 15:1434136. [PMID: 39185320 PMCID: PMC11341463 DOI: 10.3389/fphar.2024.1434136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Overexposure to ultraviolet (UV) light is known to cause damage to the skin, leading to sunburn and photo-aging. Chemical sunscreen products may give rise to health risks including phototoxicity, photosensitivity, and photosensitivity. Natural polysaccharides have attracted considerable interests due to diverse biological activities. Methods A novel polysaccharide isolated was purified and structurally characterized using chemical methods followed by HPLC, GLC-MS, as well as 1D and 2D NMR spectroscopy. The photoprotective effect of the EPS on UVB-induced damage was assessed in vitro using cultured keratinocytes and in vivo using C57BL/6 mouse models. Results The average molecular weight of the EPS was 5.48 × 106 Da, composed of glucose, mannose and galactose residues at a ratio of 2:2:1. The repeating units of the EPS were →3)-β-D-Glcp (1→3) [β-D-Galp (1→2)-α-D-Glcp (1→2)]-α-D-Manp (1→3)-α-D-Manp (1→. In cultured keratinocytes, the EPS reduced cytotoxicity and excessive ROS production induced by UVB irradiation. The EPS also exhibits an inhibitory effect on oxidative stress, inflammation, and collagen degradation found in the photodamage in mice. 1H NMR-based metabolomics analysis for skin suggested that the EPS partly reversed the shifts of metabolic profiles of the skin in UVB-exposed mice. Conclusion The EPS exhibits skin photoprotective effects through regulating oxidative stress both in vivo and in vitro. Our findings highlight that the EPS is a potential candidate in sunscreen formulations for an efficient solution to UVB radiation.
Collapse
Affiliation(s)
- Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Chunlin Pu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| |
Collapse
|
3
|
Gan L, Huang X, He Z, He T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int J Biol Macromol 2024; 264:130731. [PMID: 38471615 DOI: 10.1016/j.ijbiomac.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.
Collapse
Affiliation(s)
- Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Momin SC, Pradhan RB, Nath J, Lalmuanzeli R, Kar A, Mehta SK. Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11192-11213. [PMID: 38217816 DOI: 10.1007/s11356-023-31755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
The problem of heavy metal pollution in water bodies poses a significant threat to both the environment and human health, as these toxic substances can persist in aquatic ecosystems and accumulate in the food chain. This study investigates the promising potential of using Microcystis aeruginosa extracellular polymeric substances (EPS) as an environmentally friendly, highly efficient solution for capturing copper (Cu2+) and nickel (Ni2+) ions in water treatment, emphasizing their exceptional ability to promote green technology in heavy metal sequestration. We quantified saccharides, proteins, and amino acids in M. aeruginosa biomass and isolated EPS, highlighting their metal-chelating capabilities. Saccharide content was 36.5 mg g-1 in biomass and 21.4 mg g-1 in EPS, emphasizing their metal-binding ability. Proteins and amino acids were also prevalent, particularly in EPS. Scanning electron microscopy (SEM) revealed intricate 3D EPS structures, with pronounced porosity and branching configurations enhancing metal sorption. Elemental composition via energy dispersive X-ray analysis (EDAX) identified essential elements in both biomass and EPS. Fourier transform infrared (FTIR) spectroscopy unveiled molecular changes after metal treatment, indicating various binding mechanisms, including oxygen atom coordination, π-electron interactions, and electrostatic forces. Kinetic studies showed EPS expedited and enhanced Cu2+ and Ni2+ sorption compared to biomass. Thermodynamic analysis confirmed exothermic, spontaneous sorption. Equilibrium biosorption studies displayed strong binding and competitive interactions in binary metal systems. Importantly, EPS exhibited impressive maximum sorption capacities of 44.81 mg g-1 for Ni2+ and 37.06 mg g-1 for Cu2+. These findings underscore the potential of Microcystis EPS as a highly efficient sorbent for heavy metal removal in water treatment, with significant implications for environmental remediation and sustainable water purification.
Collapse
Affiliation(s)
- Sengjrang Ch Momin
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ran Bahadur Pradhan
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Jyotishma Nath
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ruthi Lalmuanzeli
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Agniv Kar
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
5
|
Yaşar Yıldız S, Radchenkova N. Exploring Extremophiles from Bulgaria: Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers (Basel) 2023; 16:69. [PMID: 38201734 PMCID: PMC10780585 DOI: 10.3390/polym16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Bulgaria stands out as a country rich in diverse extreme environments, boasting a remarkable abundance of mineral hot waters, which positions it as the second-largest source of such natural resources in Europe. Notably, several thermal and coastal solar salterns within its territory serve as thriving habitats for thermophilic and halophilic microorganisms, which offer promising bioactive compounds, including exopolysaccharides (EPSs). Multiple thermophilic EPS producers were isolated, along with a selection from several saltern environments, revealing an impressive taxonomic and bacterial diversity. Four isolates from three different thermophilic species, Geobacillus tepidamans V264, Aeribacillus pallidus 418, Brevibacillus thermoruber 423, and Brevibacillus thermoruber 438, along with the halophilic strain Chromohalobacter canadensis 28, emerged as promising candidates for further exploration. Optimization of cultivation media and conditions was conducted for each EPS producer. Additionally, investigations into the influence of aeration and stirring in laboratory bioreactors provided valuable insights into growth dynamics and polymer synthesis. The synthesized biopolymers showed excellent emulsifying properties, emulsion stability, and synergistic interaction with other hydrocolloids. Demonstrated biological activities and functional properties pave the way for potential future applications in diverse fields, with particular emphasis on cosmetics and medicine. The remarkable versatility and efficacy of biopolymers offer opportunities for innovation and development in different industrial sectors.
Collapse
Affiliation(s)
- Songül Yaşar Yıldız
- Department of Bioengineering, Istanbul Medeniyet University, 34720 Istanbul, Turkey;
| | - Nadja Radchenkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Jeewon R, Aullybux AA, Puchooa D, Nazurally N, Alrefaei AF, Zhang Y. Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications. Mar Drugs 2023; 21:420. [PMID: 37504951 PMCID: PMC10381399 DOI: 10.3390/md21070420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin.
Collapse
Affiliation(s)
- Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aadil Ahmad Aullybux
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Nadeem Nazurally
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ying Zhang
- School of Ecology and Natural Conservation, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
7
|
Rajendran V, Krishnaswamy VG, Kumar PS, S A, Vajiravelu S. Biocompatible nanofiber from exopolysaccharide produced by moderately halophilic Paenibacillus alvei. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Concórdio-Reis P, Macedo AC, Cardeira M, Moppert X, Guézennec J, Sevrin C, Grandfils C, Serra AT, Freitas F. Selenium Bio-Nanocomposite Based on Alteromonas macleodii Mo169 Exopolysaccharide: Synthesis, Characterization, and In Vitro Antioxidant Activity. Bioengineering (Basel) 2023; 10:bioengineering10020193. [PMID: 36829687 PMCID: PMC9952589 DOI: 10.3390/bioengineering10020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the novel exopolysaccharide (EPS) produced by the marine bacterium Alteromonas macleodii Mo 169 was used as a stabilizer and capping agent in the preparation of selenium nanoparticles (SeNPs). The synthesized nanoparticles were well dispersed and spherical with an average particle size of 32 nm. The cytotoxicity of the EPS and the EPS/SeNPs bio-nanocomposite was investigated on human keratinocyte (HaCaT) and fibroblast (CCD-1079Sk) cell lines. No cytotoxicity was found for the EPS alone for concentrations up to 1 g L-1. A cytotoxic effect was only noticed for the bio-nanocomposite at the highest concentrations tested (0.5 and 1 g L-1). In vitro experiments demonstrated that non-cytotoxic concentrations of the EPS/SeNPs bio-nanocomposite had a significant cellular antioxidant effect on the HaCaT cell line by reducing ROS levels up to 33.8%. These findings demonstrated that the A. macleodii Mo 169 EPS can be efficiently used as a stabilizer and surface coating to produce a SeNP-based bio-nanocomposite with improved antioxidant activity.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Catarina Macedo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Martim Cardeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Xavier Moppert
- Pacific Biotech BP 140 289, Arue Tahiti 98 701, French Polynesia
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948357
| |
Collapse
|
9
|
Li W, Zhao Y, Zhao Y, Li S, Yun L, Zhi Z, Liu R, Wu T, Sui W, Zhang M. Improving the viability of Lactobacillus plantarum LP90 by carboxymethylated dextran-whey protein conjugates: The relationship with glass transition temperature. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kaur N, Dey P. Bacterial Exopolysaccharides as Emerging Bioactive Macromolecules: From Fundamentals to Applications. Res Microbiol 2022; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
11
|
Saravanaraj A, Sivanesh N, Anusha S, Surianarayanan M. Metabolic behaviour of Halomanas variabilis in a bio-reaction calorimeter during batch production of extracellular polymeric substances. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Derdak R, Sakoui S, Pop OL, Vodnar DC, Addoum B, Teleky BE, Elemer S, Elmakssoudi A, Suharoschi R, Soukri A, El Khalfi B. Optimisation and characterization of α-D-glucan produced by Bacillus velezensis RSDM1 and evaluation of its protective effect on oxidative stress in Tetrahymena thermophila induced by H2O2. Int J Biol Macromol 2022; 222:3229-3242. [DOI: 10.1016/j.ijbiomac.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
13
|
Molecular Characterization and Biocompatibility of Exopolysaccharide Produced by Moderately Halophilic Bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers (Basel) 2022; 14:polym14193986. [PMID: 36235941 PMCID: PMC9570845 DOI: 10.3390/polym14193986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The use of natural polysaccharides as biomaterials is gaining importance in tissue engineering due to their inherent biocompatibility. In this direction, the present study aims to explore the structure and biocompatibility of the EPS produced by Virgibacillus dokdonensis VITP14. This marine bacterium produces 17.3 g/L of EPS at 96 h of fermentation. The EPS was purified using ion exchange and gel permeation chromatographic methods. The porous web-like structure and elemental composition (C, O, Na, Mg, P, S) of the EPS were inferred from SEM and EDX analysis. AFM analysis revealed spike-like lumps with a surface roughness of 84.85 nm. The zeta potential value of −10 mV indicates the anionic nature of the EPS. Initial molecular characterization showed that the EPS is a heteropolysaccharide composed of glucose (25.8%), ribose (18.6%), fructose (31.5%), and xylose (24%), which are the monosaccharide units in the HPLC analysis. The FTIR spectrum indicates the presence of functional groups/bonds typical of EPSs (O-H, C-H, C-O-H, C-O, S=O, and P=O). The polymer has an average molecular weight of 555 kDa. Further, NMR analysis revealed the monomer composition, the existence of two α- and six β-glycosidic linkages, and the branched repeating unit as → 1)[α-D-Xylp-(1 → 2)-α-D-Glcp-(1 → 6)-β-D-Glcp-(1 → 5)]-β-D-Frup-(2 → 2)[β-D-Xylp-(1 → 4)]-β-D-Xylp-(1 → 6)-β-D-Fruf-(2 → 4)-β-D-Ribp-(1 →. The EPS is thermally stable till 251.4 °C. X-ray diffraction analysis confirmed the semicrystalline (54.2%) nature of the EPS. Further, the EPS exhibits significant water solubility (76.5%), water-holding capacity (266.8%), emulsifying index (66.8%), hemocompatibility (erythrocyte protection > 87%), and cytocompatibility (cell viability > 80% on RAW264.7 and keratinocyte HaCaT cells) at higher concentrations and prolongs coagulation time in APTT and PT tests. Our research unveils the significant biocompatibility of VITP14 EPS for synthesizing a variety of biomaterials.
Collapse
|
14
|
Srivastava N, Kumari S, Kurmi S, Pinnaka AK, Choudhury AR. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42. Arch Microbiol 2022; 204:399. [PMID: 35713724 DOI: 10.1007/s00203-022-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Shubham Kurmi
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
15
|
Derdak R, Sakoui S, Pop OL, Cristian Vodnar D, Addoum B, Elmakssoudi A, Errachidi F, Suharoschi R, Soukri A, El Khalfi B. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem X 2022; 14:100305. [PMID: 35520389 PMCID: PMC9062669 DOI: 10.1016/j.fochx.2022.100305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
EPS producing bacteria was isolated and identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5. Optimization was carried out by Response Surface Methodology using Box Behnken Design. The GC–MS, FTIR, and NMR analysis showed that the EPS-SL and EPS-N5 are heteropolysaccharides connected by α-(1 → 6) and -(1 → 3) linkages. Both EPSs has high thermal stability. EPS exhibited appreciable antibacterial and antioxidant activity.
Two exopolysaccharides (EPS) producing strains, isolated from raw donkey milk were identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5 using 16S rDNA sequencing. The Box Benheken design exhibited the highest yield of EPS-SL (672.342 mg/L) produced by SL and of EPS-N5 (901 mg/L) produced by N5. The molecular weight was 1.68×104 for EPS-SL and 1.55×104 Da for EPS-N5. FTIR, NMR and GC–MS analysis showed that the EPS are heteropolysaccharides. The SEM image showed that the EPS-SL was smooth and represented a lotus leaf shape and EPS-N5 revealed a stiff-like, porous appearance and was more compact than EPS-SL. The TGA analyses showed high thermal stability and degradation temperature. Additionally, the two EPSs possessed antibacterial and antioxidant activity, and the EPS-SL had the stronger antioxidant activity. Consequently, these results suggest that the functional and biological properties of EPS-SL and EPS-N5 imply the potential application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez, Morocco
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| |
Collapse
|
16
|
Roychowdhury R, Srivastava N, Kumari S, Pinnaka AK, Roy Choudhury A. Isolation of an exopolysaccharide from a novel marine bacterium Neorhizobium urealyticum sp. nov. and its utilization in nanoemulsion formation for encapsulation and stabilization of astaxanthin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
18
|
López-Ortega MA, Chavarría-Hernández N, López-Cuellar MDR, Rodríguez-Hernández AI. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int J Biol Macromol 2021; 177:559-577. [PMID: 33609577 DOI: 10.1016/j.ijbiomac.2021.02.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Every year, new organisms that survive and colonize adverse environments are discovered and isolated. Those organisms, called extremophiles, are distributed throughout the world, both in aquatic and terrestrial environments, such as sulfurous marsh waters, hydrothermal springs, deep waters, volcanos, terrestrial hot springs, marine saltern, salt lakes, among others. According to the ecosystem inhabiting, extremophiles are categorized as thermophiles, psychrophiles, halophiles, acidophiles, alkalophilic, piezophiles, saccharophiles, metallophiles and polyextremophiles. They have developed chemical adaptation strategies that allow them to maintain their cellular integrity, altering physiology or improving repair capabilities; one of them is the biosynthesis of extracellular polysaccharides (EPS), which constitute a slime and hydrated matrix that keep the cells embedded, protecting from environmental stress (desiccation, salinity, temperature, radiation). EPS have gained interest; they are explored by their unique properties such as structural complexity, biodegradability, biological activities, and biocompatibility. Here, we present a review concerning the biosynthesis, characterization, and potential EPS applications produced by extremophile microorganisms, namely, thermophiles, halophiles, and psychrophiles. A bibliometric analysis was conducted, considering research articles published within the last two decades. Besides, an overview of the culture conditions used for extremophiles, the main properties and multiple potential applications of their EPS is also presented.
Collapse
Affiliation(s)
- Mayra Alejandra López-Ortega
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| |
Collapse
|
19
|
Purification, characterization and antitumor activity of an exopolysaccharide produced by Bacillus velezensis SN-1. Int J Biol Macromol 2020; 156:354-361. [DOI: 10.1016/j.ijbiomac.2020.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022]
|
20
|
Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. Int J Biol Macromol 2020; 164:95-104. [PMID: 32673722 DOI: 10.1016/j.ijbiomac.2020.07.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/21/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Production of extracellular polysaccharides by halophilic Archaea and Bacteria has been widely reported and the members of the genus Halomonas have been identified as the most potential producers. In the present work, a novel exopolysaccharide (EPS-S6) produced by the extremely halotolerant newly isolated Halomonas elongata strain S6, was characterized. According to the HPAE-PAD results, EPS-S6 was mainly composed of glucosamine, mannose, rhamnose and glucose (1:0.9:0.7:0.3). EPS-S6 was highly negatively charged and its molecular weight was about 270 kDa. Studies on its functional properties showed that EPS-S6 had several potential features. It has noticeable antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition and DNA protection, good ability to inhibit and to disrupt pathogenic biofilms, excellent flocculation of kaolin suspension and interesting emulsifying properties at acidic, neutral and basic pH. Therefore, EPS-S6 could have potential biotechnological concern in several fields such as in food, cosmetic and environmental industries.
Collapse
|
21
|
Li Y, Liu Y, Cao C, Zhu X, Wang C, Wu R, Wu J. Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. Int J Biol Macromol 2020; 157:36-44. [PMID: 32339581 DOI: 10.1016/j.ijbiomac.2020.04.150] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
An exopolysaccharide (EPS)-producing strain SN-8 isolated from Dajiang was identified as Leuconostoc mesenteroides. When sucrose was used as the carbon source for fermentation, the output of EPS was 2.42 g/L. High performance liquid chromatography analysis confirmed the presence of monomers such as glucan and mannose. The molecular weight detection value is 2.0 × 105 Da. Fourier transform infrared spectroscopy displayed the EPS had the basic skeleton and functional groups of a typical polysaccharide structure. Scanning electron microscopy showed smooth surfaces and compact structure. Thermal performance analysis showed that the highest heat resistance temperature of the EPS was 80 °C. Compared with vitamin C, its hydroxyl radical scavenging rate was as high as 32% and 1,1-diphenyl-2-picrylhydrazyl scavenging rate was as high as 40% under the same concentration. The peanut oil was the most emulsifiable at a concentration of 1.5 mg/mL, and the emulsification index was 0.55. These results might show that the EPS had high application value.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yiming Liu
- College of Foreign Language, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chengxu Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - XinYuan Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Junrui Wu
- College of Foreign Language, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
22
|
Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 2020; 36:37. [DOI: 10.1007/s11274-020-02815-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
23
|
Hu X, Li D, Qiao Y, Wang X, Zhang Q, Zhao W, Huang L. Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. Int J Biol Macromol 2019; 145:646-654. [PMID: 31887383 DOI: 10.1016/j.ijbiomac.2019.12.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
In the present study, an exopolysaccharide (EPS) producer Rhodococcus erythropolis HX-2 was isolated from Xinjiang oil field, China. The HX-2 EPS (name HPS) production reached 8.957 g/L by RSM in MSM medium. The HPS was purified by ethanol precipitation and fractionation by DEAE-Cellulose and Sepharose column, the yield of HPS was 3.736 g/L. HPS composed by glucose, galactose, fucose, mannose and glucuronic acid. FT-IR spectroscopy indicated the presence of a large amount of hydroxyl groups. NMR spectroscopy indicated the existence of both α and β-configuration for sugar moieties present in HPS. The degradation temperature (255.4 °C) of the HPS was determined by thermogravimetric analysis (TGA). A reticular structure of HPS was observed by SEM and the AFM analysis of the HPS revealed straight chains line. Meanwhile, the WSI and WHC of HPS were 92.15 ± 3.05% and 189.45 ± 5.65%, respectively. Finally, In vitro anticancer activity purified EPS was evaluated on L929 normal cells, A549 cancer cells, SMMC-7721 liver cancer cells and Hela cervical cancer cell. HPS inhibited the growth of cancer cells in a certain concentration without damage to normal cells. These characteristics indicate that its potential application value in food, industry and pharmaceutical application.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaohua Wang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Qi Zhang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Zhao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|